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Abstract

Background: Mobile technology for health (mHealth) interventions are increasingly being used to help improve self-management
among patients with diabetes; however, these interventions have not been adopted by a large number of patients and often have
high dropout rates. Patient personality characteristics may play a critical role in app adoption and active utilization, but few studies
have focused on addressing this question.

Objective: This study aims to address a gap in understanding of the relationship between personality traits and mHealth treatment
for patients with diabetes. We tested the role of the five-factor model of personality traits (openness to experience, conscientiousness,
extraversion, agreeableness, and neuroticism) in mHealth adoption preference and active utilization.

Methods: We developed an mHealth app (DiaSocial) aimed to encourage diabetes self-management. We recruited 98 patients
with diabetes—each patient freely chose whether to receive the standard care or the mHealth app intervention. Patient demographic
information and patient personality characteristics were assessed at baseline. App usage data were collected to measure user
utilization of the app. Patient health outcomes were assessed with lab measures of glycated hemoglobin (HbA1c level). Logistic
regression models and linear regression were employed to explore factors predicting the relationship between mHealth use
(adoption and active utilization) and changes in health outcome.

Results: Of 98 study participants, 46 (47%) downloaded and used the app. Relatively younger patients with diabetes were 9%
more likely to try and use the app (P=.02, odds ratio [OR] 0.91, 95% CI 0.85-0.98) than older patients with diabetes were.
Extraversion was negatively associated with adoption of the mHealth app (P=.04, OR 0.71, 95% CI 0.51-0.98), and openness to
experience was positively associated with adoption of the app (P=.03, OR 1.73, 95% CI 1.07-2.80). Gender (P=.43, OR 0.66,
95% CI 0.23-1.88), education (senior: P=.99, OR 1.00, 95% CI 0.32-3.11; higher: P=.21, OR 2.51, 95% CI 0.59-10.66), and
baseline HbA1c level (P=.36, OR 0.79, 95% CI 0.47-1.31) were not associated with app adoption. Among those who adopted the
app, a low education level (senior versus primary P=.003; higher versus primary P=.03) and a high level of openness to experience
(P=.048, OR 2.01, 95% CI 1.01-4.00) were associated with active app utilization. Active users showed a significantly greater
decrease in HbA1c level than other users (ΔHbA1c=−0.64, P=.05).

Conclusions: This is one of the first studies to investigate how different personality traits influence the adoption and active
utilization of an mHealth app among patients with diabetes. The research findings suggest that personality is a factor that should
be considered when trying to identify patients who would benefit the most from apps for diabetes management.
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Introduction

Diabetes Self-Management
Globally, type 2 diabetes is a common chronic disease, and its
incidence is rapidly increasing in countries such as China [1,2].
Treatment for type 2 diabetes is largely self-managed; patients
are responsible for engaging in health-promoting behavior on
a day-to-day basis [3]. Health-promoting behaviors include
dietary control, physical activity, and blood glucose monitoring,
and these health-promoting behaviors are often incorporated as
essential components of treatment programs in order to keep
blood glucose levels within target ranges and to prevent
long-term complications [4]. Although long-term
self-management and lifestyle behaviors are critical for
controlling diabetes, these skills prove difficult for many patients
to develop [3].

Role of mHealth
Mobile technology for health (mHealth) interventions can
benefit chronic disease management by delivering real-time
monitoring and reminders to a large number of people, enabling
the delivery of tailored support and providing low-cost, remote
health care services [5]. For diabetes, mHealth interventions
are increasingly being used to assist patients with lifestyle
changes and health-promoting behaviors [6]. Some recent
studies and reviews [7-9] have shown that mHealth smartphone
interventions for diabetes self-management have reduced
glycated hemoglobin (HbA1c) levels and have significantly
facilitated self-management for patients; however, the
effectiveness of mHealth in improving diabetes outcomes
critically depends on voluntary patient engagement. Most
studies, in contrast, rely upon randomized trials where patients
are exogenously assigned to the mHealth interventions [10]. In
many studies that are designed as such, the patients who are
required to use the mHealth interventions showed low utilization
of the health apps and often had high dropout rates [5,11].
Therefore, within the literature to date, there is a limited
understanding of how willing diabetic patients are to adopt
mHealth interventions. Within this question, there is also the
matter of individual differences that may make patients more
or less likely to engage with a given intervention. In order to
make use of the full potential of mHealth, researchers,
technology companies, and clinicians have been exploring ways
of attracting users and increasing mHealth use [12], with the
understanding that personality characteristics may be an
important consideration when building or recommending
different mHealth products [13]. Based on this, we drew on
insights from personality research to explore individual
differences that could explain heterogeneity in the adoption and
active utilization of mHealth to improve diabetes
self-management.

Personality Traits and mHealth Intervention
The five-factor model of personality (also referred to as the big
five personality traits) offers a comprehensive framework for

examining distinct personal characteristics and their influences.
Within the big five, agreeableness encompasses the traits of
courtesy, cooperation, trust, and tolerance. Conscientiousness
represents tendencies such as being self-disciplined, organized,
and persistent in goal-directed behavior. Extraversion is
frequently associated with being sociable, gregarious, and
optimistic. Neuroticism (or emotional instability) is characterized
by insecurity, anxiousness, and hostility. Openness to experience
represents one’s curiosity and willingness to explore new ideas
[14]. Taken together, the big five capture the essence of one’s
personality.

Past research has recognized that the personal characteristics
of users are essential factors in predicting technology adoption
and continued utilization of different kinds of apps [15-17]. For
example, previous studies have found that more conscientious
individuals may be less likely to use leisure apps, but would
prefer communication and business apps [18,19]. Openness to
experience can be used to predict greater smartphone use and
may be positively correlated with the use of social apps [16,20].
Extraverts are more likely to use social networking and instant
messaging apps than they are to use apps related to books,
references, and education [20]. Individuals with high
agreeableness are less likely to use apps related to
communication, browser usage, productivity, and gaming
[18,19]. Neurotic individuals are likely to adopt apps in general,
due to their fastidious and meticulous nature as well as their
interest in creative activities [19].

Previous studies [21-25] have also examined the effects of the
five personality traits on patient intent to use mHealth apps.
Openness to experience had a positive influence on acceptance
of an mHealth app for hypertension [21] and was correlated
with better adherence to a self-care app for cancer [22]. High
conscientiousness was significantly associated with the total
number of points earned on an mHealth weight loss app [23].
Gender played a moderating role in the relationship between
two specific personality traits, extraversion and emotional
stability, and in the behavioral intention to use mHealth apps,
in general [24]. Personality traits have been found to influence
self-care behavior and glycemic control in patients with type 2
diabetes [25]; however, little is known about how the big five
personality traits influence adoption preference and active
utilization of diabetic self-management apps. Our exploratory
study was designed to help fill this knowledge gap.

Study Objectives
Using data from a 3-month period, this study explored three
relationships: (1) the relationship between the big five
personality traits and mHealth adoption, (2) the relationship
between the big five personality traits and active utilization of
the app, and (3) the effect of mHealth app usage on health
outcomes in patients with diabetes. Findings related to the
association between personal characteristics and mHealth use
in the context of diabetes self-care will contribute to further
understanding of the mechanisms underlying high dropout rates
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and could inform the development of tailored interventions that
will engage and improve patient self-management.

Methods

Ethical Considerations
The pilot study was approved by the ethics committees at the
University of Maryland (1331093-1) and Harbin Institute of
Technology School of Management. Informed written consent
was obtained from each individual prior to their participation,
and patients were provided with complete assurance that all
information would be kept confidential. Participation was
completely voluntary.

Recruitment
Patients were recruited through their affiliation with the
Endocrinology Department at the Fifth Hospital, Daqing City,
China. Daqing has played a key role in diabetic research, as it
was the setting for the first batch of studies on diabetes in China,
which were well-recognized in journals such as the Lancet [26].
Inclusion criteria for this study were a diagnosis of type 2
diabetes and more than 1 year since that diagnosis. Exclusion
criteria were individuals who were blind, deaf, had a diagnosis
of serious mental illness (active psychosis, bipolar disorder,
schizophrenia, borderline personality disorder, active alcohol
addiction, or other), and who lacked a stable residence.

Procedure
Eligible patients were identified from electronic medical records
and were then notified of the time, address, and content of an
upcoming orientation session by phone call.

Patients who were interested in participating attended an
orientation session, which included an educational presentation
on diabetes by a physician and a detailed description of the
study by the research team. In the latter portion of the session,
staff explained that patients would choose which treatment they
wanted to receive—either the app treatment or standard care—if
they chose to participate. The staff then presented the app to
explain its functions and why and how it could help the patients.
Patients were informed that all participants in both groups would
receive the same perks including free HbA1c tests, a portioned
dinner plate as a gift, an educational handbook about diabetes
self-management, and physician guidance for their health
management. They were also informed that, as an additional
incentive, those in either group who decreased their HbA1c level
during the 3-month period would receive a gift worth 50 RMB
(approximately US$ 7). At the end of the orientation session,
the prospective participants were entirely free to choose which
group to join, and if they chose to participate, they signed a
statement to indicate that they were providing informed consent.

Participants attended a second session on the morning following
the first session. In the second session, all participants underwent
baseline measurement, including HbA1c laboratory tests, and
BMI measurements, and completed a questionnaire. Then,
participants who chose the mHealth intervention were sent
instructions on how to use the app.

Over the course of 1 month (November 2018), we conducted
seven orientation sessions and recruited 98 patients. Participant
exclusions and categories are summarized in Figure 1. The study
duration was 6 months, but the analyses in this paper reflect
midpoint findings (3 months).
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Figure 1. CONSORT flow diagram.

mHealth Intervention
Participants who indicated intention to use the app were given
access to the health management app (DiaSocial) designed by
our research team; screen captured images from the app are
shown in Figure 2. The app was available in both iPhone and
Android versions. App components consisted of educational
resources, tracking features, and feedback. Participants had
continuous access to the app throughout the intervention period.

Educational information included basic self-management
strategies as well as guidance for app use. Participants who used
the app were instructed to use it daily and record their progress
towards diabetes self-care goals such as exercise, a healthy diet,
managing glucose levels, and medication adherence. Physical
activity was objectively measured using the participant’s
smartphone pedometer or was manually entered by participants
into the app. Other records were manually entered.
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Figure 2. Screen capture images from the DiaSocial app.

The app provided feedback through graphical displays of logged
behavior. Two types of graphical feedback were provided. The
first comprised separate graphs of glucose levels, sleep,
medication adherence, diet, weight, and moderate to vigorous
intensity physical activity. An information breakdown was
provided in the form of daily, weekly, and monthly line charts.
The second mode of graphical feedback was a red arrow
displayed on the analysis graphs designed to alert participants
(1) when blood glucose level prior to meals (breakfast, lunch,
or dinner) was greater than 7 mmol/L, (2) when blood glucose
level after meals (breakfast, lunch, or dinner) was greater than

10 mmol/L), (3) when BMI was greater than 25 kg/m2.

The app was also gamified such that participants earned scores
within the app for use and for reaching target levels of glucose,
exercise, nutrition, and medication adherence. The app ranked
all the participants according to their daily total scores. At the
same time, app users were also assigned to different treatment
arms, such as team competition and individual competition, but
these experimental conditions did not work out as planned and
all analyses were collapsed across the various treatment arms.

HbA1c Laboratory Test

Glycated hemoglobin (HbA1c level) was chosen as our key
clinical outcome because higher HbA1c levels have been
associated with more complications and poorer health outcomes
[27]. HbA1c level provides a picture of average blood glucose
level over a period of months. Patients had blood drawn within
7 days of the study’s launch to assess baseline HbA1c level and
90 days later to determine postintervention HbA1c (post HbA1c)
levels. Given the 1-month recruitment span, there was variability
in the dates on which HbA1c levels were measured. HbA1c values
of participants were measured at Daqing Hospital as part of the
study, and researchers collected these lab values for analysis.

Questionnaire Design
The baseline questionnaire was prepared in two languages,
English and Chinese, using a semantic translation technique.
The content validity of this instrument was assessed by an
endocrinologist and also by type 2 diabetic patients to ensure

that the questions were appropriate and relevant in the current
Chinese setting and culture. The questionnaire items included
demographic information (age, gender, education, BMI, and
time since diagnosis), measures of health behaviors and
attitudes, and a personality inventory.

Personality was assessed with the previously developed Chinese
version of the Ten-Item Personality Inventory [28], a widely
used, brief measure of the big five personality traits; it has two
items per dimension, with each item consisting of a pair of
adjectives. Half of the items represent the positive pole of the
given dimension and the other half represent the negative pole.
Participants rated each item on a 7-point Likert scale, ranging
from 1 (disagree strongly) to 7 (agree strongly). A total score
for each dimension was generated by transforming the scores
of the negative pole items (reverse-scored items), then
computing the averaged dimension score. Higher scores
indicated a higher level of that personality dimension.

Statistical Analysis
All analyses were performed with Stata MP (version 15.1;
StataCorp LLC) software. Given our research questions, we
had three outcome variables of interest: adoption preference
(nonadopters=0, adopters=1), app active utilization (dropouts=0,
active users=1), and health outcome (ΔHbA1c= post HbA1c level
– baseline HbA1c level).

We conducted binary logistic regression analyses to determine
the association of personality traits with mHealth adoption
preference and active utilization. To address our first research
question, all patients who agreed to participate in the study were
included. To address the second question, the subset of patients
who actually used the mHealth app were used in the analysis.
An analysis of variance was used for numerical variables and
chi-square tests were used for categorical variables to compare
the differences between the three types of participants after three
months: active users, dropouts, and nonadopters. We also
conducted multiple linear regression to explore the relationship
between the amount of app usage (number of days per week)
and ΔHbA1c for adopters. Analyses included several covariates
as well as the five personality traits of interest.
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Results

Participant Classification and Summary
Based on app usage (average days per week) for each participant
(see Multimedia Appendix 1), we defined participant categories
as shown in Table 1. Of the patients who agreed to participate
(N=98), 58% (57/98) initially indicated their willingness to
download and use the app; however, 11 patients never used the
app. Nonadopters, therefore, included patients who were not
willing to use the app and patients who never used the app even
if they initially indicated a willingness to do so. Adopters

included dropouts (those who initially used the app, but then
became inactive later on) and active users. As defined in Table
1, if an app user did not continue to use the app past the first
two months, we regarded that user as a dropout. Users who kept
using the app until the third month, were defined as active users.
Active users were further divided into 2 groups: low-frequency
users (whose weekly average app usage was less than 3.5 days)
and high-frequency users (whose weekly average app usage
was greater than 3.5 days). Detailed demographics for
participant subcategories are shown in Multimedia Appendix
2.

Table 1. Definitions of participant categories.

DefinitionnCategories and subcategories

All patients willing to participate in the project.98Participants

All patients who indicated willingness to use the app at the beginning of the project.57Intention to usea

52Nonadopters

Patients who were not willing to use the app at the beginning of the project.41No intention to use

Patients who indicated willingness to use the app, but then did not use it at all.11With intention but never used

46Adopters

Patients who used the app, but did not continue use the app in the third month.23Dropouts

Patients who continued to use the app into the third month.23Active users

Patients whose average weekly app usage was less than 3.5 days14Low-frequency

Patients whose average weekly app usage was more than 3.5 days9High-frequency

aIncludes Nonadopters: With intention but never used, and Adopters.

App Adoption Preference Among Diabetic Patients
and Association With Personality Traits
Table 2 presented the results of the binary logistic regression
analyses associating app adoption with sociodemographic and
personality traits among diabetic patients. Relatively younger
patients with diabetes (mean 56.07, SD 9.06 years) had 9%
higher odds of trying the app (P=.02, odds ratio [OR] 0.91, 95%
CI 0.85-0.98) compared to the odds of older patients with
diabetes (mean 62.04, SD 8.04 years). Diabetic patients who
were less extraverted had 29% higher odds of trying the app
(P=.04, OR 0.71, 95% CI 0.51-0.98) compared to the odds of

those who were more extraverted. At the same time, diabetic
patients who were more open to experience had 73% higher
odds of adopting use of the app (P=.03, OR 1.73, 95% CI
1.07-2.80) compared to the odds of those who were less
openness. Gender (P=.43, OR 0.66, 95% CI 0.23-1.88),
education (senior: P=.99, OR 1.00, 95% CI 0.32-3.11; higher:
P=.21, OR 2.51, 95% CI 0.59-10.66), and baseline HbA1c level
(P=.36, OR 0.79, 95% CI 0.47-1.31) were not associated with
app adoption. Ordered logistic regression for all participants,
which had 5 ordered levels ranging from no intention to use to
high-frequency users, also provided similar results and can be
found in Multimedia Appendix 3.
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Table 2. Logistic regression for personality traits associated with adoption preference.

Logistic regression modelParticipants (N=98)Variables

P value95% CIORaβAdopters (n=46)Nonadopters (n=52)

.020.85-0.980.91–0.0956.07 (9.06)62.04 (8.04)Age (years), mean (SD)

Gender, n (%)

.430.23-1.880.66–0.4214 (30)23 (44)Female

N/AN/AN/AN/Ab32 (70)29 (56)Male

Education, n (%)

N/AN/AN/AN/A10 (22)23 (44)Primary/junior

.990.32-3.111.000.00119 (41)24 (46)Senior/vocational

.210.59-10.662.510.9217 (37)5 (10)Higher/university

.130.74-1.040.87–0.1325.64 (3.27)25.95 (3.15)BMI (kg/m2), mean (SD)

.300.97-1.111.040.049.02 (7.02)9.52 (8.72)Time since diagnosis (years), mean (SD)

.360.47-1.310.79–0.247.14 (0.96)7.17 (1.05)Baseline HbA1c (%), mean (SD)

Personality traits, mean (SD)

.040.51-0.980.71–0.344.01 (1.81)4.97 (1.52)Extraversion

.700.55-1.500.91–0.105.23 (1.15)5.14 (1.12)Agreeableness

.610.74-1.671.110.114.86 (1.32)4.42 (1.19)Conscientiousness

.350.82-1.771.200.184.51 (1.52)4.29 (1.41)Emotional stability

.031.07-2.801.730.554.72 (1.30)3.99 (1.06)Openness

.088.51Constant

<.00134.1 (12)Chi-square (df)

aOR: odds ratio.
bN/A: not applicable.

Relationship Between Personality Traits and App
Usage Among Diabetic Patients
Table 3 presented the relationship between personality traits
and app usage. The results showed that a lower education
level—specifically, participants who completed primary school
compared to those who had a vocational (senior) or university
(higher) education—was associated with greater odds of active

app utilization (senior versus primary P=.003 and higher versus
primary P=.03). Higher openness (P=.048, OR 2.01, 95% CI
1.01-4.00) was also significantly associated with greater active
utilization. We found similar results by using the amount of app
usage (number of days per week) as an outcome variable to
conduct ordinary least squares linear regression in Multimedia
Appendix 4, and by ordered logistic regression in Multimedia
Appendix 5.
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Table 3. Logistic regression for personality traits associated with active utilization.

Logistic regression modelAdopters (n=46)Variables

P value95% CIORaβActive users (n=23)Dropouts (n=23)

.450.93-1.171.040.0457.17 (9.80)54.96 (8.76)Age (years), mean (SD)

Gender, n (%)

.750.17-11.411.400.347 (30)7 (30)Female

N/AN/AN/AN/Ab16 (70)16 (70)Male

Education, n (%)

N/AN/AN/AN/A9 (39)1 (4)Primary/junior

.0030.001-0.220.01–4.435 (22)14 (61)Senior/vocational

.030.003-0.600.04–3.149 (39)8 (35)Higher/university

.410.66-1.190.88–0.1225.31 (3.49)25.96 (3.08)BMI (kg/m2), mean (SD)

.570.91-1.181.040.049.39 (7.11)8.65 (7.07)Time since diagnosis (years), mean (SD)

.580.50-3.401.310.277.25 (0.96)7.03 (0.97)Baseline HbA1c (%), mean (SD)

Personality traits, mean (SD)

.230.38-1.270.69–0.373.70 (1.70)4.33 (1.90)Extraversion

.250.68-4.521.750.565.26 (1.28)5.20 (1.04)Agreeableness

.920.46-2.401.050.064.94 (1.26)4.78 (1.41)Conscientiousness

.620.44-1.630.85–0.174.28 (1.59)4.74 (1.44)Emotional stability

.0481.01-4.002.010.704.98 (1.41)4.46 (1.16)Openness

.77–2.71Constant

.0223.5 (12)Chi-square (df)

aOR: odds ratio.
bN/A: not applicable.

mHealth App Usage and Patient Health Outcomes
Because some patients did not have their final HbA1c level
measured, Table 4 reports descriptive statistics and differences
among categories for retained participants after 3 months. Active
users showed a greater decrease in HbA1c level (ΔHbA1c=–0.64,
P=.05) than those shown by users in the other groups. We also
observed an unexpected decrease in HbA1c level for nonadopters
and increase in HbA1c level for dropouts. We observe similar
connections between extraversion and openness and health

outcomes as we did for overall app adoption—less extraverted
participants and those who were more open to experience were
more likely to experience a decrease in HbA1c level.

Next, we used linear regression to test the relationship between
the amount of app usage (number of days per week) and ΔHbA1c

among adopters (Table 5). We found that if app users increased
their usage by ten days, their HbA1c level decreased 0.20 points
(β=–0.02, P=.02) under controlled covariables. More detailed
comparisons among all categories are shown in Multimedia
Appendix 6.
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Table 4. Descriptive statistics after 3 months and the differences among categories (N=66).

P valueF2,63
a or chi-

square (df)b

Active users (n=19)Dropouts (n=13)Nonadopters (n=34)Variables

.0026.8a58.11 (9.98)53.23 (9.33)63.4 (7.96)Age (years), mean (SD)

.700.7 (2)bGender, n (%)

6 (32)4 (31)14 (41)Female

13 (68)9 (69)20 (59)Male

.00217.1 (4)bEducation, n (%)

6 (32)1 (8)15 (44)Primary/junior

4 (21)6 (46)17 (50)Senior/vocational

9 (47)6 (46)2 (6)Higher/university

.361.1a25.06 (3.68)26.72 (3.47)26.21 (3.30)BMI (kg/m2), mean (SD)

.890.1a8.90 (6.95)8.08 (7.71)9.32 (8.19)Time since diagnosis (years), mean (SD)

Personality traits, mean (SD)

.033.8a3.66 (1.67)4.81 (1.38)4.47 (1.41)Extraversion

.480.8a5.39 (1.21)5.00 (0.89)5.03 (1.67)Agreeableness

.570.6a4.89 (1.22)4.54 (1.41)4.53 (1.22)Conscientiousness

.780.2a4.36 (1.67)4.62 (1.49)4.26 (1.49)Emotional stability

.014.5a5.03 (1.43)4.69 (0.88)4.04 (1.13)Openness

.640.5a7.14 (0.89)6.93 (0.89)7.22 (1.07)Baseline HbA1c (%), mean (SD)

.181.7a6.49 (0.95)7.01 (0.81)6.97 (1.22)Post HbA1c (%), mean (SD)

.0503.1a–0.64 (0.86)0.08 (0.78)–0.25 (0.82)ΔHbA1c (%), mean (SD)

aF test was used for numerical variables.
bChi-square was used for categorical variables.
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Table 5. Model estimates predicting ΔHbA1c for adopters (n=32).

P valuet testSEβVariables

.111.690.020.03Age

.17–1.440.47–0.68Female vs male

Education

.301.070.490.52Senior vs Primary

.231.240.460.57Higher vs Primary

.520.650.050.03BMI

.76–0.310.02–0.01Time since diagnosis

.08–1.870.17–0.32Baseline HbA1c

Personality traits

.87–0.170.12–0.02Extraversion

.660.440.200.09Agreeableness

.16–1.460.16–0.23Conscientiousness

.40–0.860.12–0.10Emotional stability

.121.620.140.23Openness

.02–2.580.01–0.02Days of app usage

.94–0.073.20–0.24Constant

0.65Active utilization

.032.5F 13,18

Discussion

Principal Results
This study suggested a relationship between individual
characteristics and mHealth app use (adoption and active
utilization) in patients with diabetes. We found that patients
with diabetes who were relatively younger, less extraverted,
and more open to experience were more likely to adopt use of
the mHealth self-management app. In addition, education level
and openness to experience were associated with active
utilization of the app. Finally, active users were also associated
with better clinical outcomes than those of dropouts.

Comparison With Prior Work
Our finding that relatively younger patients were more likely
than older patients to try to adopt the app was in agreement with
previous studies [29,30] which found that older adults were less
likely to adopt new technology. Older people reported that they
do not go online for various reasons including cost, lack of
skills, lack of interest, and concerns about information security;
however, once older adults did get online, they were just as
enthusiastic as younger users [31]. This was also consistent with
our own findings, as age was negatively associated with initial
adoption, but not with actual use once adopted. In contrast to
the outcomes suggested by prior research [32,33], we
unexpectedly found that gender, education, and baseline HbA1c

were not associated with app adoption.

We also found that mHealth app users with lower education
levels may have been less likely to drop out. Low education
levels have been associated with inadequate health literacy

[34,35], which, in turn, has been associated with lower
diabetes-related knowledge and lower engagement in mobile-
and web-delivered self-care interventions [36]. This finding
may therefore seem surprising; however, Paasche-Orlow et al
[37] argued that patients with low health literacy may have
difficulty acquiring self-management skills, but once these skills
are acquired, they may follow directions more readily than those
with higher literacy [37]. In line with this reasoning, our
mHealth app provided diabetes self-management educational
resources, which may have enabled patients with low education
to learn more about diabetes management skills and may have
encouraged app usage more than it did for those who already
possessed diabetes self-management knowledge [38].

Our results also suggested that extraverted patients with diabetes
were less likely to adopt the app, despite the fact that it
incorporated and emphasized social features. This may possibly
be explained by the fact that the study focused on motivating
long-term and continuous self-management, which may not
fulfill the social desires of extraverts. Compared to extraverts
who prefer to meet friends or participate in social activities to
get health support, introverted people may be more likely to
use the mHealth app instead of a social network app for this
purpose [19]. In fact, a previous study [39] found a similar
pattern in which higher extraversion in students was associated
with a preference for face-to-face mental health services over
eHealth services.

The positive association between openness to experience and
patient engagement in mHealth was consistent with the results
of previous research [21] on technology adoption. High openness
to experience is reflected in curiosity and novelty-seeking—open
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individuals are willing to try new and different things, are
willing to actively seek out new and varied experiences, and
value change [15]. At the same time, some research has also
found that openness plays an important role in promoting healthy
behavior and lowering mortality for patients with chronic disease
[40,41]. While mechanisms underlying these findings are not
well understood, they are consistent with the notion that
openness should be associated with the adoption of novel
self-management tools [21] and associated with better health
behavior adherence [22]. This means that people more open to
experiences may be more likely to adopt and actively use an
mHealth app for diabetes management.

The analysis of our findings showed that conscientiousness,
agreeableness, and emotional stability did not have a significant
relationship with acceptance of the mHealth app. Of particular
note, conscientiousness, which reflects self-discipline, did not
have a significant role in active app use, which was inconsistent
with results of a previous study focusing on a weight loss app
[23]. This unexpected finding underscored the need for future
research, but differences could be attributed to different
population characteristics. Perhaps, our study’s sample of older
participants had less prior experience with mHealth apps;
therefore, open-mindedness was an especially important
predictor of app adoption and active use. There have also been
studies [42] suggesting that conscientious patients were more
likely to fulfill tasks in accordance with existing strategies,
whereas using new technologies could be viewed as more
time-consuming and complex than the traditional methods they
already use.

Lastly, our pilot study offered support that mHealth improved
clinical outcomes of patients with diabetes. This reduction was
on the magnitude of a 0.6-point reduction in HbA1c level, which
was sizable considering the relatively short intervention period;
however, we also noticed that the HbA1c level of participants
who dropped out increased while the HbA1c level of nonadopters
who never used the app decreased, even though there was no
significant difference between the two groups. This may be
related to other differences between dropouts and nonadopters;
patients with good daily self-management behavior may be less
interested in adopting the mHealth app. Meanwhile, patients
who had poor self-management behavior may have started using
the app to improve their health, yet may not have continuously
used the app or followed its guidance, and their HbA1c level
may have increased or remained constant. Because this study
was not randomized, readers are cautioned against interpreting
the results as causal.

Implications
To the best of our knowledge, this is the first empirical paper
to investigate how different personality traits influence the
adoption and the active utilization of an mHealth app

intervention for patients with diabetes. Our research extends
the literature on the adoption of mHealth apps and active
utilization to improve diabetes management by exploring the
role of personality traits. This work has implications for app
designers and practitioners who can leverage this knowledge
to target individuals who are most likely to succeed. For
instance, patients who are less extraverted and more open to
experience may find an app-based intervention the most
appealing and effective. With the development of machine
learning models, then, an app designer may be able to predict
mHealth app user personality traits using easily accessible data
and in real time [43,44]. Consequently, designers and
practitioners can create or administer personalized mHealth
services in a way that enhances patient engagement with helpful
apps and which ultimately improves their lifestyle and health.

Limitations
Caution must be shown in generalizing the findings of this work
because it has several limitations, but these limitations also
provide opportunities for future research. First, the study used
a nonrandomized experimental design in which only those who
indicated their willingness to use the mHealth app were placed
in the intervention group. While this allowed us to answer
research questions about mHealth adoption preference, it made
assessment of app efficacy more challenging. In future, a hybrid
preference–randomized controlled trial [45] would enable
examination of both questions. Second, although all participants,
no matter which intervention they chose, were told that those
who decrease their HbA1c level during the 3-month period would
receive a gift as an incentive, we cannot exclude the possibility
that this incentive may have influenced the efficacy of the
mHealth app intervention. Building on the encouraging findings
from this pilot, future studies may use more rigorous research
designs to address this potential impact. Third, as a pilot study,
the sample was relatively small in size and came from one
hospital in one city. Increasing and diversifying the sample size
would provide more confidence that these results are
generalizable.

Conclusions
Although there has been some research about how personality
traits impact the use of new technology, there is relatively little
that focuses on understanding the impact of individual
characteristics, including personality traits, on mHealth app
adoption and active utilization among diabetic patients. Our
pilot study has made a strong start in addressing this gap by
extending the mHealth literature. The study revealed that
diabetic patients who are relatively young, introverted, and open
to experience were interested in and willing to use the app.
Moreover, active use of the app was associated with greater
improvements in blood glucose level control. These research
findings may have practical effects on the future development
of mobile health apps for patients with diabetes.
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