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Abstract

Background: Wearable and mobile sensor technologies can be useful tools in precision nutrition research and practice, but few
are reliable for obtaining accurate and precise measurements of diet and nutrition.

Objective: This study aimed to assess the ability of wearable technology to monitor the nutritional intake of adult participants.
This paper describes the development of a reference method to validate the wristband’s estimation of daily nutritional intake of
25 free-living study participants and to evaluate the accuracy (kcal/day) and practical utility of the technology.

Methods: Participants were asked to use a nutrition tracking wristband and an accompanying mobile app consistently for two
14-day test periods. A reference method was developed to validate the estimation of daily nutritional intake of participants by
the wristband. The research team collaborated with a university dining facility to prepare and serve calibrated study meals and
record the energy and macronutrient intake of each participant. A continuous glucose monitoring system was used to measure
adherence with dietary reporting protocols, but these findings are not reported. Bland-Altman tests were used to compare the
reference and test method outputs (kcal/day).

Results: A total of 304 input cases were collected of daily dietary intake of participants (kcal/day) measured by both reference
and test methods. The Bland-Altman analysis had a mean bias of −105 kcal/day (SD 660), with 95% limits of agreement between
−1400 and 1189. The regression equation of the plot was Y=−0.3401X+1963, which was significant (P<.001), indicating a
tendency for the wristband to overestimate for lower calorie intake and underestimate for higher intake. Researchers observed
transient signal loss from the sensor technology of the wristband to be a major source of error in computing dietary intake among
participants.

Conclusions: This study documents high variability in the accuracy and utility of a wristband sensor to track nutritional intake,
highlighting the need for reliable, effective measurement tools to facilitate accurate, precision-based technologies for personal
dietary guidance and intervention.

(JMIR Mhealth Uhealth 2020;8(7):e16405) doi: 10.2196/16405
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Introduction

Diet and health guidelines are based on preventing or treating
illnesses in the general population. Technological advances and
enhanced understanding of systems biology are guiding
scientists to pursue personalized interventions for disease

prevention and treatment. As scientists are quantifying the
elasticity of human health and its diversity, opportunities to
intervene in human health are broadening to include precision
control of phenotypic performance. Precision or personalized
health is the approach of using quantified information on
individual characteristics to develop tailored products and
services aimed at guiding the underlying processes of health
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[1-5]. The breadth of precision interventions includes the
measurement of individuals’characteristics, genetics, immunity,
metabolism, physiology, medical history, and more [6-8].
Personalizing the content and delivery of approaches also require
alignment with individuals’ behaviors, preferences, goals, and
barriers to modification as an integral aspect of achieving lasting
behavior change [2,9,10].

Precision health is made possible by modern tools, technologies,
and platforms that provide increasingly diverse, mechanistic,
and accurate assessments of the human body [11,12]. Health
measurement research encompasses the breadth of phenotypic
differences between individuals that contribute to health status.
Advancements in the -omics sciences highlight how many
factors individually and interactively affect health, including
genetics, lifestyle, life stage, diet, and microbial diversity. Many
health metrics are assessed statically, but others must be
captured dynamically using specific challenges, such as with
insulin sensitivity and acquired immunity. These scientific
breakthroughs are guiding the development of measurement
technologies that interrogate individuals beyond disease
diagnostics, including mobile and wearable body sensors that
enable more spatially and temporally specific measures of a
broader range of phenotypic factors [4,13-15].

The most important change in the science of diet and health is
as much philosophical as mechanistic. The focus of nutrition
research is shifting from the study of individual foods and
ingredients and their effects on entire populations to the study
of individual humans in response to entire diets.

Precision Nutrition: Challenges and Breakthroughs
Bringing accurate health monitoring technologies to the market
provides a public service that reduces people’s uncertainty about
how day-to-day choices affect their individual health [15,16].
More precise and predictive dietary guidance follows the
understanding in nutritional sciences that identifying the single
best diet for human health is no longer scientifically defensible.
It is now understood that different people respond differently
to foods and nutrients, warranting personalized approaches to
nutrition interventions and services [3,17-21]. National dietary
guidelines are intended to prevent deficiency and maintain health
for the majority of the population. Using evidence-based science
to create diets for individuals requires an understanding of what
humans share with regard to dietary needs as well as how, when,
and why needs differ. On a fundamental level, all people require
a diet sufficient in calories to support normal body weight and
all essential nutrients to support life. However, nutrient
requirements to prevent deficiency and sustain life are just the
first step in understanding the role of diet in human health [22].

A fundamental challenge in nutrition research is the accurate
quantification of food intake and its interpretation as precise
diet quality. Currently, the gold standard of dietary assessment
is the 24-hour in-patient study, yet major limitations include
cost, reduced physical activity, boredom, depression, and weight
loss because of reduced dietary freedom and food options
deviating from one’s personal routine. In epidemiologic and
clinical nutrition, dietary assessment typically relies on
researcher-facilitated or autonomous participant recall using
methods such as 24-hour recall, food frequency questionnaires,

and food diary inventories. These memory-based assessment
methods have demonstrated poor validity because of human
under- or overestimation of intake and intentional or
unintentional alteration of intake patterns [23]. Each traditional
assessment method is a reflection of the individual’s perceived
intake rather than an accurate measure of true intake.
Furthermore, such assessment methods are nonfalsifiable, as
what the participant reports must be accepted as truth, despite
knowledge of likely incongruence. Moreover, other assessment
methods rely on photograph analysis of foods consumed,
conducted either by trained personnel or software analysis [24].
Although more closely reflective of nutrient intake in a
free-living situation, the remote food photography method is
still limited by the inability to record in true real time, difficulty
in estimating portion sizes, the necessity for simultaneous use
of a backup analysis method, difficulty analyzing culturally
unique foods, and analyzing mixed dishes via photographs alone.
The United States Department of Agriculture (USDA) Food
Composition Database is the gold standard for nutrient analysis;
albeit comprehensive in scope, this tool cannot possibly account
for inherent variability in climate, soil quality, geographic
location, item ripeness, and cooking method, all of which may
significantly alter the nutrient composition of food. Even nutrient
and energy quantification by way of nutrition facts label analysis
is error prone, as the Food and Drug Administration allows for
certain margins of error in nutrient reporting on packaged food
labels. Nutrition fact labels, therefore, provide an educated
estimation of packaged food nutrient content. Consumer-focused
dietary tracking methods use databases that are often
crowdsourced. These errors, compounded with the
aforementioned human misreporting of dietary intake,
demonstrate that more precise methods of dietary assessment
and analysis are needed.

Standard approaches for recording dietary intake do not account
for inherent nutrient losses in absorption and metabolism, the
transformative processes by which food becomes usable energy
for the body. Realistic and precise quantitative assessment
remains challenging because of energy losses involved at every
step of transforming a food matrix into bioavailable energy:
absorption, distribution, metabolism, and excretion. The rate of
breakdown and net usable energy vary depending on
macronutrient composition (ie, a mixed meal high in fiber,
protein, and fat will digest much more slowly than a meal high
in simple carbohydrates) [25]. Furthermore, interindividual
differences in metabolic rate, gastrointestinal health, and
previous meals consumed all contribute to discrepancies between
measured intake and bioavailable energy.

Emerging commercial and medical technologies designed to
detect a person’s physiological fluctuations claim to capture
more dynamic aspects of cardiometabolic health [14]. For
example, continuous glucose monitors are designed to provide
more precise tracking of glucose levels for diabetic patients
compared with standard blood sampling methods, the goal being
to more precisely guide disease management [26,27]. No
technologies are available that can effectively assess dietary
intake directly, although some methods are claiming the ability
to estimate dietary intake by assessing the physiological
response of the body to food intake and bioavailable energy. In
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all cases, rigorous testing is necessary to determine the accuracy,
precision, utility, and validity of candidate devices. We sought
to answer the question, “can wearable technologies measure
aspects of metabolic performance and cardiometabolic health
of a normal range of adult human phenotypes?” The objectives
of this paper were to describe (1) the development and
implementation of a reference method to estimate the nutritional
intake of free-living study participants and (2) the accuracy and
utility of a wristband technology for tracking nutritional intake
(kcal/day).

Methods

Overview
A study was designed to assess the ability of wearable
technology to estimate the nutritional intake of individuals. The
wristband (GoBe2; Healbe Corp) intends to provide users with
automatic tracking of daily energy intake (calories) and
macronutrient intake (grams of protein, fat, and carbohydrates).
The technology uses computational algorithms to convert
bioimpedance signals into measured patterns of extracellular
and intracellular fluids associated with the influx of glucose
and essential nutrients into the body. From changes in fluid
concentration, the technology estimates calories congruent with
glucose absorption into the bloodstream. Time series data such
as these, which capture postprandial processes, have the
potential to inform phenotypic discernment of digestion,
absorption, metabolism of foods, and their influence on health.

A sample of free-living adult participants (N=25) was sought
to validate the technology over 2 data collection periods of 14
days each (28 days total). A reference method was designed to
measure dietary intake; all meals were prepared, calibrated, and
served at a campus dining facility and consumed under the direct
observation of a trained research team. Approval for the research
study and protocol was obtained from the University of
California, Davis (UC Davis), institutional review board.

Participants
Participants aged 18 to 50 years were recruited from the UC
Davis campus using emails and flyers. Those interested were
screened by phone for inclusionary and exclusionary criteria.
The exclusion criteria included historical or current diagnosis
of chronic disease (including diabetes or prediabetes, cancer,
asthma, hypertension, cardiovascular disease, stroke, kidney,
thyroid, or autoimmune disease), known food allergies, current
dieting or restricted dietary habits (ie, vegetarian, ketogenic,
reduced calorie), pregnancy or lactation, smoking, drug or
alcohol addiction, excessive exercise or athletic training, and
taking medications impacting digestion or metabolism. In-person
screenings were conducted at the Ragle Human Nutrition Center
on the UC Davis campus. Participants who qualified after the
phone screening were invited for in-person screening to
complete a fasting blood draw, blood pressure, and
anthropometric measurements. Copies of approved, signed
consent forms were obtained from all participants at screening.
All female participants completed urine pregnancy tests. Blood
pressure measurements were obtained using a Nellcor pulse
oximeter with OxiMax technology from Welch Allyn. For
anthropometry, a digital scale by Scale-Tronix was used to

weigh participants to the nearest 0.1 kg, and a wall stadiometer
was used to measure height to the nearest 0.1 cm.
Anthropometric measurements were used to calculate baseline

BMI (weight [kg]/[height (m)]2). As the wristband was intended
to measure nutrient intake in a weight-stable population over
the study duration, individuals with fluctuating weight (>5 lbs
over the previous month) were excluded. All anthropometric
measurements were conducted by the principal investigator (PI)
using methods defined in the anthropometric standardization
reference manual [28]. Participants were assigned a study ID
on enrollment, and all data collected were maintained private
and deidentified. Monetary compensation was offered to each
participant who completed the screening (US $10), phase 1 (US
$125), and phase 2 (US $150).

For metabolic screening, blood was drawn into
ethylenediaminetetraacetic acid and plasma separation lithium
heparin blood collection tubes and immediately placed on ice.
Within 2 hours of collection, blood samples were centrifuged
at 1800×g for 15 min at 4°C to separate blood from plasma and
frozen at −20°C until laboratory analyses were performed in
batches. Blood samples were analyzed, and individuals who
tested abnormally for metabolic health indicators including
complete blood count, fasting blood glucose, hemoglobin A1c,
erythrocyte sedimentation rate, serum protein, creatine, alkaline
phosphatase, potassium, and carbon dioxide were excluded.
Tests were performed according to the manufacturer’s
instructions and quality controls by UC Davis Health System
Medical Diagnostics.

Between August 2018 and September 2018, 76 adults were
screened, and 35 met the inclusion criteria for enrollment in
phase 1 of the study that would take place from September 25
to October 9, 2018. The initial sample included 20 women and
15 men, with an ethnic distribution of 38% white, 41% Asian,
and 21% Hispanic, an average age of 25.3 (SD 6.4) years, and

a mean BMI of 24.2 (SD 5.1) kg/m2. Three participants dropped
out during the first week of phase 1 because of time constraints
that prohibited multiple visits to the campus dining facility each
day. Phase 1 was completed by 32 participants, of which 24
enrolled in phase 2 (October 30 to November 13, 2018). During
phase 2, 2 participants completed 10 of 14 days because of
scheduling conflicts and were included in the analyses.

Data Collection
Participants were assigned a GoBe2 (Figure 1) and instructed
to use the latest version of the accompanying app synchronized
to the wrist unit. The technology translates sensor signals into
energy intake and expenditure outputs over a 24-hour period,
in accordance with the rate of nutrient absorption. Participants
received an explanation on how the wristband estimates personal
calorie intake and expenditure throughout the day and over the
week as well as its other functions, including heart rate, sleep,
hydration, and stress measurement. Participants were instructed
to synchronize the wrist unit with the app twice daily, in the
morning and at night, and to collect screenshots from within
the app that captured the previous day’s final energy (kcal)
estimations. The screenshots were collected by research staff
as records of daily caloric outputs, including daily intake,
expenditure, and total balance.
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Figure 1. Healbe GoBe2 smartband.

Quantification of Dietary Intake
A reference method was developed to quantify the daily food,
calorie, and macronutrient intake of participants during the 2
study periods. The project team collaborated with UC Davis
Dining Commons (DC), a series of dining facilities where
campus residents primarily eat but are also open to the campus
community and public. A strategy was developed to carry out
the nutrition study within the university dining facility. In this
approach, a specific project menu was created in coordination
with the facility’s existing cycle menu serving all dining patrons.
In this way, the dining facility’s normal operations were
minimally perturbed, and the study team used the facility’s
existing food prepared in accordance with standardized recipes
from which nutritional information was readily derived. Meal
cards were purchased for study participants and swiped on their
arrival at each meal to deduct the meal price from the card.
Student research assistants were trained to carry out food
measurement at each meal, nutrient analysis, and data entry.

Menu Planning
A registered dietitian (RD) on the research team collaborated
with the dining facility’s primary chef to design the project
menu. Menu items were selected to serve to study participants
at breakfast, lunch, and dinner, using the following criteria:
balanced macronutrients at each meal per USDA MyPlate
guidelines and minimal multi-ingredient mixed dishes (ie, no
casseroles, lasagna, pizza, etc). Mixed dishes were avoided to
reduce error in calculating calories and macronutrients that were
served at each meal. When necessary, menu modifications were
requested to fit the study menu criteria (ie, sauces served on the
side and sandwich ingredients served separately). Separating
ingredients allowed the staff to weigh foods more precisely and
calculate energy and macronutrient profiles accordingly.

Energy and Macronutrient Analysis for Onsite and
Offsite Food Consumption
Overall, 2 research staff were trained and designated to analyze
each project menu item for energy (kcal) and macronutrient

content. Items were analyzed using a combination of the USDA
Food Composition Database and the dining facility’s nutritional
database. In the latter, menu items were previously analyzed
and recorded by the DC’s RD using either product nutritional
labels (when available) or the USDA Food Composition
Database. Each menu item was analyzed for serving size,
calories, grams of protein, fat, and carbohydrate content per
serving and scaled to 100 g.

The RD determined a standard serving size for each menu item
(eg, 1 cup cooked oats, 1 cup vegetables, half cup beans, 4 oz
lean protein, or three-fourth cup grain). Participants were not
restricted to the standard serving sizes and were free to request
more or less food portions to meet their individual dietary needs.
All deviations from standard portions were recorded by the
research staff for each participant.

The primary chef coordinated study meals according to the
study menu preference. Each meal was prepared in a commercial
kitchen on the UC Davis campus by trained food service
personnel following a stringent hazard analysis critical control
points (HACCP) protocol. All food was delivered to the
designated research study area of the facility and received by a
team of research staff for onsite portioning and serving to study
participants. The study leads inspected each delivered menu
item for accuracy, noting any deviations as needed.

Study participants arrived at the dining facility during scheduled
breakfast, lunch, and dinner mealtimes. On arrival, they were
greeted by research staff, and the meal was paid for at the door
using preloaded meal cards. Each morning at breakfast, research
staff collected daily information from participants, including
paper records of offsite foods consumed in the previous 24 hours
and details of wristband use (charging, removals, and reported
problems). A brief daily in-person interview was conducted
each morning to collect details on exercise, any perceived stress,
water intake, defecation, and continuous glucose monitoring
(CGM) skin contact in the previous 24 hours. At each meal,
participants could request either the standard meal offering or
certain menu items in more or fewer portions according to
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preference. The participants’ meal choices were recorded on
paper meal slips that were delivered to research staff responsible
for food portioning, plating, and weighing.

All project staff were trained by the RD in appropriate food
handling and safety, food weighing, and meal recording duties.
Before each meal, a team of research staff was briefed on how
to portion and serve each menu item. Individual menu items
were weighed and recorded (0.0 g) using calibrated food scales,
portioned using standardized tools, and served at each onsite
meal. Each dish with multiple food components was
deconstructed into individual items and was weighed and
recorded individually (ie, burgers were deconstructed to
individually weigh patty, bun, cheese, ketchup, mustard, and
tomato). Staff assumed various roles to ensure optimal meal-time
efficiency (ie, menu collector, food weigher, and data recorder).
After recording the weight of each food item and time of meal
(00:00), the plate was served to the appropriate participant.
Participants were encouraged to consume all food served at
each meal, but this was not mandatory. The plate waste from
each participant was deconstructed by ingredient and
individually weighed at the end of each meal period.

After each participant finished eating, the research staff weighed
and recorded each individual item left on the plate. The gram
weight of each food item consumed was quantified and entered
into an electronic database. Energy and macronutrient profiles
of each menu item were obtained from the dining facility’s

recipe, the food label, or the USDA Food Composition Database
and calculated according to the gram weight consumed.

Consuming foods outside of the study facility was discouraged
but not prohibited to minimize the changes made to the
participants’usual habits and metabolism. If food was consumed
outside of the dining facility, participants were instructed to
follow a specified procedure of self-reporting, including only
consuming packaged foods, weighing and recording the weight
of each individual food item, and providing the food label from
the package. To minimize the miscalculation of nutrient intake
of offsite foods, participants were provided with various
packaged foods of known nutritional content (protein bars, jerky
sticks, ramen noodles, fruit leather, and chocolate bars). They
were asked to consume these foods; if this was not possible,
they were required to photograph the food and record the food
item, brand, time of consumption, and food weight (g) using a
calibrated food scale and recording in a food diary. Offsite food
diaries were collected daily from participants.

Participants unable to report to the dining facility for a scheduled
meal time received alternative options and selected a
prepackaged meal from a convenience market managed by the
dining facility. Nutritional information from the item was
extracted from the nutrition label and recorded. A team of staff
recorded and analyzed the nutritional values of all offsite foods
consumed by the participants. Information from the food intake
data of 1 participant, as measured by the study reference method,
is presented in Table 1.
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Table 1. Daily food intake record of 1 study participant.

Source of nutrition informationEnergy intake (kcal)Amount consumed (g)Menu itemTime of meal (00:00)

Product labela6953Scrambled eggs9:34 AM

Product labela105189Cooked oatmeal9:34 AM

USDAb Food Composition
Database

3969Blueberries9:34 AM

USDA Food Composition
Database

5615Bacon9:34 AM

Product label00Milk 1%9:34 AM

N/Ac0246Coffee, fresh brewed9:34 AM

USDA Food Composition
Database

2310Granulated sugar9:34 AM

Product labela21890Bun2:11 PM

Product labela156125Beef, ground, cooked2:11 PM

Product labela5340Sauce2:11 PM

USDA Food Composition
Database

1657Mixed greens2:11PM

USDA Food Composition
Database

621Artichoke hearts, canned2:11 PM

USDA Food Composition
Database

1244Cherry tomatoes2:11 PM

USDA Food Composition
Database

551Cucumbers, sliced2:11 PM

Product label1025Carrots, shredded2:11 PM

Product label9612Olive oil2:11 PM

Product label1719Balsamic vinegar2:11 PM

Product labela669304Chicken tamales6:46 PM

Product labela143250Vegetables, roasted6:46 PM

Product labela10561Rice, cooked6:46 PM

Product label00Milk 1%6:46 PM

Product label21052Energy bar11 AM

Product label19048Energy bar1 PM

Product label29064Dehydrated soup8 PM

Product label29068Energy bar10 PM

N/A2753d1913dN/AN/A

aNutritional information of food items prepared by the University of California, Davis, Dining Commons.
bUSDA: United States Department of Agriculture.
cN/A: not applicable.
dFinal row contains column totals where applicable.

Quality Assurance
Before this study, the PI conducted a series of small pilot trials
over 1 year to inform this study design and data collection
procedures using the wristband technology. During these pilot
trials, it was observed that the form factor of the technology
was the main barrier to collecting consistent, uninterrupted data
during the postprandial digestion period that lasts several hours

beyond each meal. Practically, any signal interruption during
the meal or in the hours following it would result in loss of data
and underestimation of calorie intake by the technology.
Unfortunately, signal interruption occurred often and for a
variety of reasons in this study; for example, periodic loss of
contact with the skin was likely depending on the user’s wrist
size and shape. In addition, the wristband required an hour each
day to obtain a full charge; any loss of charge would disable
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data collection accordingly. Several strategies were used to
mitigate these challenges with the form factor. Participants were
instructed to charge the wristband fully before any meal to avoid
missing food intake and its subsequent digestion (ie, charging
band in the morning before consuming food for the day). It was
acceptable to charge the wristband at any point during the day
as long as no food had been consumed for 3 hours prior. On
arriving at the first meal of the day, the research staff visually
confirmed that the wristband was positioned on each participant,
such that the sensor was in complete and constant contact.
Research staff used a third-party site (Dietitian’s Cabinet) to
access participants’ deidentified data up to the minute from
which the frequency of contact interruptions could be assessed.
Those who had significant interruptions were targeted for
individual solutions to improve sensor contact with the wrist,
for example, tightening the wristband to achieve optimal sensor
positioning.

Continuous blood glucose was monitored as a strategy to
measure and account for nonadherence to the study’s dietary
intake reporting protocols. The FreeStyle Libre (FSL) Pro
System (Abbott Diabetes Care Inc) CGM system includes a
unit with a water-resistant sensor that attaches to the back of
the user’s upper arm. Within the unit is an Enlite sensor that
consists of a wire containing glucose oxidase at the tip that is
inserted subcutaneously with a dedicated inserting device.
Glucose oxidase catalyzes a biochemical reaction in the presence
of glucose and oxygen, which transfers electrons to a receiving
molecule and creates a current that can be measured and
converted into a glucose concentration [27]. The FSL Pro
System collects up to 14 days of glucose readings, with
recordings every 15 min. A single reader can be used to activate
glucose data recording and download reports from multiple
devices simultaneously. One study showed that the FSL’s mean
absolute relative difference compared with measured capillary
blood glucose levels was 13.2% (95% CI 12.0% to 14.4%) [29].

CGM sensors were secured to the tricep or rotator cuff region
of participants’arms on day 1 of the study, in the morning before
consuming food or beverages. During the 14-day test period,
units would occasionally become detached. The research staff
downloaded data files from the participants’ sensors every 2
days to minimize any data loss. Text file reports were exported
through the LibreView software program (Abbott Diabetes Care
Inc, 2018) and a secure cloud-based system. CGM data were
analyzed to assess the adherence of individual participants to
reference dietary intake reporting protocols. Significant glucose
increases (>20 mg/dL per 30 min) occurring outside of specified

study mealtimes or not reported in food intake diaries were
flagged for further examination.

Statistical Analysis
The Bland-Altman analysis was conducted to compare daily
energy intake (kcal/day) estimated by both the reference method
and the wristband technology. Regression analyses were used
to examine trends in the data and sample characteristics.
Statistics were conducted in Microsoft 2008 (version 12.3.1)
and Prism 8 2019 (version 8.3.1).

Results

This study developed a dietary intake reference method to
evaluate a wearable sensor with the potential to generate
objective and precise data on the dietary intake of adult
individuals. The data accuracy and practical application of the
current GoBe2 model was interrogated over two 14-day test
periods in an intended sample of 25 participants. Of the 35
participants who were originally enrolled in phase 1 of the study,
304 measurements (kcal/day) collected from 24 participants
were retained from phase 2 after data cleaning to remove
missing or aberrant values.

Of the total cases, 10.9% (33/304) were excluded because they
lacked an accompanying set of complete CGM data for the
24-hour period. Of the remaining cases, 22.1% (60/271) had at
least one event per day of rapid blood glucose increase that was
inconsistent with the recorded meal time. Of those, 68.3%
(41/60) were attributed to reported bouts of exercise or other
physical activity. Although CGM was used to measure
nonadherence to dietary intake reporting protocols, these data
were not incorporated in the present dataset.

As depicted in Figure 2, a Bland-Altman analysis showed a
mean bias of −105 (SD 660) kcal/day, with 95% limits of
agreement (LoA) between −1400 and 1189. Pearson correlation
coefficient between the 2 methods was r=−0.496 (95% CI
−0.576 to −0.406; P<.001). Linear regression analysis on the
Bland-Altman plot revealed a regression equation of
Y=−0.3401X+1963 that was significant (P<.001). A multiple
regression analysis was conducted with the participants’ age,
sex, and BMI classification as independent confounding
variables, but no significant effects were seen on the bias.
Analysis of variance tests were conducted to assess the effects
of the participants’ age, sex, and BMI classification on bias,
and the effects were not significant (P=.15, .18, and .12,
respectively).
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Figure 2. Bland-Altman (mean difference) plot of estimated nutrient intakes (kilo/day) by the test and reference method (N=304). Solid lines represent
upper-lower limits of agreement, and the dashed line represents bias.

Discussion

Negative bias in the Bland-Altman analysis indicated a general
underestimation of daily calorie intake by the wristband
compared with the reference method. Despite a relatively small
bias, the LoAs were wide, making the results of the comparison
ambiguous. Regression analyses indicated a tendency for the
wristband to systematically overestimate for lower calorie intake
and underestimate for higher intake.

Our preliminary validation results indicate that although the
ability of GoBe2 to make phenotypic discernments responsive
to diet by noninvasive means has wide-reaching utility in
research and practice, notable feasibility challenges were
observed for free-living study participants to reliably use the
technology to achieve accurate and precise measurements. These
challenges were largely attributed to limitations in the
technology’s form factor. In observation, when positioned
correctly on the arm and fully charged, the wristband’s calorie
intake estimates generally appeared accurate and provided
interesting visuals pertaining to the body’s rate of nutrient
absorption. However, to achieve precise detection and accurate
estimation of dietary intake, the unit’s sensor required adequate
skin contact be maintained at all times. Achieving this proved
to be a considerable challenge for several reasons, including (1)
battery life, as the unit required an hour of charging each day,
which required removal of the device, preventing the detection
of calories ingested within several hours before removal; (2)
the wristband’s bulky size, dimensions, and/or appearance were
challenges for some users to maintain comfort and position on
the arm; and (3) the user’s own wrist size and shape; for
example, small or tapered wrists were likely to result in
inconsistent sensor contact. As described previously, several
strategies were included in the study design to prevent data loss,
such as targeting problematic cases early, checking in with
participants, and monitoring sensor position daily. However,

data loss from poor sensor contact was a significant barrier to
the technology’s ability to reliably detect calorie intake. Separate
analyses, not reported in this study, further examine the
technology’s efficacy using data collected only during periods
of protocol adherence concerning food reporting and technology
use.

Establishing reliable adherence or compliance protocols is a
widespread goal in measuring the dietary intake of human
subjects [23]. Continuous glucose monitors were used to
measure the participants’ adherence to food intake recording
protocols. Although CGM data do not provide a direct measure
of dietary intake, its measurement of the body’s relative
physiological response to food intake can serve as a proxy to
identify inconsistencies in reported intake data and blood
glucose activity. Examination of CGM data confirmed that
although a few participants (n=2) were likely nonadherent with
dietary intake reporting protocols, aberrant increases in blood
glucose levels could be attributed to multiple factors including
exercise or other bouts of physical activity. The authors
concluded that complex outcomes on CGM measurement and
the participants’ adherence would be appropriately detailed in
the context of measuring or impacting compliance in nutrition
research. Some challenges to using the CGM devices to collect
data over continuous 14 days were also related to form factor
limitations. The sensor included an adhesive material attached
to the skin, but some devices became dislodged during the
14-day study period (13/72, 18% CGMs attached), causing
complete or partial data loss. Of the 24 participants, 2 (8%) had
repeated CGM sensor displacement, which was more likely to
occur during physical activity (biking, gym workout, and weight
lifting) and/or excessive sweating. In these cases, a skin adhesive
(Skin-Tac) was useful in reinforcing the CGM attachment. As
the FSL Pro System did not include individual readers with
each unit, participants were blinded to their personal glucose
data. At the end of the study period, data reports summarizing
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glucose patterns were generated and distributed to participants.
Readouts included daily blood glucose averages (g/ dL) across
each 24-hour period, average glucose trend lines across each
24-hour period, and likelihoods of hypoglycemia or
hyperglycemia during specified windows. A total of 7 days’
worth of daily blood glucose trend lines were color coded and
superimposed onto summary graphs. Participants were provided
with general guidance from the RD to interpret numerical data
into a relevant and actionable context for health and diet.

By collaborating with the university facility, this study used
existing food production operations, resources, and personnel
to carry out an extensive dietary observation study. Despite
numerous strengths in the study design and utilization of a novel
research environment, limitations were revealed during project
implementation. For example, in the food facility where dishes
were prepared for high throughput mass consumption, the exact
quantity of nutrients in each portion could not be consistently
and routinely ensured using these methods alone. In addition,
considering that the project targeted students on a university
campus, protocol adherence was less than anticipated,
particularly with regard to meal attendance. Of the 42 total study
meals offered to each of the 24 participants during the second
14-day testing period (1008 total meals), 56% of the scheduled
meals were attended (565 meals). To improve adherence in the
future, stricter enforcement of meal attendance is recommended.
Studies excluding offsite food consumption may help improve
the accuracy of nutrient intake reporting, with strategies in place
to account for protocol adherence. Given that numerous factors
were involved with intermittent data loss from the wristband
technology, 2 weeks was defined as the minimum period
required to gather continuous data from 25 free-living
participants for validation purposes. Longer study periods could
affect adherence issues without stricter guidelines around
participant meal attendance.

This study validated participants’ calorie intake as recorded by
the wearable device, in comparison with a reference diet. The
deviations in and between methods could be explained by any
combination of the following factors: form factor limitations
(skin contact/battery); the participants’nonadherence to dietary
protocol (ie, consuming and failing to report ingested food or
drink); interindividual differences in measured intake versus
actual nutrient absorption and metabolism; human error in
calculating food intake using the USDA Database; potential
deviations from the standardized recipe during the meal
preparation process; inability of the USDA Database account
for nutrient variation depending on food ripeness, geographic
location, and soil quality; inherent data loss because of required
1-hour daily device charging periods; and inaccuracies
pertaining to technology algorithm development. Future studies
should incorporate these suggestions for improvement to further
interrogate the potential of wearable devices to accurately

capture caloric and macronutrient intake. Ongoing engineering
adjustments are recommended to accurately estimate the energy
and nutrient intakes of individuals consuming various diets.

Tools are urgently needed to obtain accurate and precise
measurements of diet and nutrition. Enhancing knowledge about
individual phenotypes allows for more precise and predictive
dietary guidance and intervention, and this has the potential to
transform how people make informed diet and lifestyle choices.
In today’s personalized marketplace, we routinely use
sophisticated technology to acquire personalized step-by-step
guidance that assures arrival at nearly any physical destination
(eg, satellite navigation). In accordance with the natural diversity
of humans as unique phenotypes, this concept could also be
applicable to the realm of food and diet. In other words, there
is a need for sensitive and specific devices to deliver
step-by-step directions to any desired health destination. This
requires the tools able to quantify health status and progress
over important time scales and adjust trajectories according to
biofeedback. Smartphones are the cornerstone of the
customization and precision of modern life, incorporating
precise personal information with global databases accessible
through cloud storage and applying straightforward
computational algorithms to guide decisions. This basic principle
and its applications offer a sophisticated and diverse range of
possibilities for enhancing our individual experience, whether
through personalized navigation, physical activity tracking,
tailoring fitness routines, and identifying a song or even a face.
However, to date, the app market does not offer reliable
solutions for automating the quantification of dietary intake that
would significantly impact individualized quality of life
decisions. Measurement and tracking devices provide practical
utility for discerning phenotypic traits and defining progressive
roadmaps to personalized health destinations. Automated
nutrient tracking devices could precisely inform diet and lifestyle
choices appropriate to health status and guide individuals toward
desired goals, including everything from diet planning to
cardiometabolic performance. Validation and effectiveness
testing of candidate devices are essential steps to be taken for
the use of precision technologies to inform personalized diet
and lifestyle guidance.

Conclusions
This study documented high variability in both the utility and
accuracy of a wristband sensor to track nutritional intake
(kcal/day). The researchers acknowledge that because dietary
intake measurement of individuals has inherent challenges
related to accuracy and variability, achieving precision of
reference methods is a notable challenge. This study highlights
the need for innovative measurement tools that are precise,
reliable, and efficacious to facilitate accurate personalized
dietary measurement.
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