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Abstract

Background: Asthe mobile environment has devel oped recently, there have been studies on continuous respiration monitoring.
However, it is not easy for general users to access the sensors typically used to measure respiration. There is also random noise
caused by various environmental variables when respiration is measured using noncontact methods in a mobile environment.

Objective: In this study, we aimed to estimate the respiration rate using an accel erometer sensor in a smartphone.

Methods: First, datawere acquired from an accel erometer sensor by a smartphone, which can easily be accessed by the general
public. Second, an independent component was extracted to calibrate the three-axis accelerometer. Lastly, the respiration rate
was estimated using quefrency selection reflecting the harmonic component because respiration has regular patterns.

Results: From April 2018, we enrolled 30 male participants. When the independent component and quefrency selection were
used to estimate the respiration rate, the correlation with respiration acquired from a chest belt was 0.7. The statistical results of
the Wilcoxon signed-rank test were used to determine whether the differences in the respiration counts acquired from the chest
belt and from the accel erometer sensor were significant. The P value of the difference in the respiration counts acquired from the
two sensors was .27, which was not significant. This indicates that the number of respiration counts measured using the
accelerometer sensor was not different from that measured using the chest belt. The Bland-Altman resultsindicated that the mean
difference was 0.43, with less than one breath per minute, and that the respiration rate was at the 95% limits of agreement.

Conclusions: There was no relevant difference in the respiration rate measured using a chest belt and that measured using an
accelerometer sensor. The accelerometer sensor approach could solve the problems related to the inconvenience of chest belt
attachment and the settings. It could be used to detect sleep apneathrough constant respiration rate estimation in an internet-of-things
environment.

(IMIR Mhealth Uhealth 2020;8(8):€17803) doi: 10.2196/17803
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: information for health management, it is important to monitor
Introduction biosignals constantly [1,2]. Among biosignals, respiration is
Background the easiest to measure and provides various types of information

about health management based on a number of respiration
parameters and respiration patterns [2]. Respiration data
collected in daily life can be used as a headth care index

Owing to the rapid recent development of mobile medical
monitoring, an increasing number of people desire to manage
their health through health care servicesin daily life. To provide
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involving factors such as feedback for sleep apnea syndrome
and other issues [3]. In addition, patients could discover
abnormalities early through constant monitoring outside of
medical facilities and thereby prevent dangerous escalation of
their issues [4].

Currently, the sensors used to measure respiration are for
medical and experimental use, so they are not easily accessible
for general users and their prices are high [5]. In addition, they
are of the contact type, requiring usersto attach multiple sensors
to the body, which makes them difficult to adopt and difficult
to use for constant measurement of respiration [6]. To solve
these problems, there have been studies on methods to measure
respiration using devices such as accel erometers, radar sensors,
and thermal cameras [6]. For use with such noncontact
monitoring equipment, smartphones allow easy accessibility
for general users and integrate easily with mobile monitoring
environments [7]. For these reasons, in this study, the number
of respirationswas cal cul ated using datafrom an accel erometer
sensor passed to a smartphone, which was suitable for
monitoring the respiration rate in daily life.

The accelerometer sensor has three axes and has sensitivity
related to the degree of inclination and to the direction in which
it is resting [8]. Therefore, axial correction is required to use
the values from the accelerometer sensor. The typical method
for axia correction is to calculate the root sum square of the
magnitude[9]. Other methodsinclude the use of the mean along
the z-axis, the magnitude of each axis, the calculation of
correlation, and the cal culation of the average of peak frequency
[10]. However, these methods have limitations for removing
the uncertainty inherent with accelerometer sensors when they
are used in an indoor environment.

There are several methodsto estimate respiration. In particul ar,
respiration has been analyzed in the frequency domain using
general fast Fourier transform (FFT) and short-time Fourier
transform (STFT) [11]. Sincerespirationisquasi-periodic [12],
the dominant component could be found using FFT and STFT.
However, when noiseis caused from situations, such as power
lines and movement, it changes the dominant frequency
component [13]. Additionally, after filtration to divide the
freqguency domain, the number of respirations has been
calculated using correlation analysis of filtered respiration signal
peak number counters, a Wiener filter, and autocorrelation
[11,14-16]. The Wiener filter estimates the signa through
assumption of the noise spectrum. When sensors are attached
to the body of a subject, the Wiener filter is frequently used to
remove body movement [14]. This preprocessing method is
difficult to use for measuring respiration accurately owing to
its sensitivity to noises. In particular, when respiration is
measured with the noncontact method in amobile environment,
various environmental noises occur. Autocorrelation separates
the signal and noise. The correlation of asignal can be estimated
using a lagged dependent variable [15]. However, it has
limitations because respiration is exactly periodic. To solve the
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problem, we used quefrency selection. A respiration signa is
a harmonic component because of its quasi-periodic
characteristic. Additionally, asearch range related to respiration
is set to minimize any noise component.

Objectives

An accelerometer sensor in a smartphone was used because it
is one of the representative internet-of-things (10T) devices. To
reduce the uncertainty caused by external noise, the vector by
which the accelerometer sensor independence is maximized
was calculated using independent component analysis (ICA).
In addition, respiration has regular patterns, so the respiration
rate was estimated using quefrency selection reflecting harmonic
information. The respiration rate with the suggested method
and the respiration rate with the gold standard using arespiration
belt were compared to evaluate significance. When the
accelerometer sensor in a smartphone is used as an loT
environment, data can be acquired at various locations.
Additionally, the specification of the accelerometer sensor is
different according to the smartphone device. For this problem,
a case study was performed to determine the difference
according to location and smartphone. The aim of the study was
to estimate the respiration rate based on | CA of an accel erometer
Sensor.

Methods

Data Acquisition

Before data acquisition, recruitment notices were posted on a
notice board. Only if asubject agreed to the research, the subject
joined the study. Additionally, subjects who were likely to
participate in this study were not excluded based on social and
economic conditions. The study did not register vulnerable
subjects. Before recruiting the subjects, the subjects provided
information about their health status, medications, and diseases.
Subjects who did not have mental or physical diseases joined
the experiment.

Thisisasingle-arm intervention study without a control group
and without randomization. Data acquisition was performed in
acontrolled environment by the laboratory. Each subject signed
awritten consent form prior to the experiment. The respiration
signal was collected while the subject reclined on a bed.

The device used to measure respiration was the accelerometer
sensor of the Samsung Galaxy S8 smartphone, and nonlinear
sampling was performed at an average of 500 Hz. Respiration
signals from a chest belt were measured at the same time as
actual respiration signals for comparison with the respiration
signals calculated using the accelerometer sensor. Respiration
measured from the chest belt was sampled at 500 Hz using
BIOPAC MP 150TM equipment. As shown in Figure 1, the
accelerometer sensor was located near the left shoulder of the
subject, and the chest belt was secured across the chest.
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Figure 1. Experimental environment. Solid-line box: Samsung Galaxy S8 accelerometer sensor; dashed-line box: chest belt.

| CA-Based Accelerometer Calibration

The accelerometer sensor of Samsung Galaxy S8 hasanonlinear
sampling rate. To convert this to fixed sampling, time-stamp
and accelerometer sensor values were stored simultaneously.
Figure 2 shows the process for conversion of the rate of

Figure 2. Processing for fixed sampling.

sampling by the accelerometer sensor. The stored original data
were up-sampled at 1000 Hz, and missing valueswerefilled in
using the same values measured at the previous time stamp.
Thefilled-in missing datawere down-sampled again at 500 Hz,
which is the same sampling rate used with the original data.

Original Data Up-sampling (1000 Hz) & Filling Down-sampling {500 Hz)
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The data measured using the accelerometer sensor contained
not only respiration data but also data of various signals, such
as motion and external noises. Among these, respiration
appeared in the frequency spectrum at less than 0.4 Hz. Thus,
respiration signal swere preprocessed through a0.4-Hz | ow-pass
filter [17].

When an accelerometer sensor is used in an [oT environment,
a variety of noises exist in the environment. In addition to
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respiration, these various noise sourcesin the environment were
also measured (and mixed into the data) by the accel erometer
sensor. Therefore, the respiration signals were separated using
ICA. Because the origina ICA signals were created by other
physical processes, it was assumed that they have independent
and irregular distributions [18]. Figure 3 presentsthe | CA model
used to distinguish respiration and the signals of the various
sources being measured by the accelerometer. It shows the
process of separating the sources by estimating U.
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Figure 3. Independent component analysis model for respiration separation.
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The separation of sources was calculated using equations 1-3.
Equation 1 showsthe measured signal (A). Thissigna (A) shows
the vector measured from the three-axis accelerometer sensor
according to time (t) and has the value (3 x [sr x t]), where sr
is the sampling rate. In this study, the sampling rate was 500
Hz. To separate the original signals of the accelerometer sensor,

equations 2 and 3 were used. Inthiscase, U = W tisthe mixing
matrix, S is the original source, and X = S is the estimated
separated source [18].

a, (1) a,2) - alsrxt)
A=lay(1) a,(2) a,(sr xt) (1
a (1) a.(2) ag(sr xt)
A= WS @
X=Ua @)

Quefrency Sdection for Respiration Rate Estimation

Respiration is aregular signal, so it is possible to estimate the
respiration rate through the estimation of the interval measured
by the accelerometer sensor.

For detection of the regularity of X, a cepstrum was used. The
cepstrum was cal culated through inverse Fourier transform. In
thisway, the harmonic component of signals could be acquired
[19,20].
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Equation 4 was used for the quefrency selection, which is the
harmonic component of X, and the term CA5 peax 1S the point
where the maximum peak of the cepstrum of X appears[21]. It
is needed to set the search range related to respiration. The
respiration-related search range defines searching point (SP).
To spot the maximum peak dependent on the respiration signal
SP, SP was designated using equation 5. The term RRy. shows
the respiration rate per second, and SP was designated as
(1251-6000) using equation 5.

QS = CAmax pear[5P] @

SP = sr/RR,.. (5)

In addition, whether the second harmonic exists is detected
through the harmonic component adjacent to the search point.
The respiration rate was estimated according to the existence
of the second harmonic, and RR;,, the number of respirations

per minute, was calculated using equation 6 [21].
RRpin(period/min) = (sr x 60)/Q5 (6)

Figure 4 shows a diagram displaying how to estimate the
respiration rate. The filtered signals from the accelerometer
sensor were separated based on ICA. The independent
component analyzed using cepstrum and selected the maximum
point at the range related to respiration.
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Figure 4. Diagram for respiration rate estimation. ICA: independent component analysis.
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Results

Data Overview

The study was approved by the Institutional Review Board of
Yonsel University health system (IRB number: 4-2018-0411).
From April 2018, we enrolled 30 mal e participants. Among the
subjects, the mean age was 26.67 (SD 2.41) years, mean height
was 173.8 (SD 5.33) cm, and mean weight was 74.43 (SD 9.52)
kg.

Comparison With the Accelerometer Calibration
Method

For analysis of the method presented in this study, the signals
acquired from the chest belt were used as the standard. The
chest belt signals were segmented with 1-minute epochs, and
the number of respirations per minute was calculated by
counting the number of maximum peaks. This study presents
an accelerometer calibration method using ICA to extract the
original signals from the accelerometer sensor.

For assessment of the method presented here, the Pearson
correlation (Pearson r) was used. With Pearson r, the correlation
of the number and size of respirations calcul ated from the actual
respiration countsand | CA calibration was determined. Because
riscloseto-1or1,itisvery similar totherea respiration rate.
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The ICA methods proposed for accelerometer calibration of
each axis, theroot sum square (RSS) of each axis, and principal
component analysis (PCA) methods (which were used
previously) were verified using Pearson r. Each axisis affected
by tilting and direction [8]. Since the signal is acquired while
the subject and smartphone are set on the bed, it is important
to confirm which axisis more sensitive after preprocessing such
as filtering. If one axis is correlated with respiration, the axis
has to be selected to reduce calculation. The RSSis calculated
using the square root sum of each axis, and it isfrequently used
for calibration of the accelerometer sensor [9]. PCA is similar
to |CA asone of the dimension reduction methods. It finds new
principal axes while preserving the variance and transforms
datafrom ahigh-dimensional spaceto alow-dimensional space
without linear correlation [22].

Figure 5 shows Pearson r skeletal box-and-whisker plots for
respiration rate estimation according to each calibration method.
In the skeletal box-and-whisker plots, thered lineisthe median,
and the skeletal box isrepresented from thefirst to third quartiles
of Pearson r. The minimum and maximum of Pearson r without
outliers are shown as whiskers with end caps [23]. When
calibrated with ICA, it has the highest correlation (0.7). In
addition, ICA has alower difference in the range between the
maximum and minimum values compared with other values,
so the result with it is more stable than those with other
calibration methods.
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Figure5. Skeletal box-and-whisker plot according to the calibration method. |CA: independent component analysis; PCA: principal component analysis;

RSS: root sum square.
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In this study, statistical evaluation was performed on whether
the ICA calibration presented with the use of the Pearsonr value
was significant compared with other methods (x-axis, y-axis,

z-axis, RSS, and PCA). Prior to statistical evaluation, visual

regularity verification was performed using a quantile-quantile
plot. When identified using aquantile-quantile plot, al the data
were hard to consider as linear, so a nonparametric test was

R&5=0.35 PCA=0.50 ICA{sugeest)=0.70
performed. Because significance was evaluated according to
each method using the same subjects, a Wilcoxon signed-rank
test was used. Table 1 presents the statistical results of the
Wilcoxon signed-rank test. The Pearson r of therespiration rate
estimation according to the ICA method was significant
(P<.001) compared with the other methods.

Table 1. Statistical evaluation of the calibration method using the Wilcoxon rank-sum test.

Method W z P value
X-axis 647 -3.95 <.001
y-axis 635 -4.13 <.001
z-axis 533 -5.64 <.001
RSS? 567 -5.14 <.001
PCAP 713 -2.98 .003

8RSS: root sum square.
bpCA: principal component analysis.

Comparison With Conventional Algorithms

After the accelerometer sensor was calibrated using ICA,
conventional methods to extract the respiration rate estimation
and the proposed quefrency selection method were verified
using Pearson r. The compared conventional methods were
processed with filtering of the acquisition data. Therewerethree
methods as follows: peak count, spectral peak transition, and
autocorrelation. In the three compared methods, the peak count
determinesthe peaksfrom the ICA calibration data. To estimate
the respiration dominant frequency, the highest spectral peak
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transition is selected using FFT. The selected spectral peak
transition showsthe signal period. Autocorrelationiscalculated
using correlation with the lagged values [15].

Figure 6 shows Pearson r skeletal box-and-whisker plots for
the respiration rate estimation according to each conventional
method. When the respiration rate was estimated by quefrency
selection, it was determined to have the highest correlation value
(0.7). In addition, therewaslittle difference in the range between
the maximum and minimum values compared with other
methods, so it was more stable than other conventional
algorithms.
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Figure 6. Skeleta box-and-whisker plot according to the conventional algorithm. AC: autocorrelation; PC: peak count; SP: spectral peak transition.
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In this study, statistical evaluation was performed to determine
whether the quefrency selection presented with use of the
Pearson r value was significantly different from the other
methods (peak count, spectral peak transition, and

autocorrelation). The statistical results of the Wilcoxon
signed-rank test in Table 2 show that the respiration rate
estimation by the quefrency sel ection method has more rel evant
results.

Table 2. Statistical evaluation of conventional algorithms using the Wilcoxon rank-sum test.

Method w z P value
Peak count 521 -5.82 <.001
Spectral peak transition 680 -3.47 <.001
Autocorrelation 774 -2.08 .04

Comparison With the Chest Belt

Table 3 shows the results from comparing the average
respiration count per minute acquired using the chest belt
(RRy,gp) With that acquired using the accelerometer sensor
(R Rsy) for each subject. The difference in the respiration rate
per minute between the two sensors was at the most two times
the respiration count. When the peaks were counted using the
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chest belt, a peak counting error occurred with the respiratory
waveforms of a half cycle at the first and the last respiration.
On the other hand, the quefrency selection was independent in
respiratory waveforms of a half cycle, so errors were reduced
in the detection of the respiration rate. Table 3 shows that there
was no significant difference in the performance of respiration
rate estimation between the accelerometer sensor and the chest
belt (W=842, z=-1.11, P=.27).
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Table 3. Results of respiration rate estimation.
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Number RR gt 2 RR g b Difference
1 15 17 2
2 18 18 0
3 16 16 0
4 16 17 1
5 17 17 0
6 18 18 0
7 16 15 1
8 18 18 0
9 17 19 2
10 18 20 2
11 17 18 1
12 15 16 1
13 17 18 1
14 16 17 1
15 18 20 2
16 16 16 0
17 15 15 0
18 15 17 2
19 16 16 0
20 16 17 1
21 17 16 1
22 16 15 1
23 17 16 1
24 16 16 0
25 15 16 1
26 16 17 1
27 15 15 0
28 18 18 0
29 17 16 1
30 17 17 0

8RRyt average respiration count per minute acquired using the chest belt.

bR.R%t: average respiration count per minute acquired using the accelerometer sensor.

In addition, the statistical results of the Wilcoxon signed-rank
test were used to determine whether the differences in the
respiration count acquired from the chest belt and from the
accelerometer sensor were significant. The P value of the
differencein the respiration count acquired from the two sensors
was .27, which was not significant. This indicates that the
number of respiration counts measured using the accelerometer
sensor was not different from that measured using the chest
belt. Therefore, it ispossible to use an accelerometer sensor for
estimation of the respiration rate, instead of a chest belt.

A Bland-Altman analysis was performed to evaluate the
performance of respiration rate estimation from the
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accelerometer sensor compared with the respiration belt. The
Bland-Altman analysis showed a correlation between the
accelerometer sensor and respiration belt (Figure 7A). Figure
7B showsthe Bland-Altman resultsfor the mean difference and
the bias of the 95% confidence interval [24]. In Figure 7, the
correlation coefficient was 0.7. The Bland-Altman results
indicate that the mean difference was 0.43, with less than one
breath per minute, and that the respiration rate was at the 95%
limits of agreement. The accelerometer sensor could produce
results ranging from a 2.3 breaths per minute overestimation to
1.5 breaths per minute underestimation.
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Figure 7. Bland-Altman results between the respiration belt and accelerometer sensor. R.Req: average respiration counts per minute acquired using
the accelerometer sensor; R Ryqt: @verage respiration counts per minute acquired using the chest belt.
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Case Study

Here, Loc, is the case in which the smartphone was located
next to the left shoulder of the subject and Locyy,, is the case
in which it was located under the left foot. Table 4 shows the

Table 4. Results of respiration rate estimation by location.

- 2.3 (+1.96 5D)
=
e
:l_":
g
= 0.43
__ ._'| ] [ ] ]
o
r - s C
; -1.5 [-1.965D)
B2 e
i .
- 18 17 13 15 20

ih
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results of respiration estimation according to location. The
difference in respiration count per minute by location was at
minimum zero times and at maximum one time. In most cases,
no differencein the respiration count occurred, which indicates
that the quefrency selection method using an accelerometer
sensor haslow sensitivity to location (W=97, z=—0.65, P=.52).

Number Loc o2 LOC gown © Difference
1 17 17 0
2 18 19 1
3 15 15 0
4 16 17 1
5 16 15 1
6 16 16 0
7 18 18 0
8 17 17 0
9 18 18 0
10 17 17 0

aLocup: smartphone is located next to the left shoulder.
bLocdc,\,\,n: smartphone is located under the |eft foot.

In Figure 8, the correlation coefficient is 0.93. The
Bland-Altman results indicated that the mean difference was
0.1, with lessthan one breath per minute, and that the respiration
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rate was at the 95% limits of agreement. The accelerometer
sensor could produce results ranging from a 1.2 breaths per
minute overestimation to 1.0 breath per minute underestimation.
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Figure 8. Bland-Altman resuilts according to sensor location. Locggyn: Smartphone is located under the left foot; Loc,,: smartphone islocated next to

the left shoulder.
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There is a difference in the accelerometer sensor of different
types of smartphones. Therefore, to identify the difference
according to thetype of smartphone, acase study was performed
in 10 subjects. The smartphones used for the case study were
Samsung Galaxy S8 (smartphone 1) and Samsung Galaxy S7
(smartphone 2). Table 5 shows the results of respiration rate
estimation using each smartphone. The difference in the
respiration count per minute for each smartphone type was at
minimum zero timesand at maximum onetime, which indicates
that there was no relevant difference in the results with these
two smartphones.

Table 5. Results of respiration rate estimation by smartphone.

1.2 (+1.96 5D)

0.1

1l ; 1.0 [-1.96 5D

LN goum = LOC,y [ breaths fmin

15 16 17 1B 9

Locy, (breaths /min)

The Wilcoxon signed-rank test was used to determine
statistically whether the estimated respiration count was
significantly different according to the type of smartphone and
location. The P value of the difference in the estimated
respiration count by location was .52, which was not significant.
This shows that there was no significant difference in the
respiration count estimated at different locations. The P value
of the difference in the estimated respiration count by
smartphone type was .88, which was also not significant
(W=103, z=-0.16). This shows that there was no significant
difference in the respiration count estimated using the two
different smartphones.

Number Smartphone 1% Smartphone 2 Difference
1 18 18 0
2 17 18 1
3 18 18 0
4 18 19 1
5 17 17 0
6 17 17 0
7 18 18 0
8 18 18 0
9 18 18 0
10 19 19 0

8Smartphone 1: Samsung Galaxy S8.
bSmartphone 2: Samsung Galaxy S7.

In Figure 9, the correlation coefficient is 0.79. The
Bland-Altman resultsindicate that the mean differencewas0.2,
with less than one breath per minute, and that the respiration
rate was at the 95% limits of agreement. The accelerometer
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sensor could produce results ranging from a 1.0 breath per
minute overestimation to 0.63 breaths per minute
underestimation.
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Discussion

Principal Findings

In this study, respiration counts were estimated based on data
from an accelerometer sensor in a smartphone. During recent
advances in the mobile medical monitoring environment, a
variety of smart devices have been developed [2,3]. There is
also an increasing desire to manage health by measuring and
analyzing data using such smart devices[1,5]. In particular, the
devel opment of various wearable devices, such as smartphones
and smart bands, providesthe potential to acquire varioustypes
of health care information such as movement and heartbeat.
Respiration isabiosignal directly related to body activity [3,5].
The estimation of respiration can prevent dangerous incidents
by predicting diseases and detecting sleep apnea [4]. However,
the number of smart devices able to present respiration ratesis
limited, and the sensors that can accurately detect respiration
are not easy to usein daily life. Thus, the purpose of this study
wasto estimate respiration counts using an accel erometer sensor
in a smartphone that is easy to access by normal people.

This study acquired signals using the accelerometer sensor in
a smartphone for a long time to identify the feasibility of
constantly estimating respiration during natural motion. Because
the accelerometer sensor in a smartphone samples nonlinearly,
linear sampling was imposed. The accelerometer sensor is a
three-axis type, which requires calibration. In this study,
components that maximize independence from the signals
acquired from the three axes of the accelerometer sensor were
distinguished using ICA, and signals showing the range of
respiration were extracted. When the statistical significance of
thedifferencein resultsfor the conventional method and Pearson
r of the respiration counts estimated from the chest belt and
accelerometer sensor were determined, ICA showed asignificant
result.

Lastly, accelerometer sensors are greatly affected by
environmental noises. However, while such noises have random
characteristics, respiration has regularity, and thisregularity has
harmonic components. Thus, respiration rates were estimated
using quefrency selection. It was confirmed that there was a
relevant difference in the data acquired using Pearson r for the
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Bland-Altman results according to smartphone type. Smartphone 1: Samsung Galaxy S8; smartphone 2: Samsung Galaxy S7.
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conventional method and quefrency selection, as well as
statistical verification. It was aso confirmed that the
performance of respiration rate estimation was excellent when
quefrency selection was applied to signals acquired from the
accelerometer sensor. Thiswas determined through verification
of the difference and statistical significance of the number of
respiration counts calculated using the chest belt and the
proposed (accelerometer) method.

The use of the accelerometer sensor in a smartphone is a
noncontact method and has the advantage of constant respiration
monitoring. This enables easy measurement of respiration in
daily life. However, when it is used in an actual environment,
a number of environmental variables exist. Specificaly, the
same user could put the smartphone at different locations during
the measurements, and the performances of embedded sensors
could also be different according to smartphonetype. Therefore,
case studies were performed according to sensor location and
smartphone type. The results indicated that respiration rate
detection is possible independent of location and smartphone

type.
Limitations

The situation in which respiration rate estimation is needed the
most is during sleep [3,4]. Diseases can be predicted and
emergency situations can be judged by detecting sleep apnea.
Therefore, in this study, respiration was estimated while the
subjects were lying down. The feasibility for long-term
estimation was aso confirmed. In the future, signals during
deep could be acquired and analyzed to apply actual respiration
rate estimation during sleep. However, the experiment
environment was controlled. During the respiration rate
estimation, subjects could change position and lay laterally or
in the prone position. Therefore, afurther study about position
change is needed for application of the approach in a real
environment.

Conclusions

In this study, respiration rates were estimated using data from
the accelerometer sensor of asmartphoneasan 10T device. This
study showed differentiation of the respiration rate estimation
achieved through ICA calibration and quefrency selection. The
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respiration estimation sensors that are currently used are not
easy to accessand not easy to usein daily life owing to the need
for multiple sensorswith direct contact. However, smartphones
are easy to use in daily life and some are equipped with
accel erometer sensors, which makesthem suitablefor respiration
rate estimation. Thereisadifference in performance according
to the calibration method used with the accelerometer sensor.
The accuracy of the respiration rate estimation can be enhanced

Lee & Yoo

when independent components are detected from three-axis
ICA signals and quefrency selection is applied. This new
approach could solvethe problemsrelated to the inconvenience
of electrode attachment and equipment settings that affect
respiration rate estimation. Furthermore, it could be used to
detect sleep apnea through constant respiration rate estimation
inan loT environment.
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