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Abstract

Background: Research suggests that variability in attention and working memory scores, as seen across time points, may be a
sensitive indicator of impairment compared with a singular score at one point in time. Given that fluctuation in cognitive
performance is a meaningful metric of real-world function and trajectory, it is valuable to understand the internal state-based and
environmental factors that could be driving these fluctuations in performance.

Objective: In this viewpoint, we argue for the use of repeated mobile assessment as a way to better understand how context
shapes moment-to-moment cognitive performance. To elucidate potential factors that give rise to intraindividual variability, we
highlight existing literature that has linked both internal and external modifying variables to a number of cognitive domains. We
identify ways in which these variables could be measured using mobile assessment to capture them in ecologically meaningful
settings (ie, in daily life). Finally, we describe a number of studies that have already begun to use mobile assessment to measure
changes in real time cognitive performance in people’s daily environments and the ways in which this burgeoning methodology
may continue to advance the field.

Methods: This paper describes selected literature on contextual factors that examined how experimentally induced or self-reported
contextual variables (ie, affect, motivation, time of day, environmental noise, physical activity, and social activity) related to tests
of cognitive performance. We also selected papers that used mobile assessment of cognition; these papers were chosen for their
use of high-frequency time-series measurement of cognition using a mobile device.

Results: Upon review of the relevant literature, it is evident that contextual factors have the potential to meaningfully impact
cognitive performance when measured in laboratory and daily life environments. Although this research has shed light on the
question of what gives rise to real-life variability in cognitive function (eg, affect and activity), many of the studies were limited
by traditional methods of data collection (eg, involving retrospective recall). Furthermore, cognition has often been measured in
one domain or in one age group, which does not allow us to extrapolate results to other cognitive domains and across the life
span. On the basis of the literature reviewed, mobile assessment of cognition shows high levels of feasibility and validity and
could be a useful method for capturing individual cognitive variability in real-world contexts via passive and active measures.

Conclusions: We propose that, through the use of mobile assessment, there is an opportunity to combine multiple sources of
contextual and cognitive data. These data have the potential to provide individualized digital signatures that could improve
diagnostic precision and lead to meaningful clinical outcomes in a wide range of psychiatric and neurological disorders.

(JMIR Mhealth Uhealth 2020;8(7):e14328) doi: 10.2196/14328
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Introduction

Background
Thinking occurs dynamically. From day to day and moment to
moment, our ability to hold information in mind or regulate
attention is constantly in a state of flux. The sources of these
fluctuations are varied—whether coming in the wake of
mid-afternoon sleepiness, an anxiety-provoking presentation,
or the confusion of navigating a crowded store, cognitive
performance is influenced by the contexts in which a person
operates. Despite this inherent variability, researchers and
clinicians often assume that cognitive performance reflects
internal processes that are constant and stable. This assumption
leads to the characterizations of cognitive performance as static,
treating the mean of an individual’s or group’s cognitive
performance as the output of internal processes and dismissing
variance in performance as noise. Research has found that these
within-person changes in performance, commonly referred to
as intraindividual cognitive variability [1,2], can serve as highly
sensitive markers of cognitive dysfunction [3], such as in
attention deficit hyperactivity disorder [4] and cognitive decline
[5] or dementia [6,7]. Intraindividual variability has been used
to describe change or dispersion across domains of function
(eg, memory vs attention) [8], variability or inconsistency in
response within a single measurement time point [9], or across
a number of time points of varying scales (eg,
moment-to-moment fluctuations) [10]. In this paper, we seek
to identify the factors that give rise to changes in attention and
working memory (given these domains’ susceptibility to
fluctuation) [11] within individuals, across time (eg, 1-2 weeks)
and contexts (eg, physical environment and emotional state).

To effectively measure how contexts shape attention and
working memory, dense sampling of cognitive performance
across time and in various settings is essential. Measuring
performance across a series of time points in traditional
laboratory or clinic settings is arduous and expensive and
represents a limited and unnatural context for cognitive function.
Instead, by using an experience sampling method (ESM) or
ecological momentary assessment (EMA) of frequent testing
over the course of days or weeks [12], high-resolution
measurements can be obtained, which give rise to a rich picture
of the dynamics and patterns of an individual’s cognitive
functioning within a period of time [13]. Until recently, methods
of studying frequency and patterns of behavior in daily life
relied on pen-and-paper responses or frequent calls to
participants that were burdensome and intrusive. However, the
increasing ubiquity of mobile devices (eg, smartphones and
tablets) allows for the feasible acquisition of high-frequency
data [14,15], which can be collected in vivo, without the
limitations of retrospective reporting. Mobile assessment data,
in turn, produce a digital phenotype [16] (ie, a reflection of a
person’s moment-to-moment cognitive and behavioral function
in the context of everyday life). The goal of digital phenotyping
aligns with the advancement of precision medicine, where
personalized models predict function based on relevant internal
and environmental variables. The use of this method has become
increasingly common in the fields of clinical psychology and
psychiatry to understand the temporal patterns of symptoms

[17,18] and how contextual factors, such as a person’s physical
and social environment, influence important clinical features,
such as mood dysregulation [19]. However, digital phenotyping
is just beginning to be validated within the field of
neuropsychology as digital cognitive assessments are being
developed and implemented [15,20,21].

Objective
On the basis of the research available to date, we propose that
significant strides could be made in predicting meaningful health
outcomes by assessing the everyday factors that influence
cognition via smartphones or other mobile technologies. In this
viewpoint, we begin by describing the importance of measuring
intraindividual cognitive variability, focusing on the domains
of attention and working memory. To better understand the
factors that give rise to this variability, we explore how internal
state-based variables (eg, affect and motivation) and external
contextual variables (eg, time of day, surrounding noise, and
activity) affect cognitive performance. Finally, we propose using
mobile assessment as a means of integrating ambulatory
cognitive assessment tasks with contextual and environmental
data to produce digital phenotypes that could aid in diagnostic
precision.

Intraindividual Variability in Cognition
Intraindividual variability can be observed at multiple time
scales [1], and yet, the majority of literature has focused on
trial-to-trial response variability within a single time point
[11,22-25]. However, there is some evidence to suggest that
intraindividual variability within and across days is positively
correlated, signaling potentially similar processes, although the
extent of this generalization is unclear [26]. Broadly defined,
variability in attention and inhibition of behavioral response is
thought to be supported by the prefrontal cortex, which serves
to differentially activate the strength of specific networks
depending on factors of context, state, and task demands [23].
One study found the regulation of task performance and adaptive
modulation of attention to be localized to the right dorsolateral
frontal regions that exert top-down attentional control [22].
Cognitive variability (ie, performance across course of a day)
in attention and memory is known to increase in late adulthood
[9,27]. Although the function and mechanisms of this increase
are not fully understood [11], it seems to occur in both normal
aging and varying disease processes [28], resulting in decreased
frontal-executive function [29] and an observed decrease in
dopamine response within extrastriatal regions [30]. Given that
a non-negligible amount of response variability can occur from
one time point to another [26], this may limit the generalizability
of scores created from aggregate measures that are interpreted
to reflect global functioning across many time points [31].
Instead of dismissing the error or noise in these estimates, it is
valuable to understand contributors that give rise to the
variability seen within one’s performance, specifically how
internal state-based and environmental factors shape one’s
cognitive performance from moment to moment.

Modifying Factors of Moment-to-Moment Cognition
Traditional approaches to measuring cognition seek to remove
noise, which might impact an individual’s performance, such
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as time of day and distractors in the physical environment.
However, in the context of daily life, these factors likely exert
meaningful influence on one’s overall function. With the
emergence of mobile technology, we now have the opportunity
to measure these factors in real time and quantify their influence
on cognitive function. As there are only few prior studies that
measure the influence of contextual factors on repeat cognitive
performance [32-36], whether these factors produce reliable
and meaningful patterns of variability remains equivocal. If
consistent patterns of within-person variability at either the

nomothetic or idiographic level are evident, this could signal
opportunities for uniquely tailored real-time intervention points.
The potential modifiers of cognitive performance that we will
focus on in the following section include internal state-based
factors (eg, affect and motivation) and external contextually
based factors (eg, time of day, surrounding noise, and recent
activity level; Table 1). In addition, we will discuss how each
of these modifiers could be more optimally measured in relation
to cognitive performance using mobile assessment.
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Table 1. Internal and external modifiers of cognitive performance.

ResultLengthTest location and task
domain

SampleModifierReference

Low arousal with negative affect associ-
ated with best performance

1 dayIn laboratory; visual atten-
tion

100 younger adultsMoodJefferies et al [37]

Depressed mood reduced semantic pro-
cessing, interaction between depressed
mood and task difficulty

1 dayIn laboratory; semantic
recall

160 younger adultsMoodEllis et al [38]

Negative affect and low task motivation
reduced working memory performance

100
days

In laboratory; working
memory

101 younger adultsMood and motiva-
tion

Brose et al [39]

Positive affect and high task motivation
improved working memory performance

100
days

In laboratory; working
memory

101 younger adultsMood and motiva-
tion

Brose et al [40]

Higher stress ratings associated with
slower response time on working memo-
ry tasks, greater effect in older adults

1-2
weeks

In laboratory; working
memory

184 younger and older
adults

MoodSliwinski et al [41]

No relation between mood and reaction
time scores

7 daysPalm-pilot; reaction time420 adultsMoodSalthouse and Berish [36]

Modulation of reward potential corre-
lates with response time and functional
magnetic resonance imaging blood oxy-
gen level–dependent response

1 dayIn scanner; working
memory

16 younger adultsMotivationKrawczyk [42]

Motivation had the strongest influence
on multistep task performance once task
was learned and familiar

1 dayIn laboratory; executive
function

99 younger adultsMotivationYeo and Neal [43]

Performance on sustained attention
slower but more accurate in the morning

1 dayIn laboratory; sustained
attention

2167 childrenTime of dayvan der Heijden et al [44]

Positive correlation between errors and
sleepiness rating

4 daysAt home; sustained atten-
tion

10 younger adultsTime of dayManly et al [45]

Younger adults performed best on
working memory tasks in the evening,
older adults performed best in the morn-
ing

4 daysIn laboratory; computer
task

40 younger and older
adults

Time of dayWest et al [46]

Noise disrupted verbal but not visuospa-
tial working memory performance

1 dayIn laboratory; working
memory

34 younger adultsNoiseLange [47]

Same level of impairment on visual
working memory from noise versus si-
lence in younger and older adults

1 dayIn laboratory; working
memory

182 younger and 193
older adults

NoiseBell and Buchner [48]

No significant effect of noise on perfor-
mance, but higher levels of subjective
task difficulty and stress ratings

1 dayIn laboratory; reasoning
and working memory

24 adultsNoiseLjungberg and Neely [49]

Cardiovascular exercise significantly
improves working memory

2 daysIn laboratory; working
memory

48 younger adultsActivitySibley and Beilock [48]

Older adults report fewer memory fail-
ures on days with exercise

8 daysDaily diary; subjective
complaints

59 younger adultsActivityWhitbourne et al [50]

Physical activity accounted for signifi-
cant within-person variance in cognition,
especially processing speed

5 daysIn laboratory; reasoning
and processing speed
tasks

51 older adultsActivityPhillips et al [51]

Intellectually stimulating activities im-
proved semantic memory performance
measured later on the same-day

7 daysPersonal digital assistant;
semantic memory task

60 older adultsActivityAllard et al [32]

Faster memory and processing speed on
days with individual or small group so-
cial activities

7 daysWeb-based; processing
speed, memory, and rea-
soning

146 older adultsActivityBielak et al [35]
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Internal State-Driven Modifiers of Cognitive
Performance
In this section, we will cover how a handful of previous studies
have measured individuals’ state affect, either through
self-report or experimental manipulation, and how it relates to
cognitive performance on specific tasks of attention, working
memory, and recall. We then examine how momentary
motivation, measured either from self-report or via reward
manipulations, influences how well people perform on tasks of
decision making and working memory. The studies described
in this section are listed in Table 1.

Affect
The valence (ie, positive or negative) of one’s momentary affect
has been shown to impact cognitive performance in the domains
of attention, working memory, and recall. Seminal work by
Ellis et al [38] demonstrated that when negative affect was
induced in healthy undergraduates, using self-referential
negative statements, word recall was reduced compared with
those in a neutral affect condition, particularly in challenging
trials. The authors proposed that in states where strong affect
is present, attention is diverted and fewer cognitive resources
are allocated for the task at hand; the effects of this become
most apparent on difficult tasks that require greater cognitive
resources [38]. A separate study of cognition and affect found
that visual attention (target detection) varied in relation to the
combination of level of arousal and affect valence in a sample
of healthy adults. The primary finding was that low
arousal-negative affect (eg, sadness) was associated with greater
accuracy on second but not the first target detection, indicating
that sadness enhanced attention prioritization but not overall
improvement of attention [37]; this could be because affect
serves to shape the strength of attentional control or allocation
[22].

In a study in which self-reported affect and working memory
were assessed daily over a period of 6 months, Brose et al [39]
found poorer working memory performance on days with greater
negative affect. Conversely, on days when positive affect was
higher, working memory performance was improved, which
also related to higher task-related motivation [40]. In line with
these findings, Sliwinski et al [41] identified a within-person
association between higher daily stress ratings and slowed
response time on a working memory task; this effect was
particularly pronounced in older adults. However, one of the
first studies to use repeat cognitive assessment of attention with
a reaction time task using palm pilots (prompted 100 times over
7 days) found no association between momentary affect ratings
and reaction times [36].

Taken together, there is evidence from the existing literature
that suggests negative affect may reduce working memory and
semantic recall abilities, at least in controlled settings. However,
considerable heterogeneity in the main effects and interaction
effects suggests that there is still much to be learned about the
role of affect in cognitive performance, particularly when
examined outside of the laboratory context and in clinical
populations where affect dysregulation may be a primary
symptom. In this new digital era, the consistency with which
people carry smartphones could be useful in allowing for quick,

momentary probes about an individual’s current affect as it
changes in daily life. Such assessments of affect could then be
paired with smartphone cognitive assessments of different types
(eg, attention, working memory, and recall) to provide a more
detailed picture of how people’s affect varies with task
performance.

Motivation
Motivation is thought to drive the allocation of effort, which in
turn affects cognitive performance [52]. Measuring the influence
of motivation has long been a core feature of clinical
neuropsychological assessments with the inclusion of measures
designed to assess effort and engagement as checks for validity
in testing [53]. However, although these standard measures of
effort capture motivation in a given moment in a laboratory or
clinic setting, in daily life, motivation varies and depends on
factors such as affect, the given rewards or costs of a task, and
practice. Ellis et al [38] theorized that strong affect decreased
performance by diverting attentional resources to the affective
experience versus the task at hand. Adding nuance to this
explanation, Pessoa [54] proposed a dual-competition framework
of affect, motivation, and executive control. In this framework,
both affect and motivation are hypothesized to enhance or impair
executive control depending on whether the emotion or locus
of reward is aligned or divergent from the task objective. This
conceptual model was exemplified through a study by another
group and showed how the modulation of reward potential (ie,
money) on each trial was positively correlated with both
behavioral response time and blood oxygen level–dependent
response (ie, functional magnetic resonance imaging–measured
neural activation), with the hypothesized mechanism being
increased motivation to perform at one’s best when there is a
relatively high payout [42]. Another factor underlying
motivation’s influence on cognitive performance is practice or
task familiarity [43]. When accuracy was measured across 30
trials of a complex multistep judgment task, a person’s
self-reported motivation had a greater positive effect on
performance in later trials. In other words, when a task is well
learned, differences in motivation level have more of an effect
on accuracy, compared with when a task is unfamiliar [43]. One
study examining self-reported motivation and cognitive
performance serially over 100 days found that higher daily
motivation ratings were positively correlated with higher scores
on verbal and spatial working memory tasks [40].

Although daily retrospective self-reports of motivation have
been assessed in relation to working memory [39,40], what
remains unknown is the extent to which naturally occurring
fluctuations in state-based motivation throughout a given day
might influence performance on tasks of working memory or
other cognitive domains (eg, processing speed and recall). Using
smartphone assessment, one could probe for real-time
self-reported motivation before or after a test of cognitive
function. Alternatively, tests could include passive or built-in
measures of effort that determine the level of engagement in a
given task. Simultaneously, sensing metrics, such as time of
day and GPS location, could be used to determine the contextual
factors that correlate with task engagement. Finally, motivation
and cognition could be better studied in tandem via smartphone
assessment through the gamification of cognitive tasks that are
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modeled after smartphone games that participants may have
prior familiarity with. In contrast to traditional tests of cognition
that provide no immediate reward for the patient or participant,
smartphone tasks can easily incorporate point systems,
potentially tied to monetary or other rewards, which could allow
for observational or experimentally induced modulation of task
engagement.

External Contextual Modifiers of Cognitive
Performance
In this section, we have selected studies that measure the
influence that factors, outside of the person, have on cognitive
performance in various domains, including attention, working
memory, executive function, and memory. We will describe
studies that seek to understand the impact of a person’s
environment, specifically the time of day (morning, afternoon,
and evening), the quality and amplitude of environmental noise,
and the impact of recent social and physical activity on
individuals’ task performance. The studies included in this
section are also listed in Table 1.

Time of Day
Internal circadian rhythms, driven by the time of day, have been
shown to impact cognitive performance. One study of healthy
participants aged 10-12 years found that time of day impacted
performance on challenging trials of visual working memory
and processing speed tasks [44]. Another study measured
working memory in the morning and at night across multiple
days, in both younger and older adults. Rather than time of day,
working memory performance varied with self-reported
alertness, which was higher for younger adults in the evening
and older adults in the morning [46]. Similarly, a study of young
adults found that errors on a task of sustained attention increased
with self-reported sleepiness [45]. A review of circadian rhythms
and cognitive performance suggested that time of day had a
significant effect on a wide range of cognitive tasks, including
those of attention, executive functioning, and memory. Notably,
performance fluctuation was linked to individual differences in
peak circadian arousal [55]. In summary, this literature suggests
there is a relation between cognitive function and time of day;
however, this relationship seems to rely mostly on time of day’s
connection to intraindividual alertness. Mobile assessment can
be particularly useful in relating the time of day to cognition
using time stamps captured with assessments that can be
scheduled at specific times or in random intervals throughout
the course of a day. Furthermore, subjective alertness could be
captured through momentary reports of wakefulness at the time
of the cognitive assessment. Eventually, passive measurement
of alertness may be collected using touch screen latencies when
typing or through smartwatch sensors that measure heart rate
and other biometrics.

Surrounding Noise
Distractions are inherent in a noisy or chaotic environment and
intuitively impact cognitive performance. In the literature on
auditory distractions, the primary area of study has been in the
domain of working memory, where a series of findings suggests
that the irregularity of sound is most impairing to cognitive
performance, rather than the absolute volume of the noise in

the environment [56]. Of all types of cognitive tasks, auditory
working memory tasks involving maintenance of a series or
order of information appear to be most affected by auditory
distraction [56]. Similar to the proposed mechanism for affect
and motivation, noise is thought to impair performance when
attention is pulled away from the task at hand and toward
task-irrelevant stimuli, particularly an irregular nonhabituated
stimulus [57]. One study demonstrated a particularly large
impact of sound on attentional abilities when the distractor and
task were similar (eg, auditory-verbal), as this requires more
resources for differentiation and suppression than when the task
is more unique from the distractor (eg, visuospatial) [47].
Another study found that although distracting ambient noise
did not affect objective performance on working memory and
reasoning tasks, the addition of environmental noise was related
to significantly higher subjective stress ratings and greater
perceived difficulty of a given task [49]. Although most studies
of noise and cognitive performance have used younger adults
in experiments, there has been some investigation into age as
a moderator of the influence of irrelevant noise on working
memory [48]. When recorded ambient office-noise was played
during a visual working memory task, there was a similar level
of impairment for both younger and older adults [48]. All the
studies above experimentally constructed a noise condition to
study its effect on cognitive performance, and yet, noise is a
product of unpredictable real-world environments that can be
challenging to replicate in laboratory settings. Here, mobile
assessment could allow for a real-time capture of ambient noise
via the use of a phone’s microphone or real-time self-reports of
the characteristics of a given environment. Moving forward,
sensing technology using advanced data analytics (eg, machine
learning algorithms for sound detection) could be helpful in
determining the type of audio in a given environment, for
example, whether the sounds are of a noisy subway train or a
conversation. These categories of sound could then be classified,
measured in duration, and linked to cognitive function outcomes,
providing individualized assessment results in the context of a
person’s unique set of daily environments.

Recent Physical and Social Activity
The frequency and recency of physical and social activities
appear to impact intraindividual variability in cognitive
performance. For example, in a study of healthy adults, those
with lower baseline working memory capacity performed
significantly better on working memory tasks when they
engaged in 30 min of cardiovascular exercise immediately
before the tasks [58]. Furthermore, in an 8-day daily diary study
in young, middle-aged, and older adults, older adults reported
fewer memory failures on the day of and day after physical
activity; there was no effect of physical activity in younger
adults [50]. In another study examining relationships between
physical activity and cognitive performance in older adults, no
significant correlation was found between same-day or
day-to-day average physical activity and cognition. However,
physical activity did explain significant variance in
within-person performance in certain cognitive domains, most
notably processing speed [51]. Furthermore, in mental illnesses
that largely affect cognition, such as schizophrenia, a recent
meta-analysis showed that aerobic exercise in these patients
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was associated with improved attention and working memory
[59]. Using smartphone assessment, physical activity can be
measured objectively and unobtrusively via an accelerometer.
This passive measurement could be enhanced with heart rate
detection in associated devices such as smartwatches. Recording
physical activity using mobile devices has the potential to add
precision to our understanding of how duration, intensity, and
recency of physical activity may influence subsequent cognitive
performance.

Few studies have looked at the impact of one’s recent
recreational or social activities on moment-to-moment cognitive
performance, and existing studies are generally specific to
samples of healthy older adults. In one study, 60 older adults
were prompted via personal digital assistant (PDA) 5 times per
day for 1 week to answer questions about their location and to
choose a category of their most recent activity. In addition, 2
out of these 5 daily assessments included a measure of semantic
reasoning, where an overall category was selected in relation
to a list of words. Results indicated that when participants
reported having recently engaged in intellectual activities (eg,
reading and crossword puzzles), scores on the semantic
reasoning task were significantly higher [32]. A 7-day study of
healthy older adults examined short-term associations between
a number of daily activities and performance on web-based tests
of processing speed, memory, and reasoning. Intellectual
activities were not significantly correlated with cognitive scores,
as seen in the study described above; instead, same-day
individual or small group social interaction was associated with
higher memory scores and response times. Of note, recent
physical activity in this study was not associated with better
cognitive performance [35]. These findings suggest a need to
further explore the mechanisms by which recent social
interaction improves cognitive performance and whether or not
this finding is limited to older adults or to other specific
individual differences.

Social activity could be measured through subjective reports of
recent or current activity from smartphone assessments
administered throughout the day. Furthermore, the identification
of activities could be enhanced and less burdensome through
GPS tagging of specific centers of activity such as school, work,
friends’ houses, or other locations where socialization takes
place (eg, church, gym, and restaurants). Finally, smartphone
assessments of cognition can be paired not only with
identification of recent activity but also with important
subjective ratings such as how important or enjoyable a person
found their most recent activity, as this may be even more
essential to cognitive performance than the activity type itself.

Limitations of Research on Modifiers of Cognitive
Performance
In summary, research to date suggests that both internal (eg,
affect and motivation) and external (eg, time of day, surrounding
noise, and recent activity) variables can impact cognitive
performance at any given moment. Although this research has
shed light on the question of what gives rise to real-life
variability in cognitive function, many of the abovementioned
studies were limited by traditional methods of data collection.
For example, testing cognition in a laboratory or clinical setting,

across several time points, ignores the influence of one’s
real-world environment, activity levels, and social engagement.
Furthermore, performance was often measured in one cognitive
domain or in one age group, which does not allow us to
extrapolate results to other cognitive constructs and to people
across the life span. Finally, some studies relied on retrospective
reports of contextual factors or subjective cognition, which are
vulnerable to biases. To better understand the unique impact
that potential internal and external modifying factors can have
on intraindividual variability in cognition over time, we will
need to improve the quality and ecological validity of our
assessments, including gathering data at a higher temporal
frequency and in real time.

Studying Intraindividual Variability in Cognition via
Mobile Technology: Current Evidence
From the existing body of research, it is clear that internal and
external factors of one’s environment contribute to cognitive
performance. Furthermore, a number of the studies described
above suggest that individual differences play a role in
determining which, and to what extent, contextual factors affect
cognitive performance. Nonetheless, relatively few studies have
used repeated measurements across days or weeks to establish
temporal relationships between cognitive performance and
internal and external modifiers of cognition. Limited research
in this area is, at least in part, due to constraints accompanying
traditional laboratory or clinic-based research designs. By
employing repeated measurements via mobile assessment, there
is an opportunity to better understand how cognition and its
modifiers temporally covary in real-world environments.

Building off research using ESM and EMA [12,60], mobile
devices have been increasingly used in mental health assessment.
Smartphone and tablet apps have the capacity to capture a
person’s unique fingerprint of response in different domains,
ranging from establishing new behavioral habits to symptoms
of severe mental illness or progressive neurological disorders.
Mobile app–based assessments allow researchers and clinicians
to reach people who face barriers to participating in
laboratory-based studies or attending regular mental health care
appointments [61]. One of the greatest benefits to using mobile
devices, specifically smartphones, for ambulatory assessment
is capitalizing on their ubiquity: owners carry them on-person
most of the time and check them up to hundreds of times in a
given day [62].

The incorporation of smartphone-based sensors, such as
accelerometers, GPS, and microphones, is a new application of
digital assessment that specifically allows for passive
measurement of a person’s real-world context and environment.
For example, accelerometers capture a proxy for physical
activity, which can then be characterized into activity types
(sedentary, walking, and running) and correlated with metrics
of cognitive variability. By identifying the patterns within a
person’s location data from GPS, we can observe how people
interact with and traverse their environments through metrics
such as distance and visit frequency over time. By taking
advantage of a phone’s built-in microphone, there is a potential
to better understand the environmental context in which a person
is thinking and behaving from moment to moment.
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Mobile Assessment in Neuropsychology
In the field of neuropsychology, traditional pencil and paper
tests have only just begun to be translated to computerized
versions of these tests (Figure 1), and utilization rates for
computerized assessment remain below 10% [63]. A review of

studies comparing computerized neuropsychological tests with
their analog versions found reliability was similar if not
improved on computerized versions. However, normative data
for pencil and paper tests could not be used interchangeably
with the digital versions, given the smaller sample size for digital
tests and differences in the sample characteristics [21].

Figure 1. Digital equivalents of traditional neuropsychological tests. In the mindLAMP app, the traditional Trailmaking Test B is translated to the
smartphone screen (left). The task measures the accuracy and speed of finger taps between alternating numbers and letters. Spatial Span as an analog
task involves a physical board with cubes; on a smartphone, squares light up in a sequential order, followed by a blank grid where the participant taps
the same sequence of squares previously shown.

Beyond replicating existing tests, computerized versions of
neuropsychological tests have yet to capitalize on additional
passive or process-based data that are possible with mobile
technology. For example, response latencies and adaptive testing
methods can be used to identify a precise and unique range of
within-person cognitive performance. To date, real-time
cognitive data collection via ESM and EMA has yet to be fully
embraced by the field of neuropsychology, but it has the
potential to inform diagnosis and intervention efforts by
capturing patients’ fluctuation in cognition [64]. Although digital
cognitive assessment is growing exponentially with the use of
computers and mobile devices, some have argued that the field
of neuropsychology is in the midst of a technology crisis, and
they suggest that high-frequency data capture is one of the key
methods the field should be leveraging [65-67].

A review by Moore et al [68] identified 12 studies that used
self-administered mobile cognitive assessments ranging from
1 to 5 times per day over 1-14 days, across various age groups
and populations. This review reported high adherence rates
(80% on average) and strong construct validity, mostly in the

domains of attention, working memory, and executive
functioning. Notably, very few of these studies reviewed
combined smartphone-based cognitive assessment with real-time
measurement of other temporally dynamic contextual variables,
and a number of studies only sampled cognition 1 time per day
or less. For this methodology to assess potential links between
variability in cognitive performance as it relates to context and
state variables, a high frequency of measurement is key.

Review of High-Frequency Measurement Mobile
Assessment Studies
To highlight the existing literature that has deployed
high-frequency assessment, 14 studies were selected that used
mobile paradigm-based assessments of cognition at a frequency
of 2 or more times per day for at least one week (2). The
majority of studies included in this study were conducted
between 2014 and 2019. Out of the 14 studies, 6 included a
nonclinical sample of young or middle-aged adults, 2 centered
specifically on healthy older adults, and 1 in children. A total
of 5 of the 14 studies included samples of substance users or
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those at risk of smoking or alcohol abuse. Others featured
clinical samples, including adults with depression and Parkinson
disease. Eight out of the 14 studies, typically the more recent,
used a smartphone for mobile assessment, and 5 of the 14 studies
used a PDA device, one used a Nokia flip phone, and the other
used a smartwatch. The majority of studies used working
memory paradigms as the primary cognitive outcome measure,
although other cognitive domains such as verbal and visual
memory, attention, processing speed, and motor speed were
also measured alone or alongside working memory in these
studies. Of the 14 studies, 12 deployed repeat mobile tests for
1-2 weeks; other durations included 4, 6, and 24 weeks. A total
of 6 studies prompted cognitive assessments 2-3 times per day,
6 studies prompted 4-6 times per day, and 2 studies prompted
at an even higher frequency. In addition to cognitive
performance, 4 out of 14 studies reported data collection related
to momentary affect or mood, 3 out of 14 studies recorded
reports of recent activity types or social settings, and 3 out of
14 studies examined time of day or fatigue in relation to
cognitive performance. Generally, studies found high levels of
concordant validity between mobile cognitive assessments and
traditional in-laboratory measures.

Approximately half of the studies mentioned in Table 2
examined contextual or internal state-based variables in relation
to cognitive performance; their findings on the association
between context and cognition were mixed. Smartphone
semantic reasoning and memory scores were greater after recent
intellectually stimulating activity [32], slower
smartphone-recorded reaction times were associated with greater
mental fatigue [69], and increased error rates were seen in
phone-based working memory and attention [70]. On the other
hand, 2 studies conducted almost 15 years apart found no
within-person associations between momentary mood ratings

and working memory [71] and reaction time performance [36].
It should be noted that studies of repeat mobile cognitive
assessment have used a variety of mobile platforms, different
populations, and different ways of measuring the same
contextual variables (eg, scales or dimensions of mood); as
such, findings require replication using standardized methods.

Several studies commented on the psychometrics of reliable
within-person fluctuations and the need to understand the drivers
of these patterns of fluctuations. Dirk and Schmiedek [33]
examined the psychometrics of repeated mobile assessment of
cognition in children and found that moment-to-moment and
day-to-day performance had reliable amounts of intraindividual
variability, which was indicative of individual differences and
patterns of response. Furthermore, more recent work by
Sliwinski et al [15] suggested that within-person fluctuation in
processing speed and working memory across the course of a
day was reflective of meaningful, but unknown, contextual
moderators of the intraindividual variability observed. This
indicates the need to explore and identify the unknown
contextual variables that influence variability in within-person
cognitive functioning. Furthermore, nomothetic approaches to
analyzing within-person contextually based modifiers of
cognition may fail to produce reliable or meaningful findings,
as the influence of particular contextual factors (eg, time of day)
may be dependent on individual differences. In addition to
statistical analysis that uses aggregate measures, idiographic
approaches [78] could be used to understand the temporal
dynamics between context, state, and cognitive function of a
unique individual, which may be reliably different from another
individual. Through the use of idiographic analyses such as
individualized time-lagged modeling and network analyses,
there is an opportunity to develop both personally targeted and
ecologically generalizable interventions [31].

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 7 | e14328 | p. 9https://mhealth.jmir.org/2020/7/e14328
(page number not for citation purposes)

Weizenbaum et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Mobile assessment of cognition.

ResultState or context vari-
ables

Cognitive
domain

Daily fre-
quency

Length
(weeks)

Assessment toolSampleReference

Cognitive perfor-
mance improved fol-

Location, social set-
ting, and recent activi-
ties or behaviors

Semantic
reasoning
and memory

2 times/day1PDAa60 older adultsAllard et al
[32]

lowing intellectually
stimulating activities

High adherence, mod-
erate concordance,

MoodWorking
memory

3 times/day6Apple watch30 adults with depressionCormack et
al [71]

and no relationship
between momentary
mood and cognition
trajectories

Digital biomarkers
(eg, taps and swipes)

Not specifiedWorking
memory, ex-

Continuous1Smartphone27 young adultsDagum [72]

highly correlated withecutive func-
traditional in-laborato-tion, and lan-

guages ry neuropsychological
test scores

Greater working
memory variability

Motivation, affect,
sleep, and physical

Working
memory

3 times/day4Smartphone110 participants aged 8-
11 years

Dirk and
Schmiedek
[33] measured by phone

correlated with lower
activity or accelerom-
eter

performance on in-
laboratory cognitive
and academic tests

Phone tests of motor
speed correlated with

Motor symptomsMotor speed6 times/day24Smartphone44 patients with Parkin-
son disease; 35 controls

Lipmeister et
al [73]

questionnaire mea-
sures and differentiat-
ed patients from con-
trols

N-Back and Stop Sig-
nal on iPhone correlat-

Not specifiedWorking
memory

2 times/day2Laboratory comput-
er and smartphone

12 meth addicts; 20 con-
trols

Pal et al [74]

ed with laboratory-
based tests; speech
detection on Stroop
task did not work; no
between-group differ-
ences

Fatigue ratings posi-
tively correlated with

Mental fatigueWorking
memory, at-

3 times/day2Smartphone21 young adultsPrice et al
[69]

longer reaction times
on attention task

tention, and
processing
speed

Large within-person
variability; no signifi-

Time of day and
mood

Reaction
time

15
times/day

1PDA420 adultsSalthouse
and Berish
[36] cant relation between

time of probe or mood
and reaction time

High construct validi-
ty, reliability, and

Not specifiedProcessing
speed and

5 times/day2Smartphone219 adultsSliwinski et
al [15]

within-person vari-
ance

working
memory
tasks

High adherence and
concordance with tra-

Physical environment
and social interaction

Memory and
executive
function

5 times/day1Smartphone114 older adultsSchweitzer
et al [75]

ditional neuropsycho-
logical test scores

High feasibility or
compliance and con-
struct validity

Not specifiedWorking
memory

5-7
times/day

1PDA39 high-risk smoker
young adults

Schuster et
al [76]
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ResultState or context vari-
ables

Cognitive
domain

Daily fre-
quency

Length
(weeks)

Assessment toolSampleReference

Greater errors on
phone- and laborato-
ry-based tasks after
alcohol consumption

Alcohol consumptionAttention
and working
memory
tasks

2 times/day2Cell phone38 adults who frequently
consumed alcohol

Tiplady et al
[70]

High adherence and
high reliability

State anxietyWorking
memory

4 times/day1PDA22 smokers; 22 controlsWaters et al
[77]

Between-subject crav-
ing and laboratory at-
tentional bias associat-
ed with PDA Stroop
attentional bias

Not specifiedAttentional
bias

4 times/day1PDA119 smokersWaters et al
[34]

aPDA: personal digital assistant.

Implementation and Future Directions
Although new innovative forms of smartphone assessment are
becoming increasingly common, there are several likely reasons
for the dearth of research, to date, using mobile technology to
study cognition and context. The first is the financial barrier to
developing app-based assessment tools; in addition to this, there
are significant time demands and logistical challenges of
establishing the feasibility, reliability, and validity of these new
instruments. In traditional neuropsychological assessment, the
objective has been to measure cognitive function in a quiet
setting with few distractions to obtain the best possible
performance. However, when measuring cognitive function
with a mobile device, there is an opportunity for ample
variability and distractions. This contextual noise can, in fact,
be a strength, reflecting a more ecologically valid environment.
However, to form an accurate picture of a person’s functioning
across contexts, a large volume of data is needed. Analysis of
acquired mobile assessment data will need to take into account
the high frequency of measurements within individuals and
between groups to produce clinically useful normative
comparison data [79]. This brings forth the challenge of
localizing the driving factors of within-person variance while
also quantifying practice effects. Some have raised concerns
about the use of computerized neuropsychological assessment
due to the lack of standardization and normative data, which
when applied to patient care could ultimately lead to poor
clinical decisions and errors in diagnosis. There have been
several calls to the field to address this concern by focusing on
resources and investigating the psychometrics of mobile
cognitive assessment [29,61,79] and centralizing the
development of a toolbox of standardized mobile

neuropsychological assessments that can be validated more
efficiently through a network of clinical researchers across the
field [80].

Inherent in pioneering mobile health technology is the challenge
of developing measurement tools that are usable and study
designs that are informative. However, unlike ever before, there
is immense potential to study familiar neuropsychological
constructs outside the laboratory setting and in the environments
in which they naturally operate. To move beyond
proof-of-concept validation of ambulatory assessments, the field
is faced with the challenge of creating new paradigms that are
not mere replications of existing neuropsychological measures
but are designed to be independently administered across time,
contexts, and devices. For example, moving beyond the gold
standard neuropsychological measures of cognition, some
studies have explored how smartphone activity, such as swipes
and taps, could serve as a proxy for working memory, episodic
memory, executive function, language, and intelligence in a
pilot study of healthy adults [72]. The accessibility and
availability of smartphones sets the stage for the emergence of
new scalable research efforts that could easily recruit
participants from both healthy and clinical samples and record
vast quantities of new data. The results shown in Figure 2 are
the ways in which some of the key ecologically situated
variables can be measured using smartphones and connected to
digital neuropsychological tasks performed on digital devices.
The momentary and state-related variables can be measured
passively (eg, GPS and microphone) or actively (eg, surveys).
Together, data streams can be combined and analyzed using
computational and machine learning methods to identify
relationships between cognitive performance and contextual
momentary factors.
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Figure 2. Model of mobile assessment of intraindividual variability in cognition. Internal state-driven variables include affect motivation and alertness.
External contextual variables include time of day, social environment, physical surroundings, and physical activity. Taken together, these factors give
rise to fluctuations in cognitive performance. This can be captured in real time using a game-like smartphone assessment of cognition alongside sensing
tools such as a smartphone microphone and GPS, which seamlessly capture information about one’s environment. Advanced statistical methods can be
used to analyze data to find patterns of intraindividual variability in cognition in real-world contexts.

Ultimately, the goal of mobile assessment methods is to refine
the understanding of clinical impairments in cognition and give
rise to preventative interventions for mitigating cognitive
dysfunction and decline. New work is being done to develop a
smartphone app designed to improve clinical care based on
patients’ and clinicians’, in addition to researchers’, needs. The
objective of this app development is to create an open platform
that can be used across a variety of research and clinical settings
[18]. Unlike other existing mobile health apps developed for a
specific population or function, the mindLAMP (Learn, Assess,
Manage, Prevent) has been created to allow for customizable
surveys, sensors, cognitive tests, and schedules of
notification-prompted assessment. The app seeks to integrate
active assessments such as surveys and cognitive games with
passive sensing data (eg, GPS, pedometer, and microphone)
and even phone metadata, such as the number of times other
social media or communication apps are used on the phone.
With the rich dimensionality of smartphone data from apps such
as these, multilevel modeling and machine learning analyses
would be logical directions to take analysis to elucidate the
causal links and predictive relationships between cognitive
performance and state-based and environmental factors.

Like any new method, repeat assessment of cognition and
context via mobile technology must be carefully employed.
Given the complexity and sheer data volume of temporarily
dense, longitudinal, and dynamic smartphone and sensor data,
it will be important for theory-driven hypotheses to guide this
work instead of only data-driven models that will likely identify
spurious correlations. Moreover, given the nature of these new
data, care must be taken to ensure its privacy protections and
ethical uses [81]. Looking back at the history of genetics and
neuroimaging, it is clear that the greatest progress with this new
spade will emerge from interdisciplinary collaborations. As
health care moves toward personalized medicine, the field also
has an opportunity to move toward personalized assessment of
cognition. Although population-level screening tests and
individualized in-office neuropsychological evaluations will
remain important, they cannot fully capture the social, physical,
and environmental variance that each individual experiences.
Fortunately, mobile technologies such as smartphones can
collect such data and thus present the opportunity for a paradigm
shift with personal devices capturing personal measurements
to deliver personal cognitive profiles and treatment directions.
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