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Abstract

Background: Recent advancements in wearable sensor technology have shown the feasibility of remote physical therapy at
home. In particular, the current COVID-19 pandemic has revealed the need and opportunity of internet-based wearable technology
in future health care systems. Previous research has shown the feasibility of human activity recognition technologies for monitoring
rehabilitation activities in home environments; however, few comprehensive studies ranging from development to clinical
evaluation exist.

Objective: This study aimed to (1) develop a home-based rehabilitation (HBR) system that can recognize and record the type
and frequency of rehabilitation exercises conducted by the user using a smartwatch and smartphone app equipped with a machine
learning (ML) algorithm and (2) evaluate the efficacy of the home-based rehabilitation system through a prospective comparative
study with chronic stroke survivors.

Methods: The HBR system involves an off-the-shelf smartwatch, a smartphone, and custom-developed apps. A convolutional
neural network was used to train the ML algorithm for detecting home exercises. To determine the most accurate way for detecting
the type of home exercise, we compared accuracy results with the data sets of personal or total data and accelerometer, gyroscope,
or accelerometer combined with gyroscope data. From March 2018 to February 2019, we conducted a clinical study with two
groups of stroke survivors. In total, 17 and 6 participants were enrolled for statistical analysis in the HBR group and control
group, respectively. To measure clinical outcomes, we performed the Wolf Motor Function Test (WMFT), Fugl-Meyer Assessment
of Upper Extremity, grip power test, Beck Depression Inventory, and range of motion (ROM) assessment of the shoulder joint
at 0, 6, and 12 months, and at a follow-up assessment 6 weeks after retrieving the HBR system.

Results: The ML model created with personal data involving accelerometer combined with gyroscope data (5590/5601, 99.80%)
was the most accurate compared with accelerometer (5496/5601, 98.13%) or gyroscope data (5381/5601, 96.07%). In the
comparative study, the drop-out rates in the control and HBR groups were 40% (4/10) and 22% (5/22) at 12 weeks and 100%
(10/10) and 45% (10/22) at 18 weeks, respectively. The HBR group (n=17) showed a significant improvement in the mean WMFT
score (P=.02) and ROM of flexion (P=.004) and internal rotation (P=.001). The control group (n=6) showed a significant change
only in shoulder internal rotation (P=.03).

Conclusions: This study found that a home care system using a commercial smartwatch and ML model can facilitate participation
in home training and improve the functional score of the WMFT and shoulder ROM of flexion and internal rotation in the treatment
of patients with chronic stroke. This strategy can possibly be a cost-effective tool for the home care treatment of stroke survivors
in the future.
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Trial Registration: Clinical Research Information Service KCT0004818; https://tinyurl.com/y92w978t

(JMIR Mhealth Uhealth 2020;8(7):e17216) doi: 10.2196/17216
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Introduction

Stroke is a major cause of disability in adults. About 13.7 million
cases of stroke occur each year globally, but half of the patients
are unable to restore enough upper extremity function required
for daily living [1,2]. The rehabilitation required after stroke
has been limited to the first 3 to 6 months of hospitalization
following the stroke [3]. For the best recovery following stroke
and prevention of recurrence, stroke survivors need ongoing
home rehabilitation [4-7]. Previous literature has proven that
continued home rehabilitation can activate neuroplasticity in
chronic poststroke patients and result in greatly enhanced
clinical outcomes [8-10]. In addition, the need for a high-quality
home health care system is drawing greater attention with the
recent COVID-19 pandemic. The major barriers in delivering
high-quality home rehabilitation services are high cost and labor
intensiveness [11,12]. Therefore, socioeconomically deprived
people are less likely to receive high-quality rehabilitation care
and more likely to experience recurrence and poor quality of
life [13,14]. The burdensome labor of home care also puts the
care giver and receiver at risk for poor mental health and
depression [15,16].

To overcome the barriers for home rehabilitation, potential
technology-enabled solutions have been suggested. For example,
there are two kinds of technology used as solutions (vision-based
solution and wearable sensor–based solution). The vision-based
approach (eg, interactive television or Kinect) could be easier
to use since it does not require any wearing of devices [17-21].
A vision-based system can only be used within a limited range
of space, whereas wearable systems can be used anywhere,
which would be advantageous for promoting the frequency of
use [22,23].

To promote the frequency of use, we developed an upper limb
home-based rehabilitation (HBR) system using wearable sensors
embedded in a commercial smartwatch. A machine learning
(ML) algorithm implemented by a convolutional neural network

(CNN) was used to recognize four kinds of home exercise
activities. While participants perform these home exercises, the
HBR system makes it possible to share their home exercise data
with therapists at remote locations. It helps therapists to
encourage and communicate with chronic stroke survivors.

We conducted a prospective comparative study to evaluate the
effectiveness of our HBR system. As the long-term goal of this
study, we intended to investigate the benefits of using artificial
intelligence–based HBR compared with those of conventional
therapy. Herein, we compared the clinical outcomes of an
experimental (HBR) group using the HBR system with those
of a control group performing conventional home exercises.
We hypothesized that the HBR group would show enhanced
clinical outcomes compared with the control group [24]. This
paper elaborates on the technological advancements pertaining
to the detection of home exercise activities using a smartwatch
(the ML model) and the results from a clinical trial.

Methods

Development of an HBR System

Overview of an HBR System
We implemented an HBR system that can connect patients and
therapists at a distance. Figure 1 presents an overview of our
HBR system. To make the interface simple and user-friendly,
we used a commercial smartwatch (watch style W270, LG,)
that can be connected to a personal smartphone after installing
a custom-programmed app. In our system, the smartwatch,
which includes an inertial measurement unit (IMU) sensor, sent
sensor data to the smartphone via Bluetooth communication
while patients were doing exercise. The personal smartphone
served as a platform for receiving sensor data, classifying the
data, and transmitting the results to a server computer via the
internet (Multimedia Appendix 1). The apps for the smartwatch
and smartphone were developed using the Android Software
Development Kit (Android Studio 2.3, Google).
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Figure 1. Overview of the home-based rehabilitation system.

Selection of Home Rehabilitation Exercise Tasks
We selected four exercise tasks based on bilateral movement
therapy, which is called bilateral arm training rehabilitation.
Previous literature has shown that bilateral arm training can
induce reorganization in contralateral motor networks by

interhemispheric crosstalk and evoke functional recovery of the
upper extremities in chronic stroke survivors [25,26]. As shown
in Figure 2, the following exercises were selected: (1) bilateral
shoulder flexion with both hands interlocked; (2) wall push
exercise; (3) active scapular exercise; and (4) towel slide
exercise.

Figure 2. Home rehabilitation exercises for the upper limbs. (A) Bilateral shoulder flexion; (B) Wall push exercise; (C) Active scapular exercise; (D)
Towel slide exercise.

Machine Learning Algorithm for Home Exercise
Recognition
There are various kinds of deep learning algorithms for human
activity recognition [27,28]. Among them, we selected the CNN
as it has been reported to be highly accurate in human activity
recognition and simpler than other algorithms since it does not

need feature extraction [29,30]. We made a program for building
the ML model with Python script (Python 3.5, Python Software)
and CNNs in the TensorFlow platform (Tensorflow 1.7.0,
Google).

The kinematic data structure from the IMU sensor consists of
three-axis (x, y, and z) accelerometer and gyroscope data. When
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a patient is exercising while wearing the smartwatch, the
accelerometer and gyroscope of the IMU sensor measure
acceleration and velocity during the exercise. Since all sensor
data are in a time series sampled at 10 Hz, the entire data can
be represented by a two-dimensional matrix with a time axis

(horizontal) and a sensor axis (vertical) as shown in Figure 3.
We used the sliding time window method and applied a 3-second
time window according to the experimental results that
compared the performance of the ML algorithm at various time
windows [31].

Figure 3. Baseline convolutional neural network architecture.

The training data essential for implementing the ML algorithm
were obtained on the first day of the meeting. As it was difficult
to meet patients with chronic stroke due to the difficulty of
moving, we gathered the data on the same day just after
explaining about the four kinds of home exercises. Participants
were asked to repeat them 15 times in two sessions wearing a
smartwatch.

Figure 3 reflects our baseline CNN architecture. Two
convolution layers, which have 8 and 16 feature maps, are
followed by a fully connected layer that has 32 nodes. Rectified
units are employed as activation functions, and SoftMax
functions are used for evaluating the final five output node
values.

We experimented with the following two types of ML models:
a ML model built with the personal data set and another ML
model built with the total data set. The personal data set was
composed of the exercise data of the user, whereas the total data
set consisted of all participants’ exercise data including the user.
In order to evaluate the accuracy of each model, we applied a
cross-validation test.

Cross-Validation Test for Accuracy Comparison
A five-fold cross-validation test was performed to test the
accuracy of the ML model in recognizing exercise tasks. We
divided the data into one test data set and four training data sets.
The training data sets were used to build the ML model, and
the test data set was used to determine the accuracy of the ML
model built. Thus, we compared the accuracy of the model
created by personal data versus total data. Additionally, we
compared the accuracy between models based on each sensor
data (accelerometer only, gyroscope only, and accelerometer
and gyroscope combined) to determine which sensor data are
most accurate for exercise prediction. Accuracy was calculated
by using the following formula:

Accuracy = (TP + TN) / (TP + TN + FP + FN)

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative.

Development of Mobile Apps
We implemented the following three different android apps:
(1) smartwatch app; (2) smartphone app for patients; and (3)
smartphone app for physiotherapists (Android Studio 2.3,
Google). The smartwatch app is designed to transmit sensor
data to a smartphone as soon as the exercise button on the
smartphone is pressed and to stop transmission when the use
of the app on the smartphone has ended. There is no start or
stop button on the smartwatch. We made the smartphone app
automatically close as soon as the android app of the smartphone
shuts down. The smartphone app for patients acts as a platform
for starting the smartwatch, detecting home rehabilitation, and
transmitting exercise time data to the server computer. The
personalized ML model embedded in the smartphone app
recognizes the type of exercise that the participant is doing.
After recognition of the exercise, the smartphone calculates and
transmits the exercise time via the internet. It also shows the
personal rehabilitation time of the previous 3 days on pressing
a button in the app. Lastly, the smartphone app for
physiotherapists provides the physiotherapists with the
rehabilitation status of all enrolled patients for the past 1 month
for convenient statistical evaluation.

Clinical Trial: Prospective Comparative Study

Experiment Design
We performed a clinical trial in two local health care centers
located in two cities in South Korea (Cheongju [control group]
and Daejeon [HBR group]). In the two centers, we recruited 12
and 26 patients with chronic stroke, respectively. The inclusion
criteria were as follows: (1) age 40 to 70 years, (2) mild to
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moderate neurologic deficit with hemiplegia, (3) more than 6
months after the onset of stroke, (4) 24 points or more in the
Korean version of the Mini-Mental State Examination
(K-MMSE), and (5) ability to understand the procedures and
communicate with the supervisor. The exclusion criteria were
as follows: (1) arthritis of the glenohumeral joint, (2) rotator
cuff tear, (3) cervical root syndrome, (4) subluxation of the
shoulder joint, (5) reluctance to follow the home exercise
regimens of this study, and (6) no smartphone with Android
OS.

Figure 4 shows the time flow of the study. According to the
criteria, we excluded two patients in the control group owing
to shoulder pain during exercise. In the HBR group, four patients
were excluded (one patient had rotator cuff repair surgery
previously, one had shoulder subluxation, and two had shoulder
pain during exercise). After excluding those patients, 10 and

22 patients were initially enrolled in the control and HBR
groups, respectively. While performing the home rehabilitation
program, four patients in the control group dropped out.
Drop-out was determined by a therapist who undertook the task
of home-based rehabilitation for participants who did not
respond to phone calls. In the HBR group, four patients gave
up using our HBR system, as they were unfamiliar with the
information technology devices and experienced difficulties in
their usage. One patient missed the rehabilitation owing to
deterioration caused by other underlying diseases. Finally, six
patients in the control group and 17 patients in the HBR group
completed the protocol at 12 weeks. To determine the changes
in clinical scores, we tried to conduct an assessment at 6 weeks
after the final assessment (18 weeks). Participants in the control
group did not respond to our call, whereas participants in the
HBR group cooperated with the requirement for assessment.

Figure 4. Time flow of the study.

All patients in the control group received personal education
about the four exercise tasks for 30 minutes at the beginning of
study enrollment. In the control group, the participants received
a printed handout to remind them about how to perform the four
exercise tasks. In contrast, participants in the HBR group
received the same education and were given a smartwatch, and
the HBR apps were installed on their own smartphones on the
first day of the meeting. During the education, we acquired
learning data for the ML algorithm in the HBR group. The
physiotherapist taught each individual patient how to perform
the four exercise tasks, and the training data were labeled
manually while the patient was practicing each of the four tasks.
In other words, with the smartwatch worn, participants were
asked to repeat each home exercise 15 times in two sessions.
In total, data were collected for 120 exercise attempts.

In both groups, weekly calls were made by the same therapists
[17]. To avoid bias from the examiner, two therapists equally
divided the participants present in both groups and managed

them. They encouraged the participants to perform home
exercise and answered any questions regarding how to perform
the home exercise from participants in both groups. Since the
control group did not use any sensor at home, one additional
question was asked regarding how much time the control
participants spent on home exercise.

In the HBR group, the participants were able to obtain their
own home exercise results, and it was possible for the therapist
to access the data of all the participants. Thereafter, the
physiotherapist communicated with the participants and
encouraged them based on the home exercise data collected by
the HBR system (Multimedia Appendix 2).

All participants were asked to come to the local health care
centers for outcome evaluation, and two physical therapists at
each center conducted the clinical assessments at 0 weeks
(baseline), 6 weeks (mid-term), and 12 weeks (final). In addition,
we conducted one more assessment at 18 weeks, which was a
6-week follow-up after the completion of the home rehabilitation
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program, to examine the change after our home rehabilitation
program. For functional scoring, the Fugl-Meyer Assessment
of Upper Extremity (FMA-UE) and Wolf Motor Function Test
(WMFT) were used. We also evaluated psychologic depression
using Beck Depression Inventory (BDI), grip power using a
dynamometer (Patterson Medical), and shoulder range of motion
(ROM) angle using a goniometer.

Statistical Analysis
We used descriptive statistics to characterize the demographics
and analyzed the difference between the control and HBR groups
at baseline using the Mann-Whitney U test. We compared the
clinical results of functional recovery (WMFT and FMA-UE),
grip power, BDI, and ROM using the Friedman test. As a
post-hoc analysis, the Wilcoxon signed-rank test with Bonferroni
correction was used. SPSS software was utilized for all statistical
analyses (SPSS statistics 25, IBM Corp).

The sample size was determined according to a previous study
(using virtual reality home training) related to this study [32].
Based on the result of a mean ROM increase of 41.67° (SD
22.29°), we calculated the sample size using G*Power software
(two-tailed; α error, .05; power [1–β error], 0.8; effect size,

1.869; loss rate, 10%). This power analysis showed a sample
size of 6.

Results

Accuracy Results of the HBR System
It was impossible to detect the accuracy of the home exercise
activity logs as the ground truth of home exercise motion of the
participants was unknown owing to matters pertaining to
personal privacy. Instead, we attempted to ascertain what types
of sensor data can detect home exercise activities most
accurately via a cross-validation test.

The results shown in Table 1 represent the accurate values that
were calculated by the cross-validation test with different ML
models depending on various input data and sensor data. With
regard to the input data, the ML model trained by accelerometer
combined with gyroscope data had the best accuracy compared
with other models. In particular, the ML model developed using
personal data (99.9%) was more accurate than the model
developed using total data (95.8%), although the amount of
personal data was much smaller than that of total data.

Multimedia Appendix 3 shows the results of the cross-validation
test.

Table 1. Accuracy of the convolutional neural network model according to exercise.

Total data (%)Personal data (%)Exercise

A+GGAA+GcGbAa

100

(1224/1224)

97.8

(1197/1224)

97.4

(1192/1224)

100

(1224/1224)

95.8

(1172/1224)

100

(1224/1224)d

No exercise

97.2

(1089/1120)

98.1

(1099/1120)

96.1

(1076/1120)

99.0

(1109/1120)

97.8

(1095/1120)

98.5

(1103/1120)

Bilateral flexion

93.2

(954/1024)

86.5

(886/1024)

93.8

(960/1024)

100

(1024/1024)

93.7

(959/1024)

99.0

(1014/1024)

Wall push

93.0

(1030/1108)

87.0

(964/1108)

92.2

(1022/1108)

100

(1108/1108)

97.6

(1081/1108)

93.0

(1030/1108)

Active scapula

95.5

(1074/1125)

88.7

(998/1125)

94.2

(1060/1125)

100

(1125/1125)

95.5

(1074/1125)

100

(1125/1125)

Towel slide

95.8

(5371/5601)

91.8

(5144/5601)

94.8

(5310/5601)

99.9

(5590/5601)

96.0

(5381/5601)

98.1

(5496/5601)

Total

aAccelerometer data.
bGyroscope data.
cAccelerometer combined with gyroscope data.
dIndicates the value of correct samples divided by total samples.

Results of the Clinical Trial
The study was approved by the Institutional Review Board (IRB
no.: IRB-17-299). Informed consent was obtained from all
participants. This study was supported by the Korea Advanced
Institute of Science and Technology-funded Global Singularity
Research Program. Patients were recruited from March 2018
to September 2018, and home exercise data were collected until
February 2019. As of March 2019, we enrolled 23 stroke
survivors for data analysis. Drop-out rates in the control and

HBR groups were 40% (4/10) and 22% (5/22) at 12 weeks and
100% (10/10) and 45% (10/22) at 18 weeks, respectively.

Table 2 presents the demographics and baseline assessment
findings. There were no relevant differences between the two
groups.

To evaluate exercise compliance at home, in the control group,
a telephone survey was the only approach to determine the home
exercise activities of participants. Thus, we called them and
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asked how much time they exercised at home and encouraged
exercise. We found that they performed home exercise for about
13.6 (SD 4.85) min/day. However, the numbers obtained for
the control group might not be accurate owing to the limitations

of a verbal survey. In contrast, in the HBR group, the home
exercise results of all the participants were provided by the
smartphone app. Thus, we encouraged participants to perform
home exercise based on the data.

Table 2. Patient demographics and baseline assessment in the control and home-based rehabilitation groups.

P valuebHBRa group (n=17), mean (SD)Control group (n=6), mean (SD)Characteristic

.2558.3 (9.3)64.5 (9.6)Age (years)

Functional assessment test

.9139.7 (22.2)38.8 (25.6)WMFTc

.3536.6 (18.6)29.0 (14.2)FMA-UEd

.7513.3 (12.7)11.7 (11.6)Grip power (kg)

.2817.88 (14.7)24.2 (11.2)BDIe

Shoulder ROMf

.9174.5 (45.3)82.0 (59.07)Flexion

.1128.7 (21.0)40.8 (19.6)Extension

.5150.43 (24.5)50.8 (31.2)Internal rotation

.9716.84 (17.69)23.4 (28.1)External rotation

aHBR: home-based rehabilitation.
bP values were calculated with the Mann-Whitney U test.
cWMFT: Wolf Motor Function Test.
dFMA-UE: Fugl-Meyer Assessment of Upper Extremity.
eBDI: Beck Depression Inventory.
fROM: range of motion.

On average, participants in the HBR group performed bilateral
flexion exercise for 7.27 (SD 10.1) min/day, wall push exercise
for 3.76 (SD 9.01) min/day, active scapula exercise for 4.82
(SD 9.62) min/day, and towel slide for 6.70 (SD 11.87) min/day.
In total, home exercise was performed for an average of 22.57
(SD 37.69) min/day.

Table 3 presents the clinical results at the baseline, mid-term
(6 weeks), and final assessments (12 weeks). In total, 23
individuals with chronic stroke completed this research (control:
6; HBR: 17). In the HBR group, the WMFT, BDI, and shoulder
ROM of flexion and internal rotation showed relevant

progression (Multimedia Appendix 4). However, FMA-UE
showed no significant difference (P=.46). In the control group,
there was no significant difference, except for the ROM of
internal rotation (P=.03). In both groups, there was no relevant
difference in the grip power test.

We tried to determine the change in clinical results after the
completion of the home rehabilitation program, which had a
duration of 12 weeks. Thus, we compared the clinical outcomes
at the final assessment (12 weeks) with that at 6 weeks after
removing the HBR system (18 weeks). However, there was no
relevant difference (Multimedia Appendix 5).
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Table 3. Clinical results in the control and home-based rehabilitation groups during the experiment.

HBRa group (n=17)Control group (n=6)Characteristic

P valueb12 weeks,
mean (SD)

6 weeks,
mean (SD)

0 weeks,
mean (SD)

P valueb12 weeks,
mean (SD)

6 weeks,
mean (SD)

0 weeks,
mean (SD)

Functional assessment test

.0242.5

(23.7)

40.5

(23.6)

39.7

(22.7)

.6942.2

(22.8)

40.3

(25.7)

38.8

(25.6)
WMFTc

.4638.5

(18.3)

37.5

(18.4)

36.6

(18.7)

.7228.5

(16.1

30.0

(14.2)

29.0

(14.2)
FMA-UEd

.3414.8

(12.1)

12.9

(12.0)

13.3

(12.7)

.4710.9

(10.3)

11.0

(10.4)

11.7

(11.6)

Grip power (kg)

.068.0

(9.9)

10.0

(8.8)

17.9

(14.7)

.118.8

(7.2)

10.0

(8.6)

24.2

(11.2)
BDIe

Shoulder ROMf

<.00194.7

(48.9)

93.9

(52.3)

74.5

(45.3)

.2187.5

(61.0)

90.6

(65.3)

82.0

(59.1)

Flexion

.1634.7

(19.9)

31.5

(16.2)

28.7

(21.0)

.3832.8

(20.4)

29.5

(18.9)

40.8

(19.6)

Extension

.00163.5

(26.9)

70.3

(28.3)

50.4

(24.5)

.0357.3

(32.0)

48.5

(28.6)

50.8

(31.2)

Internal rotation

.2016.9

(18.4)

15.4

(18.1)

16.8

(17.7)

.7626.6

(27.7)

23.6

(30.0)

23.4

(28.1)

External rotation

aHBR: home-based rehabilitation.
bOverall P values were calculated with the Friedman test.
cWMFT: Wolf Motor Function Test.
dFMA-UE: Fugl-Meyer Assessment of Upper Extremity.
eBDI: Beck Depression Inventory.
fROM: range of motion.

Discussion

Principal Findings
In this study, we performed a comprehensive assessment based
on a ML algorithm and wearable device. We developed an HBR
system using a commercial smartwatch with the ML model and
evaluated the effectiveness of the HBR system via a clinical
trial. The ML model based on a CNN algorithm showed good
to excellent accuracy ranging from 86.5% to 100%, and the
clinical trial showed a relevant increase in ROM and the WMFT
function score.

While developing the HBR system using a commercial
smartwatch, determining the types of sensors that provide
maximal accuracy was an important issue. According to previous
research that used an IMU sensor for activity recognition, an
accelerometer is the most accurate sensor for activity recognition
[29,30,33-36]. Based on the results of the cross-validation test
in our study, the accelerometer signal combined with gyroscope
findings provided the most accurate results. This is consistent
with the result in the study by Hyunh et al [37], which attempted
to detect falls by using an IMU sensor at the chest. It was
reported that adding a gyroscope can reduce the false-positive
rate and increase specificity from 82.72% to 96.20%. However,

in our study, the difference in the accuracy of the results
obtained when using an accelerometer and an accelerometer
combined with a gyroscope was relatively small (1.1%-1.8%),
and in the case of active scapular exercises, the accuracy of the
gyroscope was even higher than that of other approaches. Thus,
we believe that the choice of the most accurate sensor may
depend on the type of exercise and the location of the sensor.
Our research, which involved the detection of repetitive and
slow home exercise tasks by a smartwatch, showed that the
combination of an accelerometer and a gyroscope provided the
most accurate signal. However, considering that the
improvement in accuracy with the addition of a gyroscope was
relatively small and that the addition required doubled
computation and battery loading for the gyroscope, we believe
that an accelerometer-only signal could be an alternative choice.

Since the learning data set is a decisive factor in optimizing the
ML algorithm, we compared the accuracy of the ML model
built with personal data and that built with total data. The ML
model based on total data was built with data from all
participants and the ML model based on personal data was
implemented by using the participants’ own data. Although the
amount of total data was larger than that of personal data, each
exercise motion in the total data set represents a mix of different
motions of all participants. Therefore, through this comparison,

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 7 | e17216 | p. 8http://mhealth.jmir.org/2020/7/e17216/
(page number not for citation purposes)

Chae et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


we attempted to determine whether the quantity or quality of
data is important. According to the results, we found that quality
was more important. The ML model built with only personal
data (99.9%), which represented the quality of data, was more
accurate than the ML model built with total data (95.4%), which
represented the quantity of data. This means that data
personalization was more important than the total amount of
data, especially for chronic stroke patients who had various
disabilities and individual motion characteristics. We think that
the different exercise motions of other patients contaminated
the data consistency and had a bad influence on the ML model
[38].

With regard to the clinical trial, the HBR group showed
significant functional recovery (mean difference=2.8, P=.02)
in the WMFT. However, FMA-UE did not show significant
results (mean difference=1.9, P=.46). We think this is related
to the different traits of both functional assessment methods.
FMA-UE (total 66 scores) is an assessment tool for identifying
motor impairment, and it involves reflex activity (6), flexor
synergy (12), extensor synergy (6), combining synergy (6),
movement out of synergy (6), wrist (10), hand (14), and
coordination/speed (6) on an ordinal scale from 0 to 2 (0, none;
1, partial; 2, complete). In contrast, the WMFT (total 75 scores)
is a test for assessing functional performance, providing insight
into joint-specific and integrative limb movements graded from
0 to 5, with 15 function-based tasks [39]. According to the study
performed by Wolf et al [40], the WMFT is more sensitive than
FMA-UE for assessing functional improvement in less affected
stroke patients. Thus, the different results of the two functional
tests indicate that the home rehabilitation exercise for 12 weeks
had beneficial effects in functional recovery, but it was not
enough to change synergic movement or hand and wrist
function.

In terms of shoulder ROM, we found a significant increase in
shoulder flexion (P=.02) and internal rotation ROM (P=.001)
in the HBR group by the Friedman test. According to the
post-hoc analysis involving the Wilcoxon signed-rank test with
Bonferroni correction, significant increases in the first 6 weeks
of home exercise were noted for shoulder joint ROM with
flexion (P=.004) and internal rotation (P=.001). However, there
was no change in external rotation and extension ROM.
Regarding the reasons for ROM increase, we think it is
associated with the exercise protocol of our study. Among the
four kinds of home exercises in our study protocol, bilateral
flexion, wall push, and towel slide required wide movements
of shoulder flexion and internal rotation. The exercise time
records from our HBR system support this since patients
performed the shoulder bilateral flexion exercise for the longest
time when compared with other exercises. The shoulder
extension ROM exercise was not included in our home exercise
protocol. Although shoulder external rotation is required to
perform the active scapular exercise, the external rotation ROM
was not increased. This result is associated with the fact that
chronic stroke patients usually have internally rotated joint
contractures associated with impaired motor synergy [41,42].
We consider that the absence of a relevant change in the hand
grip test was also related with the fact that our home exercise

protocol required wide movement of the shoulder joint, but less
motion of the wrist and hand joints.

The benefit of the HBR system was not only clinical
improvement but also a decreased drop-out rate, which might
encourage the application of wearable systems for HBR. We
found that the drop-out rate was lower in the HBR group than
in the control group at 12 weeks (5/22, 22% vs 4/10, 40%) and
18 weeks (10/22, 45% vs 10/10, 100%). After this study was
completed, we interviewed two participants who dropped out
to find out why they decided not to continue the study. They
said that they became less interested in the conventional home
rehabilitation program because the weekly phone calls did not
help bring about any visible improvement and bothered them.
We think the HBR system has a good influence on the
motivation for home exercise and the relationship with physical
therapists. According to the self-determination theory, which
refers to each person’s ability to make choices and manage their
own life [24], people need to experience a sense of belonging
and attachment with others, which is called “connection or
relatedness.” In addition, people need to feel in control of their
own behaviors and goals, which is called “autonomy.” Our HBR
system would assist patients to record an exercise time
(autonomy) and to communicate with a clinician (connection
or relatedness).

Regarding the depression index, previous randomized controlled
trials reported that home rehabilitation can reduce the incidence
of depression [43,44]. However, BDI in our study did not show
a relevant difference. It only showed a trend of positive effects
(P=.06). The finding might be significant with a greater number
of participants or a longer period because our protocol was
relatively shorter than the period in the literature [43,44].

Lastly, there was no relevant difference in the HBR group
between 12 weeks and 18 weeks (6 weeks after the final
assessment without the HBR system). However, we believe that
the HBR system is more effective when used consistently in
home care because most of the clinical outcomes at 18 weeks
showed a decreasing trend compared with 12 weeks.

Comparison With Prior Work
Previously, Wade emphasized that enabling self-directed
practice is critical for stroke rehabilitation [45]. Regarding the
strategy of self-directed practice, it has been shown that verbal
encouragement does not have an impact on increasing
rehabilitation activity after stroke [46]. Therefore, various
methods of self-management training for upper limb
rehabilitation have been suggested, including robot-assisted
therapy. For example, Markopoulos et al [47] and Holden et al
[48] developed a watch-like device. They used a visual feedback
system as a self-management tool, but there was no remote
supervision with the therapist. The mobile health system
proposed by Dobkin [17] uses a similar strategy as that of our
approach, which is called the rehabilitation internet-of-things
(RIoT) device. However, we applied the ML model for home
exercise detection and used a commercial smartwatch to simplify
the user device interface, which has been regarded by previous
researchers as the most important factor for use in clinical
practice [17,49].
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With regard to robot-assisted therapy, Lo et al [50] reported
that robot-assisted therapy showed no relevant difference at 12
weeks and only showed improvement over 36 weeks when
compared with typical care. Additionally, it costed US $15,562
for the 36-week program [50]. In contrast, our HBR system
increased flexion ROM at 6 weeks and showed improvement
of the WMFT score at 12 weeks. Considering the treatment cost
of robot-assisted therapy, our HBR system strategy could be a
better treatment modality with similar clinical improvement.

Limitations
There are several limitations in this study. First, the total number
of patients who completed our program was relatively small to
derive statistically strong evidence, particularly in the control
group. Further work with a larger sample size would be helpful
for more confirmative conclusions. Second, there was a
discrepancy in the number of participants in the control and
HBR groups. Only six participants from the control group were
enrolled in the data analysis process. However, while carrying
out our research, the loss of participants was inevitable in the
control group because they were tired of receiving calls
regarding management without any benefit, indicating the
limitation of a conventional method. Third, there could have
been loss of time measurement in the HBR group since some
patients stated that they sometimes performed home exercise
without the smartwatch owing to the inconvenience of wearing

the smartwatch. Therefore, we think the exercise time recorded
in the database was an underestimation of the real home exercise
time. Fourth, the actual accuracy of exercise detection at home
was not assessed. Although some researchers have attempted
to address the privacy preservation of sensitive personal data
based on a deep learning algorithm [51], we did not implement
this approach and only calculated the accuracy based on a
five-fold cross-validation test. Therefore, the actual accuracy,
which is the correct prediction rate of exercise detection at home,
could not be assessed because all patients wanted to protect
their privacy. Fifth, there could have been selection bias
associated with the positions of local health centers at different
locations. Although we cannot quantify the difference, we think
the bias was not relevant enough because both centers are
closely located (50 km away) and the socioeconomic status is
similar.

Conclusions
This study found that a home care system using a commercial
smartwatch and ML model can facilitate participation in home
training and improve the functional score of the WMFT and
shoulder ROM of flexion and internal rotation in the treatment
of patients with chronic stroke. We recommend our HBR system
strategy as an innovative and cost-effective home care treatment
modality.
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