
Original Paper

Derivation of Breathing Metrics From a Photoplethysmogram at
Rest: Machine Learning Methodology

Joseph Prinable1, BEng; Peter Jones1, PhD; David Boland1, PhD; Cindy Thamrin2, PhD; Alistair McEwan1, PhD
1School of Electrical and Information Engineering, The University of Sydney, Darlington, Australia
2The Woolcock Institute of Medical Research, The University of Sydney, Glebe, Australia

Corresponding Author:
Joseph Prinable, BEng
School of Electrical and Information Engineering
The University of Sydney
Room 402, Building J03
Maze Crescent
Darlington, 2006
Australia
Phone: 61 404035701
Email: joseph.prinable@sydney.edu.au

Abstract

Background: There has been a recent increased interest in monitoring health using wearable sensor technologies; however,
few have focused on breathing. The ability to monitor breathing metrics may have indications both for general health as well as
respiratory conditions such as asthma, where long-term monitoring of lung function has shown promising utility.

Objective: In this paper, we explore a long short-term memory (LSTM) architecture and predict measures of interbreath intervals,
respiratory rate, and the inspiration-expiration ratio from a photoplethysmogram signal. This serves as a proof-of-concept study
of the applicability of a machine learning architecture to the derivation of respiratory metrics.

Methods: A pulse oximeter was mounted to the left index finger of 9 healthy subjects who breathed at controlled respiratory
rates. A respiratory band was used to collect a reference signal as a comparison.

Results: Over a 40-second window, the LSTM model predicted a respiratory waveform through which breathing metrics could
be derived with a bias value and 95% CI. Metrics included inspiration time (–0.16 seconds, –1.64 to 1.31 seconds), expiration
time (0.09 seconds, –1.35 to 1.53 seconds), respiratory rate (0.12 breaths per minute, –2.13 to 2.37 breaths per minute), interbreath
intervals (–0.07 seconds, –1.75 to 1.61 seconds), and the inspiration-expiration ratio (0.09, –0.66 to 0.84).

Conclusions: A trained LSTM model shows acceptable accuracy for deriving breathing metrics and could be useful for long-term
breathing monitoring in health. Its utility in respiratory disease (eg, asthma) warrants further investigation.

(JMIR Mhealth Uhealth 2020;8(7):e13737) doi: 10.2196/13737
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Introduction

There has been increasing interest in monitoring health using
wearable sensors. However, very few technologies have focused
on the breathing signal. The ability to monitor breathing may
be beneficial for general health and particularly for asthma,
which is a health condition that affects over 300 million people
globally [1]. Monitoring of lung function using specialized
metrics such as peak expiratory flow has been shown to be
useful for predicting risk of an asthma episode [2]; however,
this can be difficult to perform for patients as it involves forced

maneuvers. It remains to be seen whether continuous monitoring
of simple breathing metrics such as the interbreath interval (IBI)
and the inspiration-expiration (I:E) ratio could provide further
information on asthma control [3] and disease status [4].

The availability of a noninvasive sensor that measures breathing
continuously and in an ambulatory manner would facilitate
studies to establish clinical utility. One sensor of interest is the
pulse oximeter that is commonly used in a clinical setting to
measure both arterial blood oxygen saturation (SPO2) and heart
rate. A tidal breathing method exists that also shows promise
for clinical prediction [5]; however, these methods are unsuitable
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for continuous monitoring (eg, during walking or exercise). It
was recently shown that a pulse oximeter can also be used to
continuously monitor respiratory rate in a clinical setting [6].
This is possible because breathing periodicity [6,7] and effort
[8] modulate photoplethysmogram (PPG) amplitude, frequency,
and baseline wander [9,10]. Filtering and feature-based signal
processing approaches can be applied to the PPG signal to
extract a surrogate respiratory signal. This in turn can be
processed to derive breathing rate (BR) with varying degrees
of accuracy [7].

Unfortunately, there is poor amplitude correlation between the
surrogate respiratory waveform and a gold standard respiratory
trace. This poor correlation may make the I:E ratio difficult or
impossible to derive using existing methods. In this work, we
sought to address this using machine learning. In a previous
pilot study [11], we demonstrated how a long short-term
memory (LSTM) approach could predict a respiratory waveform
from which BR could be derived. LSTM is a type of a recurrent
neural network that can capture long-term, time-based
dependencies in data [12]. Through the LSTM, we showed that
the Pearson correlation coefficient between the derived
respiratory waveform and a pneumotachograph trace had
similarly high r values (r>0.8) to existing methods. In this paper,
we built on this study by investigating the accuracy to which
IBI, I:E ratio, and BR respiratory metrics can be attained from
a PPG-derived surrogate respiratory waveform using an LSTM.
We show that, in comparison to existing approaches, we can
derive breathing metrics to a higher degree of accuracy from a
pulse oximeter.

Methods

Datasets

Data Collection
Measurements were recorded from a group of 10 healthy
participants who provided informed consent. The protocol for
this study was approved by Northern Sydney Local Health
District Human Research Ethics Committee
(LNR/16/HAWKE/99 ethics approval). Participants conducted
5 randomized breathing serials at a rate of 6, 8, 10, 12, or 14
breaths per minute (BPM). Each serial was conducted for 5
minutes. Each participant was coached to breath one full
inhalation and exhalation in time with a visual prompt.

An Alice PDx (Philips Respironics, Murrysville, PA) portable
sleep diagnostic system was used to measure physiological
signals during this study. The supplied pulse oximeter was
attached to the index finger of the nonmaster hand, allowing
the capture of a raw PPG trace, SPO2, and pulse rate data. The
Alice PDx reported calculated values for SPO2 and pulse rate
3 times per second. PPG signals were sampled at 75 Hz.

Respiratory inductance plethysmography is a method to measure
relative tidal volume (RTV) as a function of the chest and
abdominal wall movement [13]. In this study, inductance bands
were placed around the abdomen and ribcage according to the
manufacturer’s guidelines, allowing RTV to be estimated as
the weighted sum of the chest and abdominal wall inductance
signals. The Alice PDx system reported an RTV signal based
on the contribution of both respiratory bands and was captured
at 100 Hz.

Description of Available Features
The Alice PDx system outputs three independent time series:
PPG, SPO2, and pulse rate. The SPO2, processed PPG, and pulse
rate signals were up-sampled to 25 Hz while the RTV was
down-sampled to 25 Hz before normalizing between ±1. The
sampling rate of 25 Hz was selected to ensure respiratory rate
accuracy [7,14] and so that all time series data had the same
time scale.

In addition to the three time series given by the Alice PDx
system, a bandpassed PPG time series was generated by passing
the original PPG signal through a sixth order Butterworth
bandpass filter with a center frequency corresponding to the
respiratory rate of the signal with a bandwidth of 0.002 Hz. This
additional time series was included because our previous
findings suggested that this feature could improve model
prediction [11].

Altogether, the available features used within our model are as
follows:

• Feature 1: PPG
• Feature 2: bandpassed PPG
• Feature 3: SPO2

• Feature 4: pulse rate

We previously determined experimentally that the inclusion of
SPO2 and pulse rate values helped inform the network when
decoupling between the pulse signal and respiratory signal
occurs [11]. The exact underlying physiological mechanisms
are unclear.

Derivation of a Respiratory Waveform Time Series
For comparison purposes, RRest toolbox [15] was used to
extract respiratory waveforms from a PPG using 10
feature-based and filter-based algorithms as shown in Figure 1.
The resulting respiratory waveforms were temporally aligned
to correspond with the reference respiratory waveform in the
test set for comparison purposes. The techniques used to derive
the respiratory waveforms, as well as our LSTM method, are
described in Table 1.
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Figure 1. Using existing filter-based and feature-based methods, 10 relative respiratory waveforms were derived from a photoplethysmogram (PPG)
signal, and another relative respiratory waveform was derived using a long short-term memory (LSTM) that accepts PPG, arterial blood oxygen saturation
(SPO2), band-passed (BP) PPG, and pulse rate inputs. BR: breathing rate; I:E: inspiration-expiration ratio; IBI: interbreath interval.

Table 1. Techniques for the extraction of respiratory signals from a photoplethysmogram (adapted from Charlton et al [15]).

DescriptionRespiratory signal

Filter-based

Bandpass filter between plausible respiratory frequenciesXA1

Maximum amplitude of the CWTa within plausible cardiac frequencies
(30-220 beats per minute) [16]

XA2

The frequency corresponding to the maximum amplitude of the CWT
within plausible cardiac frequencies [16]

XA3

Feature-based

Mean amplitude of troughs and proceeding peaks [7]XB1

Difference between the amplitudes of troughs and proceeding peaks [17]XB2

Time interval between consecutive troughs [17]XB3

Mean signal value between consecutive troughs [18]XB4

Peak amplitude [17]XB5

Trough amplitude [18]XB6

PPGb pulse width estimation using a wave boundary detection algorithm
[19]

XB10

Machine learning–based

Proposed LSTM methodXLSTM
c

aCWT: continuous wavelet transform.
bPPG: photoplethysmogram.
cLSTM: long short-term memory.

LSTM Architecture and Parameters
We propose the use of an LSTM model as an alternative to the
signal processing methods described in Table 1. In this section,
we discuss our training and validation procedures to determine
an appropriate LSTM architecture to predict a respiratory
waveform.

The core component of an LSTM architecture is a memory cell
whose characteristics allow long-term data dependencies to be
captured. A single LSTM cell uses gate mechanisms to forget

irrelevant parts of a previous state, selectively update the current
cell state, and to output the cell state [12]. Each cell contains a
number of hidden units that define the dimensionality of both
the current and output states. Increasing hidden units within a
model may lead to overfitting. Conversely, reducing hidden
units below a certain threshold will not allow a model to be
trained.
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Hyperparameter Search
We first conducted a structured, though nonexhaustive,
hyperparameter search to determine suitable values for our final
LSTM architecture. We then performed more extensive training
to maximize the performance of our final architecture.

Hyperparameter Exploration
An open-source Python 3.5 library called TensorFlow r1.3 was
used to train the LSTM model on a Dell Optiplex D810 (i7, 32
GB RAM; Dell Inc, Round Rock, TX) and two Titan Xp (Nvidia
Corp, Santa Clara, CA) graphics processing units (GPUs).

The AdamOptimizer class of Tensorflow was used to train the
LSTM using a learning rate of 0.0005 for 100 epochs with a
batch size of 128. We explored the effect of changing the
amount of cells (100, 300, 500), hidden units within a cell (500,
1500, 2500), and layers (1, 2, 3) and compared the results against
a default model containing 100 cells, 500 hidden units, and a
single layer. For this study, cells were layered sequentially two
times to improve model accuracy and robustness [20]. The
dropout layer was placed between each layer with a dropout
rate of 0.5 to reduce overfitting [21]. There was a single dense,
fully connected layer at the end.

To minimize training time for hyperparameter exploration, 4
smaller training datasets were created from the original 45
unique datasets (9 participants, each with 5 breathing serials).
These datasets contained data from 1 participant (7), 3

participants (3, 5, 7), 5 participants (1, 3, 5, 7, 9), or 9 (1, 2, 3,
4, 5, 6, 7, 8, 9) participants. This allowed us to compare model
performance as the number of participants increased for the
various configurations. To further reduce training time, each
dataset was reduced to 1 minute of data, splitting 70%, 15%,
and 15% into training, validation, and test sets, respectively.
To assess the performance of the model, we conducted 5-fold
cross validation. To reduce computational time that typically
results in higher error bias but lower variability, we chose 5
folds over 10 folds [22]. We investigated permutations of the
available features and found that accuracy increased with the
number of features with a minimal cost in terms of execution
time.

Table 2 shows the training time in minutes as a function of
participants and the hyperparameter. The Pearson correlation
coefficients between the derived and reference respiratory
waveforms are plotted as a function of increasing number of
participants for the chosen cell values (Table 2) in Figure 2A,
hidden unit values in Figure 2B, and layer values in Figure 2C.
The highest correlation was achieved with 300 cells and 2 layers
for 9 participants. For hidden units, the correlation was similar
between the quantities, with 2500 hidden units only slightly
better than 500 (0.786 vs 0.788). Due to the minimal difference,
the latter was selected as it required significantly less training
time (211 minutes vs 1213 minutes) for comparable
performance.

Table 2. Training time (minutes) for the hyperparameter search.

9 participants5 participants3 participants1 participantHyperparameters

Cells

2081107524100

50527220054300

93254231384500

Hidden units

2111506924500

482264161521500

12136654021312500

Layers

22011665241

366190125352

470271158483
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Figure 2. Pearson correlation values between derived and reference respiratory waveforms, given a dataset containing n participants, for a long short-term
memory (LSTM) with (A) cells of size 100, 300, and 500; (B) hidden units of size 500, 1500, and 2500; (C) layers of size 1, 2, and 3.

Final Model Training
The final model had around 8257 trainable parameters consisting
of 300 cells, 2 layers, and 16 hidden layers. To train our final
model, we used AdamOptimizer with an initial learning rate of
0.02 and batch size of 256. We conducted 5-fold cross validation
with approximately 223,786 training examples per fold with
early stopping.

Extraction of Breathing Metrics
We defined a valid window when the Pearson correlation
coefficient was >0.6 between the gold standard respiratory
waveform and derived tidal volume waveform (TVW) in the
window. For test sets that contained valid windows, we extracted
peaks and troughs in MATLAB R2016b (MathWorks Inc,
Natick, MA). To find the maximum points, ‘findpeaks’ was
used, and we used a linear search algorithm to find the global
minimum between 2 consecutive peaks. Using the peak and
trough data, we extracted the following: IBI (the period in
seconds between 2 consecutive peaks within the TVW signal),
inspiration time (period in seconds between a trough and peak
within the TVW signal), expiration period (period in seconds
between a peak and trough within the TVW signal), and I:E
(ratio between consecutive inspiration time and expiration
period).

We then evaluated the Bland-Altman agreement [13] between
the derived respiratory metrics to reference metrics.

Additionally, the root mean square error between hypothesized
RTV signal y(t) and the true RTV Y(t) was calculated for each
person and respiratory rate and subsequently averaged across
the 5 folds.

Results

Data Collection
Data were acquired from 10 healthy subjects. One subject was
excluded because of incomplete recordings due to an SD card
save error on the Alice PDx. Therefore, data for 9 subjects were
analyzed. The median (lower, upper quartiles) age of the
analyzed subjects was 28 years (24.5 to 33.0 years). Median

BMI was 23.59 kg/m2 (21.28 to 30.04 kg/m2), and 3 subjects
(3/9, 33%) were female. In total, we recorded 3.75 hours of
data, consisting of 5 minutes * 5 breathing rates * 9 participants.

Model Validation
The weights and biases were saved for each epoch during
training. Training was stopped when the validation error
diverged to avoid overfitting. Early stopping occurred when the
validation cost did not improve for 5 epochs.
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Derivation of Breathing Metrics
In total, 225 unique test sets were created from 9 participants,
at 5 respiratory rates, over 5 folds. Each test set was a window
of 1000 samples (40 seconds) in length. We plotted the number
of valid windows as a function of increasing Pearson correlation
coefficients between derived and reference respiratory
waveforms in 0.2 increments in Figure 3. For a Pearson
correlation coefficient ≥0.6, our approach, XLSTM, was valid for
191/225 (85%) windows, while the next highest performing
algorithm, XA1, was valid for 128/225 (57%) windows, followed
by XA2, which was valid for 119/225 (53%) windows. Other
algorithms were excluded from further analysis due to a small
percentage of valid windows: 21/225 (9%) for XA3, 56/225
(25%) for XB1, 38/225 (17%) for XB2, 36/225 (16%) for XB3,
23/225 (10%) for XB4, 65/225 (29%) for XB5, 52/225 (23%) for
XB6, and 11/225 (5%) for XB10.

Breathing metrics were averaged over each 40-second test set.
The mean (SD) between derived and gold standard metrics and
their associated t test results are shown in Table 3. The
Bland-Altman agreement between derived and gold standard
metrics for all subjects and respiratory rates are reported in
Table 4. In the case of XLSTM, a Savitzky-Golay filter was used
to smooth the derived respiratory waveform prior to extracting
the breathing metrics.

The Bland-Altman plot for the derived breathing metrics of
inspiration time, expiration period, IBI, BR, and I:E across all
participants (1-9) and all respiratory rates (6, 8, 10, 12, 14) using
XLSTM is shown in Figure 4. For comparison purposes, we report
the Bland-Altman plot for derived respiratory rate across all
participants and all respiratory rates using the highest performing
algorithm found by Charlton et al [7] in Figure 5.

Figure 3. Number of valid windows as a function of increasing Pearson correlation coefficients between derived and reference respiratory waveforms
in 0.2 increments. For an explanation of the variables please refer to Table 1.
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Table 3. Breathing metrics for the reference respiratory band, XLSTM, XA1, and XA2 methods, with their associated paired t test results.

XA2XA1XLSTM
aRespiratory band,

mean (SD)
Breathing
metrics

Pt118 testMean (SD)Pt126 testMean (SD)Pt180 testMean
(SD)

0.990.023.40 (1.42)0.1031.653.46 (1.31)0.0042.923.14
(1.15)

3.28 (1.29)Tinspb (sec-
onds)

0.152–1.443.10 (0.95)0.002–3.243.38 (1.09)0.095–1.683.19
(1.05)

3.13 (1.01)Texpc (sec-
onds)

0.649–0.4610.35 (2.95)0.0561.939.69 (2.73)0.167–1.3910.41
(2.74)

10.28 (2.72)BRd (BPMe)

0.086–1.736.50 (2.09)0.031–2.186.84 (2.09)0.2621.126.33
(1.96)

6.40 (1.98)IBIf (seconds)

0.135–1.501.00 (0.29)0.008–2.681.03 (0.40)0.002–3.091.09
(0.43)

1.01 (0.36)I:Eg

aLSTM: long short-term memory.
bTinsp: inspiration time.
cTexp: expiration period.
dBR: breathing rate.
eBPM: breaths per minute.
fIBI: interbreath interval.
gI:E: inspiration:expiration ratio.
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Table 4. Derived breathing metrics using the XLSTM, XA1, and XA2 methods and associated statistical analyses.

RelativeAbsolutePBland-Altman r2Method

95% LoABias (%)95% LoAaBias

Tinsp (seconds) b

–38.44 to 31.05–3.70–1.64 to 1.31–0.16<.0010.70XLSTM
c

–35.65 to 30.95–2.35–1.51 to 1.30–0.11<.0010.74XA1

–33.34 to 32.90–0.22–1.46 to 1.46-0.01<.0010.74XA2

Texp (seconds)d

–31.84 to 36.552.35–1.35 to 1.530.09<.0010.54XLSTM

–32.82 to 45.636.41–1.45 to 1.950.25<.0010.41XA1

–36.34 to 41.732.70–1.39 to 1.590.10<.0010.43XA2

BRe (BPMf)

–23.63 to 26.071.22–2.13 to 2.370.12<.0010.83XLSTM

–18.42 to 15.65–1.38–1.68 to 1.41–0.13<.0010.92XA1

–19.35 to 19.620.14–1.94 to 2.020.04<.0010.88XA2

IBIg (seconds)

–22.62 to 20.66–0.98–1.75 to 1.61–0.07<.0010.82XLSTM

–16.55 to 20.702.08–1.31 to 1.600.14<.0010.88XA1

–16.20 to 18.941.37–1.13 to 1.330.10<.0010.91XA2

I:Eh

–63.89 to 83.709.91–0.66 to 0.840.09<.0010.30XLSTM

–61.43 to 74.736.65–0.68 to 0.870.09<.0010.11XA1

63.89 to 70.723.41–0.62 to 0.710.05<.0010.04XA2

aLoA: limits of agreement.
bTinsp: inspiration time.
cLSTM: long short-term memory.
dTexp: expiration period.
eBR: breathing rate.
fBPM: breaths per minute.
gIBI: interbreath interval.
hI:E: inspiration:expiration ratio.
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Figure 4. Bland-Altman plots for (A) inspiration time (seconds), (B) expiration time (seconds), (C) interbreath interval (seconds), (D) breathing rate
(breaths per minute), and (E) inspiration:expiration ratio using the LSTM method.

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 7 | e13737 | p. 9http://mhealth.jmir.org/2020/7/e13737/
(page number not for citation purposes)

Prinable et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Bland-Altman plot for the highest performing algorithm (XB1,2,3ET4FM1) found by Charlton et al [7].

Our model consistently performed comparably to the other
methods, showing similar agreement (lower bias) and variability
(narrower limits of agreement). The relative bias for our model
was <4% for all breathing metrics examined except for I:E ratio
(at 9.9%), which is within the limits of accuracy of existing
standards on the estimation of breathing metrics using
conventional methods [5], although the limits of variability are
wide.

The differences for inspiration time are bound within the 95%
CIs for average inspiration periods <4 seconds. Distinct
clustering can be seen around an inspiration period of 2 seconds
(Figure 4A). The differences for expiration period are bound
within the 95% CIs for average expiration periods of 2-3 seconds
(Figure 4B). For IBI, 4 distinct clusters occur corresponding to
intervals of 4, 5, 6, and 7 seconds; however, the clustering
weakens above 9 seconds (Figure 4C). For BR, 5 distinct
clusters are formed corresponding to expected BRs of 6, 8, 10,
12, and 14 BPM (Figure 4D). There is noticeable clustering for
I:Es of 0.8-1 (Figure 4E).

To quantify the accuracy of our model and provide a metric for
future comparisons, we report the root mean square error over
all participants and respiratory rates for XLSTM for inspiration
time (0.77 seconds), expiration period (0.74 seconds), IBI
(0.8377 seconds), BR (0.86 BPM), and I:E (1.15).

Discussion

Principal Findings
In this work, we were interested in determining the feasibility
of finding continuous measures of inspiration time, expiration
period, IBI, BR, and I:E metrics from a PPG. We showed how
an LSTM architecture could be used to predict these metrics
for 191/225 (85%) test sets comprised of 9 participants at a
respiratory rate of 6, 8, 10, 12, or 14 BPM. We conducted
Bland-Altman analyses and found the LSTM was able to predict
the average inspiration time of –0.16 seconds (–1.64 to 1.31
seconds) and expiration period of 0.09 seconds (–1.35 to 1.53
seconds) over a 40-second window. The LSTM was able to
predict an I:E ratio of 0.09 (–0.66 to 0.84), although this was
poorly correlated with reference values. However, this is the
first time this metric is being reported in the literature as
measured from a pulse signal.

The LSTM model was trained to minimize the error between
derived and reference respiratory waveforms and was then able
to generalize the breathing characteristics of 9 subjects and
predict future respiratory waveforms based on PPG data. The
ability to “see and learn” a reference signal presents a distinct
advantage over existing methods. Through this approach, it was
possible to determine the continuous average breathing metrics
of inspiration time, expiration period, IBI, and BR for the
majority of time (85%), exceeding a Pearson correlation
threshold of 0.6. In contrast, these breathing metrics could only
be derived, at best, around half the time (56% in the case of
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XA1) using existing feature-based and filter-based algorithms
that did not rely on any previous reference data. While we
directly compared the performance of XA1 and XA2 to the LSTM
method, other methods were excluded from this analysis due
to the fact that the correlation between the derived respiratory
waveform and the gold standard was <0.6 more than 80% of
the time. Feature-based techniques (XB1-XB6, XB10) have
performed well in previous respiratory rate algorithm
assessments by Charlton et al [7] and would likely have similar
performance on this dataset. In the cases where breathing metrics
could be extracted for XA1and XA2, we found that the metrics
of inspiration time, expiration period, and I:E were poorly
correlated with the reference metrics, as shown in Table 4.

We conducted Bland-Altman analysis on the highest performing
algorithm XB1,2,3ET4FM1 found by Charlton et al [7] in his
comparison of classical signal processing algorithms for PPG.
The bias in our dataset compared to those in the dataset used
by Charlton et al [7] was higher (–1.12 vs 1). However, the 95%
limits of agreement (BPM) was lower (–2.4 to 2.1 vs –5.1 to
7.2). XLSTM compares favorably to XB1,2,3ET4FM1 with similar
bias (0.12 vs –1.10) and a smaller 95% limits of agreement
(BPM; –2.13 to 2.37 vs –2.63 to 2.44). The bias in our model
compares well against existing standards on breathing metric
estimation using conventional methods, which stipulate an
accuracy of at least 2% for respiratory rate. It is worth noting
that the standards are formulated for infant populations who
breath faster. The wide variability seen in our model could be
improved, although it is lower than that obtained from other
methods examined. The high degree of variability could arise
from differences in accuracy with different respiratory rates.
While there is insufficient data from this study to ascertain this,
it justifies use of longer-term data collection for further
investigation.

The hyperparameters for the LSTM model were chosen in a
structured, although non-exhaustive, manner by comparing a
change in the number of cells, hidden units, or layers to a fixed
model. Figures 2-4 show a decreasing trend in the correlation
between the LSTM-derived respiratory waveform and the
reference waveform as the number of participants increased.
This trend occurred irrespective of the number of cells, hidden
units, or layers. This may be accounted for, in part, by the
complexity for which the LSTM model must account as the
participant population increases. In the specific case of 300
cells, the correlation curve decreased quasi-exponentially.
However, in the case of hidden units and layers, the correlation
curve decreased quasi-linearly. It remains to be seen if the

minimum correlation is bound between derived and reference
respiratory waveforms for a given population. The findings of
this paper show that our previous network parameter was much
larger than required [11].

In this work, we used the following 4 features: PPG, filtered
PPG, SPO2, and pulse rate. We did not conduct feature selection,
which may have helped to improve the overall model
performance. It would be useful to see the effect of removing
the filtered PPG signal feature to reduce additional preprocessing
time and computational power.

Due to a limited participant population, we did not conduct
leave-one-out participant cross validation. The shape of each
respiratory waveform varied from person to person, and it is
unlikely that the LSTM model derived in this work would be
able to predict respiratory metrics from an unseen participant.
However, with a larger training population, the LSTM model
may be exposed to enough data to enable the accurate prediction
of respiratory metrics in an unseen participant. Previously, we
found that participants would prefer that a wearable sensor
device have a watch form factor [23]. In this paper, we did not
look at the feasibility of implementing an LSTM in this type of
form factor. Currently, LSTM training requires GPU-grade
computational power. With current low-power Bluetooth low
energy devices [11,24,25], it may be possible to acquire PPG
data and stream real-time data to a cloud-based GPU server to
run online training. Once the weights and biases of the LSTM
architecture are found, it may also be possible for an embedded
platform to perform the required processing to obtain real-time
breathing metric predictions. At present, field-programmable
gate arrays can be used for real-time predictions and benefit
from low latency and low power consumption [26].
Additionally, the field-programmable gate array architecture is
reconfigurable. This would allow any potential device to be
individually tailored to a specific model.

Conclusion
This paper presents the feasibility of monitoring simple
breathing metrics such as the IBI, BR, inspiration time,
expiration period, and I:E for a person at rest. We hope this
proof-of-concept paper will inspire future research to collect
further data and develop more powerful machine learning
algorithms. In the future, it may also be possible to derive these
metrics from a wristworn device that contains a pulse oximeter
and accelerometer for a person at rest and support potential
longitudinal studies to determine if these metrics can provide
further information on asthma type [3] and provide any clinical
utility [4].
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Abbreviations
BPM: breaths per minute.
BR: breathing rate.
I:E: inspiration:expiration ratio.
IBI: interbreath interval.
GPU: graphics processing unit.
LoA: limits of agreement
LSTM: long short-term memory.
PPG: photoplethysmogram.
RTV: relative tidal volume.
Texp: expiration period.
Tinsp: inspiration time.
TVW: tidal volume waveform.
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