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Abstract

Background: The proliferation of wearable devices that collect activity and heart rate data has facilitated new ways to measure
sleeping and waking durations unobtrusively and longitudinally. Most existing sleep/wake identification algorithms are based
on activity only and are trained on expensive and laboriously annotated polysomnography (PSG). Heart rate can also be reflective
of sleep/wake transitions, which has motivated its investigation herein in an unsupervised algorithm. Moreover, it is necessary
to develop a personalized approach to deal with interindividual variance in sleep/wake patterns.

Objective: We aimed to develop an unsupervised personalized sleep/wake identification algorithm using multifaceted data to
explore the benefits of incorporating both heart rate and activity level in these types of algorithms and to compare this approach’s
output with that of an existing commercial wearable device’s algorithms.

Methods: In this study, a total of 14 community-dwelling older adults wore wearable devices (Fitbit Alta; Fitbit Inc) 24 hours
a day and 7 days a week over period of 3 months during which their heart rate and activity data were collected. After preprocessing
the data, a model was developed to distinguish sleep/wake states based on each individual’s data. We proposed the use of hidden
Markov models and compared different modeling schemes. With the best model selected, sleep/wake patterns were characterized
by estimated parameters in hidden Markov models, and sleep/wake states were identified.

Results: When applying our proposed algorithm on a daily basis, we found there were significant differences in estimated
parameters between weekday models and weekend models for some participants.

Conclusions: Our unsupervised approach can be effectively implemented based on an individual’s multifaceted sleep-related
data from a commercial wearable device. A personalized model is shown to be necessary given the interindividual variability in
estimated parameters.

(JMIR Mhealth Uhealth 2020;8(8):e18370) doi: 10.2196/18370
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Introduction

Background
Sleep plays a vital role in maintaining health [1,2]. Adequate
sleep can help to maintain a high quality of life [3]. In contrast,

short sleep duration may lead to adverse health outcomes, such
as obesity, insulin resistance, depression, hypertension, and
cardiovascular disease [4-8]. Changes in sleep duration have
been associated with declined cognitive function and increased
mortality rate in middle-aged population [9,10]. Thus, to detect
changes in sleep patterns early on or for sleep disorder diagnosis,
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it is essential to measure sleep duration accurately and
longitudinally.

Polysomnography is the gold standard for sleep duration and
sleep quality assessment; various devices are used to record
multiple body functions such as brain activity, eye movements,
skeletal muscle movement, and heart rhythm during sleep, and
it is typically done in a sleep lab or clinic [11]. Health care
professionals use these physiological measures to assess sleep
states, however, the cost of overnight PSG may range from US
$600 to $5000 each night [12]. Such assessment is expensive
and intrusive for consumers, and labor-intensive and
resource-demanding for health care professionals to achieve
[13-15], making it hard to use for long-term sleep monitoring
at home.

An emerging trend has been to adopt sensor-based wearable
devices to assess sleep duration and achieve long-term sleep
monitoring. According to the reports from the International
Data Corporation, 83.8 million wearable devices were shipped
during the first two quarters of 2019 [16,17]. One of the most
common technologies for consumer sleep-monitoring wearable
devices is accelerometer-based actigraphy [18], which tracks
physical movement and determines when a person is asleep or
awake based on whether a low or high amount of activity is
recorded [19,20].

Related Work
A recent paper [21] reviewed and validated existing supervised
sleep-scoring algorithms using actigraphy in a large cohort.
Many types of supervised algorithms have been used, such as
linear discriminative analysis [22,23], decision trees [24],
artificial neural networks [24], long short-term memory [21],
and convolutional neural networks [21]; however, all require
training with annotated PSG, collected and labeled at great
expense. Moreover, the labeled daily-living sleep/wake PSG
data are challenging to collect during daytime making 24-hour
accuracy hard to evaluate.

Because annotated PSG is hard to acquire for model building,
it is intuitive to use an unsupervised method. Commonly used
techniques are based on rules and thresholds. For instance, the
Actiwatch (Mini Mitter Co Inc) software determined the start
of sleep when there were 10 consecutive minutes below a certain
mobility threshold and determined the end of sleep with 10
consecutive minutes above the threshold [25]. This approach
was commonly adopted in commercial wearable devices because
of its simplicity; however, the choice of the mobility threshold
was relatively arbitrary. Few studies have used other
unsupervised machine learning approaches such as clustering
[15] and hidden Markov model (HMM) [26].

Hidden Markov models are well suited to modeling time series
data in a probabilistic way by using latent states [27]. Temporal
dependency can be learned, and the parameters of the model
are interpretable. In the context of bioinformatics, HMMs have
been applied to monitor circadian rhythmicity using physical
activity data to characterize interindividual variability [28]. In
other high-frequency physiological data collected during
PSG—such as electroencephalography, electrooculography,
and electromyography—HMMs have been used to classify sleep

stages [29,30]. These papers showed that the sleep/wake cycle
could be inferred from physiological data using HMMs;
therefore, we wanted to extend this approach and its strengths
to activity and heart rate data from wearable devices.

In addition to modeling sleep/wake transitions via activity data,
heart rate is also reflective of the circadian cycle, and it can be
recorded accurately using photoplethysmography in wearable
devices [31]. In a 24-hour assessment study in ambulatory
patients, heart rate varied significantly in sleep and wake periods
[32]. Willemen et al [33] showed that heart rate, along with
activity, can predict sleep and wake well with the use of support
vector machine algorithms on healthy participant data; however,
this approach also required supervised training (ie, labeled PSG).

Furthermore, the generalizability of existing algorithms is of
concern especially when different sleeping patterns and habits
can be observed in different people [15]. Person-to-person
differences in demography and physiology can have significant
effects on sleep/wake patterns and characteristics [34,35].
Personalized sleep-scoring algorithms are needed to avoid
interindividual variance problems, since algorithms learn from
individual lifestyle and physiological patterns using long-term
contextual history. Existing studies have shown that the
sleep/wake state can be better inferred using a personalized
approach from actigraphy [36,37].

Objectives
In this paper, we aimed to explore the feasibility of using HMM
to analyze heart rate and activity data collected by a wearable
device and to develop a personalized and unsupervised
sleep/wake identification approach. To our knowledge, there is
little research focused on personalized and unsupervised
sleep/wake identification algorithms using a wearable device.
Also, the approach enables advantageous complementary use
of both heart rate and activity data. The algorithm is
demonstrated using a real-world data set collected with
commercial wearable devices in the older adult population and
its performance is illustrated with case studies.

We describe recruitment and data collection, data preprocessing
steps, HMM, rescoring rules, and comparison scoring results.
We also demonstrate the approach with a case study, investigate
the fusion effect of heart rate and activity data in modeling,
compare our scoring results with Fitbit’s results individually,
and investigate pattern changes using daily models.

Methods

Participant Recruitment and Data Collection
We collaborated with an older adult care center in Hong Kong
to recruit participants who met the following criteria: aged 60
years or above, community-dwelling Hong Kong residents, and
willing to take participate in a 3-month longitudinal
observational study from December 18, 2017 to February 28,
2018. The Research Ethics Committee of the City University
of Hong Kong approved this pilot study (reference number
3-2-201803_02). All participants provided written consent.

Heart rate data and activity data were collected using Fitbit Alta
(Fitbit Inc). Participants were asked to wear the device on their
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nondominant hand for the full 24 hours each day for 3
consecutive months. For activity data, the most common choice
for use in sleep/wake classification algorithms is activity count.
However, since activity count was unavailable in Fitbit, we used
step count instead, which was also a reflection of activity
intensity in an epoch. Fitbit Alta reported heart rate every 1
minute and reported step count every 15 minutes.

Data Preprocessing
Since the study was conducted in a free-living home
environment, some participants removed the devices when
showering or at night. When the participant removed the device,
the device reported heart rate and step count as zero, and the
nonwear time could be inferred. The recordings were examined,
and nonwear days were identified and removed before analysis
if (1) more than 30 minutes of heart rate data were in that day
or (2) there was a step count of zero on that day. We excluded
participants who had more than 50% of the days in the
observation period identified as nonwear from analysis.

After the elimination of nonwear days, any remaining data with
missing values could be kept and dealt with in HMM. Next, we
further preprocessed the step count data. In order to facilitate
the fusion of step count and heart rate data in the models,
downscaling was used to deal with the multigranularity data
[38]. It was achieved by disaggregating the 15-minute step count
data and simulating the of 1-minute step count time series. We

assumed that the 15-minute step count USTEP was evenly
distributed to every minute. Thus, 1-minute step counts were
generated by

(1)

The total step count in 15 minutes was closely preserved.

Hidden Markov Models

Definitions
Hidden Markov models are composed of paired stochastic
variables: hidden states and observed variables. The model

assumes that an observed sequence has been generated by
distributions, which conditionally depend on the hidden states
in an underlying and unobserved Markov process. In our
sleep/wake identification problem, we considered two-state
hidden Markov models. The hidden states were S={s1, s2}. Each
observed bivariate time series (of heart rate and activity data)
was denoted as

(2)

where t ∈ {1,...,T} and T was the total length. The two-state
chain was initialized by the initial state distribution, π={ π1, π2}
where Σπk=1. The sequence of hidden states was
ZT={z1,z2,...,zT}, where zt ∈ S for any t. The structure of a
standard multivariate HMM is shown in Figure 1.

The unobserved process was assumed to satisfy the Markov
property. The transition probability matrix was denoted by Γ
as

(3)

whose (i,j) entry represented the probability of state si

transitioning to state sj:

P(zt+1=sj | zt=si) = γij, si, sj ∈ S (4)

The emission density function

p(xt | Zt=si) (5)

was associated with hidden states, which denoted the density
of the observation XT if the hidden state was si at time t. For
multivariate time series, there were 2 schemes to develop
HMMs: (1) Specify the state-dependent joint distributions of
the observed variables for different states or (2) assume
contemporaneous conditional independence.

Figure 1. An illustration graph of the structure of multivariate hidden Markov model.

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 8 | e18370 | p. 3https://mhealth.jmir.org/2020/8/e18370
(page number not for citation purposes)

Liu et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Model Scheme M1: Specification of the State-Dependent
Joint Distributions
In the multivariate case, it can be straightforward to specify the
joint distribution in the context of our application, since heart
rate is highly correlated with activity intensity. The bivariate
normal distribution was considered because of its practical
uniqueness. Thus, the emission density function could be written
as follows if we assumed a bivariate joint distribution for xt |
si:

(6)

with

(7)

The correlation between heart rate and activity level can be
directly characterized by ρi.

Model Scheme M2: Contemporaneous Conditional
Independence
Specifying suitable joint distributions can be sometimes difficult,
and for simplicity, contemporaneous conditional independence
can be assumed. This means that the state-dependent joint
distribution is the product of the corresponding marginal
distributions:

(8)

Note, contemporaneous conditional independence does not
mean the two observed time series are mutually independent
since the Markov chain can induce dependent pairs [27], and
the marginal distributions need not necessarily belong to the
same family of distribution. Thus, we can assume the univariate
distributions in different states according to prior information.
The choices of distributions are discussed in our real-world case
study.

Model Fitting and Decoding
After the model was fully specified. The likelihood could be
obtained by summing the values assumed by z1,z2,...,zT:

(9)

The likelihood function was evaluated by the forward algorithm.
An advantage of the HMM is that missing data can be dealt
with simply by adjusting the likelihood computation. The
corresponding state-dependent probabilities were replaced by
1 for all states. Parameter estimation was achieved by numerical
maximization or Baum-Welch algorithm [27]. Next, we decoded

the series of the hidden states globally by maximizing the
conditional probability of the whole sequence P(ZT | XT). The
optimal path was found using the Viterbi algorithm with
estimated parameters. The hidden states were matched with
sleep and wake states. The state with higher estimated mean
heart rate, µHR, and mean activity level, µACT, represented the
active status of the participants, and related to a waking state.
On the other hand, the state with lower estimated mean heart
rate and mean activity level represented the resting status, which

was related to a sleeping state (heart rate variance, σ2
HR, and

activity level variance, σ2
ACT).

Implementation of the Hidden Markov Models
After preprocessing, the data were ready for implementation of
the HMMs. For each participant, we plotted the kernel density
estimates of heart rate and of log-transformed step count (Figure
2) to explore suitable prior joint emission distributions. From
the kernel density plot of heart rate, the overdispersed and
nonsymmetric observations suggested a bimodal distribution,
which may be modeled by a mixture model, and very likely a
two-component Gaussian mixture; however, mixture models
do not take temporal dependency into account, which prompted
us to adopt the hidden Markov model. A Poisson distribution
is a natural choice for modeling count data; however, the step
count ranged from 0 to 160. Since it would have been
computationally expensive to estimate, especially for our long
sequence, we took the log transformation of step count and
found that they were also distributed marginally as a
two-component Gaussian mixture.

Based on the marginal density plots, we proposed two schemes
for fitting multivariate HMM. For model scheme M1, we
specified bivariate Gaussian distribution for heart rate and

log(XSTEP+1) for both states; for model scheme M2, we assumed
univariate Gaussian distribution for heart rate for both states
and univariate Gaussian distribution for log-transformed step
count for both states.

Two HMMs were fitted for each participant, one HMM modeled
using model scheme M1 and another using model scheme M2.
The best model was chosen based on Akaike information
criterion (AIC) and Bayesian information criterion (BIC).
Moreover, the goodness of fit of the best model was further
assessed by ordinary normal pseudo-residuals [27]:

(10)

If the observations x1,...,xT were indeed generated by the model
Xt∼Ft, the ordinary normal pseudo-residuals would be distributed
standard normal.

With the estimated parameters for the best model, we found a
globally optimal path for the observations. The decoding of the
hidden states was passed to rescoring rules, and the final scoring
results of sleep and wake states were decided. The
implementation of HMM was built based on the dependent
mixture models package (depmixS4; version 1.4-2) in R
software (version 3.5.1) [39]
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To study the fusion effect of heart rate and activity in HMM,
two HMM models observing single source data was considered
for comparison. We fitted a two-state hidden Markov model

observing activity level XACT, which was log(XSTEP+1), denoted

as the activity HMM, and a model observing heart rate denoted
as the heart rate HMM. In both the activity HMM and the heart
rate HMM, the emission distributions for both states were
assumed to be normal distributions according to the empirical
data analysis.

Figure 2. Kernel density plots for heart rate and log(X_STEP+1) for all participants.

Rescoring Rules
In actigraphy algorithms, Webster et al [40] reported that the
most common error was scoring wake as sleep. In order to
correct this systematic error, they developed these rescoring
rules, which were further validated by different researchers
[21,22]. Webster rescoring rules can be described as (1) after
at least 4 minutes scored as wake, the first minute scored sleep
will be rescored wake; (2) after at least 10 minutes scored as
wake, the first 3 minutes scored sleep will be rescored wake;

(3) after at least 15 minutes scored as wake, the first 4 minutes
scored sleep will be rescored as wake; (4) 6 minutes or less
scored sleep surrounded by at least 10 minutes (before or after)
scored as wake are rescored wake; and (5) 10 minutes or less
scored as sleep surrounded by at least 20 minutes (before or
after) scored as wake are rescored wake. These rules were
applied to 1-minute decoding results from HMM sequentially.

The workflow of our sleep/wake identification approach can be
summarized in Figure 3.

Figure 3. The workflow of our hidden Markov model–based sleep/wake identification approach. S/W: sleep/wake.

Comparison of Scoring Algorithms
Fitbit Alta automatically detects sleep based on activity—“When
your body is completely at rest and you haven’t moved for about
an hour, your Fitbit device records that you’re asleep”
[41];—however, the exact scoring algorithm is proprietary.
Only the sleep/wake scoring results can be compared with
Fitbit’s output (7 sleep-related states). For comparison, asleep,

deep, light, and REM were reclassified as sleep, while restless,
awake, and wake were reclassified as wake.

Daily Basis Model
In addition to applying the proposed model to 3-month time
periods for each participant, as a pilot experiment, we applied
the personalized algorithms on a daily basis for each person.
To investigate whether there was any difference in estimated
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parameters between weekdays (Monday to Friday) and
weekends (Saturday and Sunday), we used two-tailed
independent t tests to compare the parameters of the two for
each participant (P<.05 was deemed significant).

Results

Overview
After nonwear exclusion, there were 14 participants whose data
qualified for analysis (aged from 61 to 91 years old; 12 women

and 2 men); 6 participants had hypertension, 5 had high
cholesterol, 2 had diabetes mellitus, 3 had cancer, and 1 had a
stroke. The percentage of missing heart rate data ranged from
0.31% to 0.96% (mean 0.64%). Examples of 24 hours of step
count and heart rate data are shown in Figure 4 in which the
circadian cycle was quite clearly evident, and the segmentation
of activity and heart rate over the 24 hours was visible.

Figure 4. A 24-hour example plot of step count every 15 minutes and heart rate every 1 minute for participant EL01 from 8 AM to 7:59 AM the
following morning. Note: Times are in 24-hour format.

Model Selection and Parameter Estimation Results
In order to illustrate our proposed approach, we used the sleep
and wake identification of two typical examples, participants
EL02 and EL21, for demonstration. We first examined the
recordings to eliminate nonwear days. There were 16 days were
eliminated from analysis for EL02 and 9 days were eliminated
from analysis for EL21.

To compare two schemes of modeling multivariate time series,
we present model selection results, including log likelihoods,
AIC, and BIC in Table 1. According to both AIC and BIC, the
model with bivariate normal joint distribution specified for both
states was more appropriate for EL02. For the other 13
participants, both AIC and BIC also tended to favor model
scheme M1, which assumed bivariate normal emission
distributions for both states.

Table 1. Comparison of models fitted to heart rate and log(XSTEP+1) for EL02.

BICAICLog likelihooddfEmission distributionModel scheme

839004.3838882.7–419428.313Bivariate normalM1

849721.9849721.9–424798.511Conditional independenceM2
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We checked the general goodness of fit of the best model with
ordinary normal pseudo-residuals. If the fitted model was valid,
the pseudo-residuals would be distributed normally. By visual
inspection of the quantile-quantile (QQ) plot of the
pseudo-residuals for each participant’s best model, we found
they fit well. We present QQ-plots for EL02 and EL21 in Figure

5; we could observe that for EL02 and EL21 the
pseudo-residuals were, in general, distributed normally, though
the distribution had heavier tails for EL21. Overall, our 2-state
HMM model assuming bivariate Gaussian was adequate and
valid for the participants in our study.

Figure 5. Quantile-quantile plots of ordinary normal pseudo-residuals in model scheme M2 for EL02 and EL21.

The estimated parameters in emission distributions for EL02
are shown in Table 2 for the best model chosen by AIC and
BIC. According to the estimated parameters for emission
distribution in different states, we can generally classify the 2
hidden states as sleep and wake. Wake was the state with higher
mean heart rate and mean activity level in the emission density
distribution. In the wake state, the estimated variance for heart
rate was 213.68 and for activity level was 0.83, which were
much larger than those of 157.37 for heart rate and 0.15 for
activity level during the sleep state. This reflected the variability
of activities during the participant’s waking period. The
estimated transition probability for EL02 was as follows:

From the estimated transition probability, it was more likely
that, in a given minute, the participant would stay in the same
state as the state in the previous minute. It also supported the
necessity of the use of HMM to deal with the time dependence
in observations.

For participant EL21, the estimated parameters in emission
density distributions are also shown in Table 2. The transition
probability for EL21 was estimated as

The general pattern of estimated parameters for EL21 was
similar to EL02. While the difference between estimated mean
values in the two states were much lower than that of EL02.
For the sleep state, the activity level was roughly zero (µACT

<0.01). For the wake state, the heart rate (µHR=80.17) and the
activity level (µACT=2.22) were lower than those for EL02,
showing that the mean intensity of activity of EL21 was lower

than EL02. In terms of transition probability, was 0.0082
for EL21 and 0.0097 for EL02, which might suggest that for
participant EL21, it was slightly harder to fall asleep when
awake than for EL02.

Since the models were fitted individually, we report the
estimated parameters for 14 individuals in Table 3. For the wake

state, mean was 87.18 (SD 12.52), while mean for the
sleep state was 66.37 (SD 7.82). The difference in variance in
the estimated means in two states among individuals potentially
reflected the person-to-person diversity in lifestyle and heart
rhythm. Moreover, the individual-specific parameters helped
characterize the sleep/wake cycle.
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Table 2. Estimated parameters in model M2 for EL02 and EL21.

Sleep stateWake stateParticipant and emission parameters

EL02

Activity

0.272.98µ ACT

0.150.83σ 2
ACT

Heart rate

74.39110.21µ HR

157.37213.68σ 2
HR

0.040.41Correlation, ρ

EL21

Activity

<0.012.22µ ACT

<0.011.08σ 2
ACT

Heart rate

56.4680.17µ HR

58.56276.27σ 2
HR

0.010.56Correlation, ρ

Table 3. Mean estimated HMM parameters for the sample of participants.

Sleep state, mean (SD)Wake state, mean (SD)Parameters

Emission

Activity

0.02 (0.07)2.24 (0.29)µ ACT

0.01 (0.04)1.16 (0.19)σ 2
ACT

Heart rate

66.37 (7.82)87.18 (12.52)µ HR

47.18 (36.91)241.16 (110.75)σ 2
HR

0.01 (0.01)0.54 (0.07)Correlation, ρ

Transition

0.011 (0.003)0.989 (0.003)Wake state

0.983 (0.002)0.017 (0.002)Sleep state

Investigating the Effect of the Fusion of Heart Rates
and Activity in the Model
We compared the final scoring results from approaches based
on the heart rate HMM, the activity HMM and our fusion
approach minute-by-minute for each participant. Table 4
presents duration, heart rate, and activity level in different
combinations of possible results for EL02 as an example.

For EL02, 49.30% (42,599/86,400 minutes) of the recordings
were scored as wake, and 33.87% (29,264/86,400 minutes) were

scored as sleep by all three methods, which indicated the
monotonic relationship between heart rate and activity level for
most of the time, whether sleep or wake. There were 13.42%
(11,593/86,400) that changed states by our fusion approach
compared to that indicated using only one data-source type. Our
approach rarely (2/86,400, <0.001%) scored one minute as sleep
state if either the heart rate HMM or the activity HMM had
classified the minute as wake state. The determination of sleep
state in our approach was a combination of activity and heart
rate for EL02.
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Table 4. Comparison between the activity HMM, the heart rate HMM, and our fusion approach for participant EL02.

ComparisonHMM

Activity level, mean (SD)Heart rate, mean (SD)Duration

(total minutes=86,400), n (%)

FusionHeart rate onlyActivity only

3.13 (0.91)113.37 (11.28)42,599 (49.30)wakewakewake

——0 (0)sleepwakewake

2.14 (0.96)76.12 (8.94)2825 (3.27)wakesleepwake

0.76 (—)74 (—)1 (0.00)sleepsleepwake

0.82 (0.67)101.21 (13.74)8768 (10.15)wakewakesleep

0.38 (—)96 (—)1 (0.00)sleepwakesleep

0.97 (0.68)80.72 (8.37)2942 (3.41)wakesleepsleep

0.28 (4.24)69.62 (5.10)29,264 (33.87)sleepsleepsleep

For recordings that the activity HMM scored as wake, the heart
rate HMM scored as sleep, and our approach scored as wake,
the mean heart rate was 76.12, and the mean activity level was
2.14 (equivalent to 7.5 steps per minute). The nontrivial activity
level led our approach to score that minute as wake. For
recordings that the activity HMM scored sleep, the heart rate
HMM scored wake, and our approach scored as wake, the mean
heart rate was 101.21, and the mean activity level was 0.82.

Furthermore, we present an example of 24 hours of scoring
results from the three model types along with observational data
for EL02 in Figure 6. The bars below the observations indicated
the scored sleep or wake states in three models. From the
highlighted period in Figure 6, we can see that if we used
activity data alone, it was very likely to be classified as sleep
due to the extremely low activity level. However, the high and
fluctuating heart rate might suggest the person was awake.

Figure 6. An example plot of observations and scoring results from Heart Rate HMM, Activity HMM, and our approach for EL02. HMM: hidden
Markov model.
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Except for epoch-by-epoch comparison, we also evaluated the
performance on a crucial sleep metric, the total amount of
sleeping time in the recording period [42]. For all participants,
we calculated daily total sleep time at night for all available
days. The nighttime sleep period of each participant was
collected with the Pittsburgh Sleep Quality Index indicating
when they usually went to bed at night and got up in the morning
[43]. Figure 7 displays the boxplot of estimated total sleep time

during their bedtime for all participants. We could see that the
median estimated total sleep time at bedtime varied a lot from
person-to-person. For EL01, EL02, EL06, EL24, and EL25, the
median total sleep time estimated by our approach was less than
those from the heart rate HMM and the activity HMM. For the
other participant, they were nearly the same as the activity
HMM.

Figure 7. Boxplot of estimated daily total sleep time during bedtime at night from heart rate HMM, activity HMM, and fusion HMM (our approach)
for all participants. HMM: hidden Markov model; TST: total sleep time.

Comparison With Fitbit’s Sleep-Wake Scoring Results
We compared results from our approach with those from Fitbit’s
scoring algorithm minute-by-minute. We treated Fitbit’s
sleep/wake scoring algorithm as representative of existing
methods. The mean agreement between our approach and
Fitbit’s scoring was 87.31%, (range 82.90% to 91.04%). As for
total sleep time, the boxplot of the estimated total sleep time at
night using our approach and Fitbit’s algorithm are displayed

in Figure 8. There were several days where Fitbit’s had no
sleep/wake records but had continuous regular heart rate
recordings. The median estimates of total sleep time from our
approach were lower than those from Fitbit in 12 of 14
participants, which indicated our approach tended to score more
wake epochs. The dispersion of estimated sleep duration using
our approach was relatively narrower than that of Fitbit’s
algorithm, which may suggest a stable indicator of participants’
habitual nighttime sleep duration.

Figure 8. Boxplot of estimated daily total sleep time during bedtime at night from our approach and Fitbit’s approach for all participants. HMM: hidden
Markov model; TST: total sleep time.
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Investigating Pattern Changes Using Daily Basis Model
The P values for independent two-tailed t tests comparing
estimated parameter values between weekdays and weekends
for each person are shown in Table 5. There was no significant

difference for γ21, σ
2
HR for wake state, and µACT for sleep state

between weekends and weekdays for any participant. As shown
in Table 5, 5 of 14 participants had no significant difference in

any of the estimated parameters between weekday models and
weekend models, while 9 participants had differences in at least
one parameter. For example, EL04 had a significantly lower
transition probability from wake to sleep (0.015 for weekdays;
0.018 for weekends). EL11 had a higher mean estimated
variance of activity level in wake state on weekdays (1.49 for
weekdays; 1.29 for weekends).

Table 5. P values for t tests on estimated parameter values for weekday and weekend for each participant.

P valuesID

Sleep stateWake stateTransitiona

CorrHeart rateActivityCorrbHeart rateActivity

ρσ 2
HR

µ HRσ 2
ACT

µ ACTρσ 2
HR

µ HRσ 2
ACT

µ ACTγ21γ12

.83.26.34.33.94.04c.72.22.66.30.89.28EL01

.86.55.63.54.90.74.99.44.85.90.94.64EL02

.02c.08.10.09.16.17.25.18.96.14.55.38EL03

.08.53.82.50.78.68.63.51.31.53.70.047cEL04

.68.03c.70.74.66.69.39.91.48.64.58.45EL05

.09.39.92.59.33.92.14.96.05.59.95.20EL06

.53.61.12.06.96.93.73.11.23.12.46.39EL08

.63.43.73.42.18.17.16.60.002c.63.70.70EL11

.75.78.58.36.56.90.50.34.04c.84.11.58EL14

.006c.04c.008c.07.14.67.94.006c.79.86.07.008cEL21

.63.62.32.43.28.54.62.56.56.52.85.97EL23

.02c.33.06.048c.07.54.38.002c.55.08.98.97EL24

.38.89.69.50.28.54.21.10.47.55.76.19EL25

.32.046c.73.54>.999.01c.44.30.08.009c.54.66EL27

aγ11 and γ22 are not reported because they have the same results as γ21 and γ21.
bCorr denotes correlation.
cValue is significant P<.05.

Discussion

Principal Findings
Longitudinal monitoring of sleep duration can objectively help
detect sleep disorders and reduce the risk of related diseases.
In order to facilitate personalized home-based monitoring, it is
essential to record sleep and wake states using wearable devices
efficiently and nonintrusively. In this study, we proposed a
novel personalized and unsupervised approach for sleep/wake
identification using both heart rate and activity data from a
commercial wearable device. The approach was successfully
implemented in case studies of community-dwelling older
adults.

Our proposed approach is the first unsupervised and
personalized sleep/wake classification approach, to our
knowledge. It does not require any time-consuming and costly

PSG annotation, which is hard to obtain simultaneously with
wearable device data [15,36]. Furthermore, our approach was
efficient enough to be adaptive to a different participant without
requiring PSG annotations. In our case study, the variance in
estimated parameters in HMM between participants also proved
the necessity of a personalized model.

The data-level fusion of activity and heart rate data for
sleep/wake scoring in wearable device was explored. Based on
comparison among scoring results from HMMs using heart rate
only, activity data only, and both data sources, we concluded
that our approach could potentially help identify more wake
epochs for people who have distinguishable heart rate patterns
between sleep and wake. This coincided with the findings of
significant different heart rate during sleep and wake states [32]
and its classification power in sleep/wake identification
algorithms [33,44].
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Our approach had results that were mostly consistent with those
of Fitbit, a commonly used commercial device. For most of the
participants, our approach tended to score more wake epochs
during bedtime, which may be potentially useful as it has been
shown by Montgomery-Downs et al [45] that many commercial
wearable devices, when compared to PSG, tend to overestimate
sleep epochs. This should be further investigated with PSG
annotations.

Strengths
In addition to sleep and wake identification and total sleep time
estimation results, this paper proposed an approach that provides
a new probabilistic way to characterize and quantify activity
patterns and cardiac patterns during sleep and wake for each
participant with estimated HMM parameters. A low estimated
mean activity in wake states suggest a sedentary behavior style
when the participant is wake, which should be of concern to the
participant or their health care provider [46]. Abnormally high
estimated mean heart rate in sleep states can be an indicator of
autonomic nervous system dysfunction or of the development
of chronic fatigue syndrome [47]. A high estimated probability
of transitioning from sleep to wake might suggest disturbed
sleep. Monitoring these parameters for clinical use is promising
and remains to be explored in specific tasks.

In addition, we demonstrated how to characterize cardiac and
behavior patterns on a daily basis. During our 3-month study,
some participants exhibited significantly different patterns
between weekdays and weekends. On weekdays, participants
had regular visits to older adult centers in their community,
which provided various activities. This could explain why some
participants tended to have higher estimated mean and variance
of activity level for wake state and were less likely to transition
from wake to sleep on weekdays. There exists not only
interindividual variability in sleep patterns but also
intraindividual variability [34]. This analysis can also provide
a reference to improve the accuracy of the personalized model
to infer sleep/wake states by including covariates (eg, weekday
or weekend) in the transition matrix or emission distributions
in HMM.

Limitations
We acknowledge that there are also some limitations to our
work. First, direct conclusions about our approach’s accuracy
cannot be drawn because of the lack of PSG recordings in this
study and the small sample size. The estimated sleep/wake states
might also be better interpreted as resting-active states at this
stage. Second, the comparison with Fitbit’s scoring may not be
very fair since the exact algorithm is not publicly known and
the data type used for sleep/wake scoring was unknown as well.
We also cannot reasonably compare the proposed approach with
existing methods on the same data set because of the lack of
personalized and unsupervised approaches in sleep/wake scoring
(to our knowledge). Third, we collected heart rate and step count
data using Fitbit, which were reported in different granularities.
In order to achieve data-level fusion and prepare it for modeling,
we simulated 1-minute step data from 15-minute step data which
might have resulted in some imprecision. We strongly call for
different reporting granularity options in commercial wearable
devices to further facilitate research and their use in health care
monitoring systems.

Future Work
In the future, we plan to compare the proposed approach with
PSG to further validate the accuracy of the scoring. Some future
research directions include (1) exploring the relationship
between the length of data and accuracy of sleep/wake
classification to yield a reliable algorithm, (2) exploring the
existence of not only interindividual variability in sleep patterns
but also intraindividual variability [34] (such as developing an
incremental approach for daily sleep/wake duration reporting
where the sleep/wake pattern can be re-estimated as new data
are captured), (3) with the strength of HMM, it would be
interesting to see whether sleep characteristics shown in
periodically estimated HMM parameters can be correlated with
health condition or circadian rhythm changes, and (4) exploring
the association between subjective Pittsburgh Sleep Quality
Index and estimated HMM parameters in different populations.
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