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Abstract

Background: Emotional state in everyday life is an essential indicator of health and well-being. However, daily assessment of
emotional states largely depends on active self-reports, which are often inconvenient and prone to incomplete information.
Automated detection of emotional states and transitions on a daily basis could be an effective solution to this problem. However,
the relationship between emotional transitions and everyday context remains to be unexplored.

Objective: This study aims to explore the relationship between contextual information and emotional transitions and states to
evaluate the feasibility of detecting emotional transitions and states from daily contextual information using machine learning
(ML) techniques.

Methods: This study was conducted on the data of 18 individuals from a publicly available data set called ExtraSensory.
Contextual and sensor data were collected using smartphone and smartwatch sensors in a free-living condition, where the number
of days for each person varied from 3 to 9. Sensors included an accelerometer, a gyroscope, a compass, location services, a
microphone, a phone state indicator, light, temperature, and a barometer. The users self-reported approximately 49 discrete
emotions at different intervals via a smartphone app throughout the data collection period. We mapped the 49 reported discrete
emotions to the 3 dimensions of the pleasure, arousal, and dominance model and considered 6 emotional states: discordant,
pleased, dissuaded, aroused, submissive, and dominant. We built general and personalized models for detecting emotional
transitions and states every 5 min. The transition detection problem is a binary classification problem that detects whether a
person’s emotional state has changed over time, whereas state detection is a multiclass classification problem. In both cases, a
wide range of supervised ML algorithms were leveraged, in addition to data preprocessing, feature selection, and data imbalance
handling techniques. Finally, an assessment was conducted to shed light on the association between everyday context and emotional
states.

Results: This study obtained promising results for emotional state and transition detection. The best area under the receiver
operating characteristic (AUROC) curve for emotional state detection reached 60.55% in the general models and an average of
96.33% across personalized models. Despite the highly imbalanced data, the best AUROC curve for emotional transition detection
reached 90.5% in the general models and an average of 88.73% across personalized models. In general, feature analyses show
that spatiotemporal context, phone state, and motion-related information are the most informative factors for emotional state and
transition detection. Our assessment showed that lifestyle has an impact on the predictability of emotion.
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Conclusions: Our results demonstrate a strong association of daily context with emotional states and transitions as well as the
feasibility of detecting emotional states and transitions using data from smartphone and smartwatch sensors.

(JMIR Mhealth Uhealth 2020;8(9):e17818) doi: 10.2196/17818
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Introduction

The emotional states of individuals may change frequently over
time. Research has demonstrated the potential of recording daily
emotional states and moods in health and well-being, including
the early diagnosis of mental illness and disorders [1-3].
However, the process of recording emotional states and moods
largely depends on active self-reports less frequently than daily.
However, with the unprecedented rise of smartphones and
wearable devices as well as the advancement in built-in sensors
within these devices, it is possible to passively collect
multimodal data from people’s everyday lives at a much higher
frequency. The self-reporting problem of personal health
tracking can therefore be solved to a great extent by leveraging
machine learning (ML) algorithms on the myriad of data
collected by smartphones and wearables.

Predicting and monitoring mental health illnesses and diseases
such as depression, bipolar disorder, Alzheimer disease, and
schizophrenia via smartphones and wearable sensors have been
an active area of research over the last few years. Research has
been conducted in the quest for gold standard digital biomarkers
that can be collected through consumer-grade smartphones and
wearable sensors (eg, accelerometer, audio, location, phone log,
sound features, etc) to detect mental health disorders in the early
stages [4,5]. It is evident that mobility patterns, location
variations, and phone usage patterns captured by smartphones
can aid in identifying patients with mental health illnesses and
disorders [1,2,6-9]. Early detection of depressive symptoms by
applying deep neural networks and ML techniques to
self-reported contextual data through smartphones obtained
promising results [8]. However, the aforementioned apps were
designed from disease and illness perspectives and did not
consider the automated detection of regular emotional states
and transitions in everyday life.

The association between everyday mood, emotion, and
well-being and sensed data via smartphones and wearables has
been studied recently. For example, Helbich [10] found an
association of people’s mental well-being with the neighborhood
they live in, the places they visit, and the environmental
exposure they experience. In a similar study by Sandstrom et
al [11], subjects reported emotional pleasantness in a societal
environment, whereas positive and negative arousal at work. A
daily mood assessment tool was proposed by Ma et al [12] that
utilized mobile phone sensor data such as location, audio, text
messages, accelerometer, and light to classify mood. However,
this study considered limited contextual parameters, and the
subjective variability as well as transitions of emotional states
remained uninvestigated. The prediction of the Ecological
Momentary Assessment scores from smartphone data such as

text messages, screen time, app usage, accelerometer, and phone
camera have been studied by Asselbergs et al [13], who reported
a promising but lower prediction accuracy than naive benchmark
approaches. Studies have also shown an association between
mobile sensor data (eg, phone usage, motion, conversation,
mobility, screen time, and skin conductance) and the academic
performance and mental health conditions of college students
[14,15]. Budner et al [16] classified 9 emotional states in 2
dimensions (pleasure and activation) of the circumplex model
by applying a random forest on the smartwatch sensor data such
as motion, heart rate, light level, GPS coordinates, day of the
week, humidity, air pressure, cloudiness, and windiness. In a
similar study, an ML-based model was proposed by Zhang et
al [17] to recognize compound emotional states in pleasure and
arousal dimensions from smartphone data (eg, microphone,
accelerometer, GPS, text message, phone call, app usage).
Promising results have been obtained in some recent works for
daily mood and stress forecasting [3,18,19], where deep neural
networks were applied to physiological, personality traits, and
sensed data acquired from a large-scale global population using
smartphones and wearables.

Despite encouraging results and progress, gaps in the literature
include the lack of research on the association between
emotional transition, sensed data, and contextual information;
subjective variability in classification performance; and
feasibility of frequent emotional state and transition detection.
In addition, the majority of the previous studies are based on
the circumplex model of affect [20], which considers only the
pleasure and arousal dimensions (also known as core affect).
However, research has demonstrated that considering all the 3
dimensions can facilitate a better understanding and
interpretation of persons’ emotional states [21]. Therefore, the
third dimension of emotional states—dominance—needs to be
included in emotion recognition research.

In this study, we aim to fill the aforementioned gaps. Our main
objective is to study the feasibility of detecting emotional states
and transitions every 5 min by applying ML to the data acquired
from smartphone and smartwatch sensors. Our study includes
all the 3 dimensions of emotional states (pleasure, arousal, and
dominance [PAD]) as well as the variability of interpersonal
data. The remainder of this paper is organized as follows. The
Methods section describes the methodology followed in our
study along with an overview of the data set description and
preparation. The Results section shows the results obtained for
emotion transition and detection tasks for both general and
personalized models. The Discussion section presents the results
with a deeper analysis of the features.
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Methods

The Data Set
We obtained data from a publicly available data set called
ExtraSensory [22]. This data set was collected by the researchers
of the University of California, San Diego (UCSD), in 2015 to
2016 for automated context labeling from signals captured via
a wide range of smartphone and smartwatch sensors such as an
accelerometer, a gyroscope, a magnetometer, a compass,
location services, audio, phone state, light, air pressure,
humidity, and temperature [23]. It contains data from 60 subjects
in free-living conditions, who were mainly students (both
undergraduate and graduate) and research assistants at UCSD.
The sensor data were collected every minute, and the contextual
data were self-reported at different intervals by the users. This
data set also contains optionally self-reported discrete emotions
at different time intervals. There were a total of 49 different
discrete emotions (eg, active, calm, happy, sleepy, etc) that were
reported by the subjects and the interval varied from 1 min to
several days. Researchers processed and cleaned the
self-reported data by combining various sources of information
such as location and other labels [23] to make them reliable.
Both the raw and cleaned versions of self-reported data are
available. We used the cleaned version in this study.

The Pleasure, Arousal, and Dominance Model
The PAD model was developed by Mehrabian and Russell [24]
in 1974 to assess individuals’ psychological responses to
environmental perception and experience. Persons’ emotional
states can be perceived in 3 basic dimensions: pleasure, arousal,
and dominance. Pleasure is the dimension of positive or negative
feelings [24]. Arousal represents states of mental responsiveness
[25]. Dominance is the perceptual cognitive dimension of the
feeling influenced or controlled [25]. Our study includes all the
3 dimensions of emotional states.

Data Preparation

Inclusion and Exclusion
In this exploratory study, we aimed to apply ML in the 2 setups.
First, we built personalized models using each person’s data to
analyze the impact of variability across individuals. Second,
we built generalized models using data from multiple individuals
and validated them using data from other individuals who were
left out during training. Although 37 subjects in the
ExtraSensory [22] data set reported their emotions at some
points during data collection, only 18 of them had more than
1000 samples and less than 90% missing data. Therefore, we
considered these 18 subjects in our study. We considered all

signals collected from the smartphone and smartwatch sensors,
timestamps, latitudes, and longitudes as features.

Affective Ratings of Emotions
In this study, we used the Affective Norms for English Words
(ANEW) [26] to map the 49 discrete emotions to the PAD
model. ANEW was developed by the Center for the Study of
Emotion and Attention to provide standardized materials to
researchers studying emotion and attention. The latest ANEW
database [27] contains affective meanings of nearly 14,000
English lemmas rated by a larger cohort of 1827 participants
with a wide range of diversities, including age, occupation, and
educational differences. We used the latest database to map the
49 emotions to the 3 ratings of pleasure (p), arousal (a), and
dominance (d). Therefore, each linguistic emotion label was
converted into 3 continuous values on a scale of 1 to 9, where
1 and 9 indicate the lowest and highest intensity, respectively,
in the corresponding PAD dimension. A list of the 49 emotions
used in this study with their corresponding PAD values is
included in Multimedia Appendix 1 [22,23,28]. We scaled the
emotional ratings (Rs) in the range of –4 to +4 by subtracting
5. Then, we considered 6 states of emotions on the basis of the
intensity (sign) in the 3 dimensions: discordant, pleased,
dissuaded, aroused, submissive, and dominant. We calculated
the prevailing emotional state at any point of time for a person
by considering the absolute maximum value of (Rs) and its sign.
The absolute maximum value indicates the dimension, whereas
the sign represents the direction. Therefore, the emotional state
at any point represents which of the 3 dimensions is prevailing
and in what direction. For example, the emotional rate (Rs) of
happy is 8.47, 6.05, and 7.21 for p, a, and d, respectively. The
corresponding scaled values will be 3.47, 1.05, and 2.21,
respectively. Here, the 3 values are positive, and the prevailing
emotional state is (+p) pleased. Therefore, this emotional state
will be assigned to the class pleased. Similarly, angry (p=2.53,
a=6.2, and d=4.11) will be scaled to –2.47, 1.2, and –0.89,
respectively, with a maximum absolute value of 2.47 and in the
negative direction. Hence, angry will be assigned to the class
discordant. There was 1 case (the emotion interested), where
p and a were equal. In this case, we had 2 dominant dimensions,
and we chose the first positive value (in the order of PAD), p,
to represent the dominant emotion. Although this is a limitation,
there was only 1 emotion interested that had 2 equal values,
and there were few cases with this emotion in the data set
compared with the other 48 emotions. Although we considered
6 categories of emotional states, not all classes were present in
every person’s data. Depending on the person, 1 or 2 emotional
states were absent in the data set. Figure 1 shows the different
emotional states present in each person’s data.
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Figure 1. Proportion (%) of 6 emotional states per person. Pleased and dissuaded are the most frequent, whereas submissive and aroused are the least
frequent emotional states among the 18 persons in our data set.

Feature Engineering
Initially, we merged all features from sensors, location data,
and self-reported contextual information. Sensor measurements
were recorded for 20 seconds every minute, and the data
collection period varied from 3 to 9 days for each person. The
number of samples for each person varied from 1164 to 6263.
The data set contains a mixture of binary and continuous
variables. We also engineered 7 additional temporal and spatial
features from timestamps and location data. Overall, the features
can be categorized as follows.

Motion

We considered 138 features calculated from the raw
measurements from 3 smartphone sensors (an accelerometer, a
gyroscope, and a magnetometer) and 2 smartwatch sensors (an
accelerometer and a compass). These are continuous variables.

Audio

We considered 28 naive features calculated as the averages and
standard deviations of the 13 Mel Frequency Cepstral
Coefficients from the approximately 20-second recording
window and the overall power of the audio.

Location

We considered 17 location features measured from the relative
locations and movement variability in every minute of persons.
We also feature engineered 3 more location features: cl_latitude,
cl_longitude, and geo_dist. We clustered the neighboring
latitudes and longitudes using geohash [29]. Geohash is a
geocoding system invented by Niemeyer [29] that enables the
grouping of neighboring points in a rectangular cell defined by
a precision value. We used a precision value of 8 to cluster the
neighboring latitude and longitude within 38.2 m × 19.1 m. The
rectangular box worked as a bounding box for all neighboring

spatial points falling into this area. After geohashing, the
geocodes were decoded back to clustered latitude (cl_latitude)
and longitude (cl_longitude) values. We calculated the geo_dist
feature as the Haversian distance traveled by the person since
the previous time stamp.

Phone State

We considered 28 binary features that indicate the sensed state
of the phone, such as app states, battery plugged, battery states,
ringer mode, on the phone, Wi-Fi status, screen brightness, and
battery level.

Environmental

The ExtraSensory data set also contains 6 environmental
variables such as light, pressure, humidity, and temperature.
All of these continuous variables were included in our primary
feature list. However, there were many missing values for these
features because not all phones had all the sensors.

Temporal

We engineered 5 variables from the recorded time stamps to
explore the temporal pattern of emotional states and transitions:
minute of the hour, minute of the day, hour of the day, day of
week, and time difference in minutes. As the data set was very
sparse, we calculated the time difference in minutes variable to
measure how many minutes elapsed since the last record. The
remaining 4 variables were categorical variables.

Contextual

We also considered 51 binary contextual labels such as indoor,
outdoor, eating, and in a car, which were self-reported by the
subjects at various intervals. We assumed that this self-reported
information was correct in all cases to focus on automatically
recognizing the dominant emotion without dealing with noisy
estimates of the context. Although the latest ExtraSensory app
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[28] is capable of recognizing contextual information passively
on the basis of raw sensor data, the data set used in this study
did not include the output from this new feature.

A complete list of features is included in Multimedia Appendix
1.

Data Resampling, Cleaning, and Imputation
Our study aims to detect emotional transitions and states in
small time intervals. Therefore, we resampled all data to a
frequency of every 5 min. In the original data, the number of
samples in 5-min intervals varied from 0 to 5. During
resampling, we calculated the average of all continuous
variables, the summation of all binary variables, and the
maximum of all ordinal variables for all samples within the
5-min interval. This allowed us to have an evenly spaced
sampling frequency over time and reduced missing data. All
missing values were replaced by a large negative number to
indicate missingness. Features were standardized by removing
the mean and scaling to unit variance. This was done on the
basis of the training sets.

Ethics Approval
As ExtraSensory is a public data set, research ethics approval
was waived.

Emotional Transition and State Detection

Feature Handling
For emotional transition detection, we considered the changes
in features from the previous window. Therefore, the feature
set Tt,k at any time t was calculated as follows:

In equation 1, the total number of features is n, ft,k represents
the value of the kth feature at the tth window, and ft−1,k represents

the value of the kth feature at the (t-1)th window. The intuition
was to feed the ML models with the changes in information to
find any pattern associated with changes in the captured data.
The original form of the resampled features was used for
emotional state detection.

Next, we analyzed the features to select a smaller set of
important features. We selected the k best features for each
model by applying the SelectKBest feature selection function
from the feature_selection package provided by sklearn, where
the following values were experimented for k: 50, 70, 90, and
110. This feature selection process was applied independently
for emotional transition and state detection and for general and
personalized models. This resulted in a different number of
features for each model. Additionally, columns with more than
30% missing data were removed. Location data were removed
from the general models to make the models as generalizable
as possible.

Machine Learning Models
We developed general models for all individuals as well as
personalized models for each person to explore the impact of
interpersonal variability on the performance of emotional
transition and state detection.

We used 5 supervised ML algorithms: logistic regression (LR),
random forest (RF), XGBoost (XGB), CatBoost (CB), and
multilayer perceptron. Emotional transition detection is a binary
classification problem, where 0 and 1 denote no change and
change in emotional state, respectively, over the last 5-min
window. Owing to the sparsity of the data, the target variable
was overly imbalanced. Figure 2 shows the class imbalance of
emotional state transitions of the 18 persons. Hence, we also
applied 2 imbalance handling techniques that we explain in the
Imbalance Handling section below.
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Figure 2. A stacked bar chart of the distribution of the 2 classes (transition and no transition) per person.

Emotional state detection is a multiclass classification problem,
where we intended to classify the prevailing emotional state of
a person at a given time into one of the following 6 classes: 1,
discordant; 2, pleased; 3, dissuaded; 4, aroused; 5, submissive;
and 6, dominant. However, as shown in Figure 1, the emotional
state classes were also imbalanced. We removed any class from
a person’s data having less than or equal to 6 samples. As a
result, the number of classes varied from 3 to 5 for each person.

Hyperparameters for each model were determined using a
stratified cross-validated grid search over a parameter grid. In
the general models, we used a six-fold, leave-3-people-out
cross-validation, where for each fold, the models were trained
on 15 individuals’data and tested on the remaining 3 data points.
Hyperparameters were tuned by optimizing the F1 score. The

tuned hyperparameters are listed in Multimedia Appendix 1.
For the personalized models, a five-fold, stratified
cross-validation was used to fine-tune the hyperparameters and
select the best-performing models. The total number of samples
per person varied from 257 to 1268. We measured 7
performance metrics to evaluate the classification performance:
accuracy, balanced accuracy, precision, recall, F1 score,
specificity, and area under the receiver operating characteristic
(AUROC) curve. For emotional state detection, the macro
precision, recall, F1 score, specificity, and AUROC curve were
measured to emphasize the detection performance for the
minority classes.

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 9 | e17818 | p. 6http://mhealth.jmir.org/2020/9/e17818/
(page number not for citation purposes)

Sultana et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Imbalance Handling
In this study, Synthetic Minority Over-sampling Technique
(SMOTE) and Support Vector Machines Synthetic Minority
Over-sampling Technique (SVMSMOTE) [30] were applied to
mitigate class imbalance. These are oversampling methods that
create synthetic data of the minority classes to decrease the
imbalance. All imbalance handling techniques were applied
only on training data to avoid data leakage between training
and test sets.

Feature Analysis
We analyzed the importance of the 7 categories of features used
in this study for both emotional transition and state detection.
The detection performance of emotional transition and state
varied for different persons, which we categorized as best,
average, and worst performances. We used the output of the

XGB classifier for the feature importance analysis to explore
the best-performing features.

Software
This study was conducted in Python 3 with the following
packages: Scikit-Learn (0.22), CB, XGB, and SHapley Additive
exPlanation (SHAP). Python codes are publicly available on
GitHub [31].

Results

A summary of the data set containing the number of days and
the percentage of missing data is presented in Table 1. Table 1
shows that the average amount of missing values in the data set
was approximately 63%, where the range varied from 38.66%
to 88.8% for different persons.

Table 1. Summary of the 18 persons’ (P1-P18) data used in this study.

Data (5-min window)Number of daysPerson

Missing dataa (%)Windows with complete data, n

68.92683P1

44.6212758P2

73.215397P3

45.9212458P4

76.045518P5

72.926238P6

44.9212688P7

88.802578P8

84.233177P9

62.548628P10

60.429118P11

67.327528P12

70.837559P13

42.2111647P14

69.926928P15

56.898687P16

38.75293P17

64.887077P18

62.96 (14.71)754.61 (328.06)7.22 (1.63)Average (SD)

aMissing value is the percentage of missing windows (time slots).

Emotional Transition or State Detection Results
In terms of general models for emotional transition detection,
the best-performing classifiers were LR, XGB, and CB. Table
2 shows the results of these classifiers. As shown in Table 2,
the best average AUROC curve of 90.5% was obtained by LR,
followed by XGB and CB with 89.72% and 89.24%,

respectively. The table also shows that using imbalance handling
improved average recall only but did not improve the results in
general. In general, SVMSMOTE produced better results in
terms of imbalance handling than SMOTE for most models.
Complete results including the results using SMOTE are shown
in the Multimedia Appendix 1.
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Table 2. Results of the general models for emotional transition detection on the basis of a six-fold, leave-3-people-out cross-validation.

Imbalance handling using Support Vector Machines
Synthetic Minority Over-sampling Technique

Machine learning modelsa,b (without imbalance
handling)

Characteristics

CBXGBLRCBeXGBdLRc

41.31 (33.75)5.33 (1.46)91.16 (1.24)94.60 (1.58)94.50 (1.54)94.77 (1.64)Accuracy, % (SD)

60.56 (10.45)50.09 (0.18)80.76 (4.68)65.02 (5.47)66.92 (5.41)60.59 (4.26)Balanced accuracy, % (SD)

9.37 (4.73)5.17 (1.58)32.59 (5.47)51.01 (12.13)51.77 (16.98)50.08 (10.55)Precision (macro), % (SD)

82.27 (20.45)100.00 (0.00)69.05 (9.46)31.98 (12.32)36.03 (11.70)22.32 (8.49)Recall (macro), % (SD)

38.84 (36.35)0.17 (0.36)92.48 (0.99)98.05 (1.53)97.81 (1.29)98.85 (0.44)Specificity (macro), % (SD)

74.77 (9.75)60.49 (14.11)90.26 (3.20)89.24 (2.51)89.72 (2.51)90.50 (3.01)AUROCf (macro), % (SD)

15.78 (6.53)9.80 (2.83)43.63 (5.05)36.46 (6.72)38.85 (7.83)29.89 (9.51)F1 (macro), % (SD)

aAverage (SD) across six-fold.
bThe highest value of each metric is italicized.
cLR: logistic regression.
dXGB: XGBoost.
eCB: CatBoost.
fAUROC: area under the receiver operating characteristic.

Table 3 reports the performance measures for the general models
for emotional state detection. As shown in Table 3, the best
results were obtained from LR, CB, and RF. In particular, LR
achieved the best average AUROC curve of 60.23%. Adding

imbalance handling slightly improved some of the metrics such
as specificity and balanced accuracy. The full results from all
models and imbalance handling techniques can be found in
Multimedia Appendix 1.

Table 3. Results of the general models for emotional state detection on the basis of a six-fold, leave-3-people-out cross-validation.

Imbalance handling using Support Vector Machines
Synthetic Minority Over-sampling Technique

Machine learning modelsa,b (without imbalance
handling)

Characteristics

RFCBLRRFeCBdLRc

38.99 (8.71)39.52 (13.24)32.61 (2.65)44.04 (14.42)44.10 (13.93)40.60 (9.50)Accuracy, % (SD)

23.27 (2.43)23.32 (2.91)30.66 (8.82)21.84 (2.03)24.32 (3.23)22.83 (2.64)Balanced accuracy, % (SD)

25.33 (2.20)27.18 (10.23)26.48 (2.32)20.36 (7.50)29.52 (11.39)34.25 (5.26)Precision (macro), % (SD)

25.94 (2.08)27.81 (5.77)28.27 (7.76)29.40 (3.87)33.29 (8.57)38.86 (6.68)Recall (macro), % (SD)

76.93 (2.63)75.36 (4.66)82.93 (0.76)71.23 (4.73)72.40 (3.62)63.37 (12.40)Specificity (macro), % (SD)

55.43 (4.37)56.83 (6.14)60.55 (3.41)55.21 (4.31)58.58 (6.97)60.23 (8.15)AUROCf (macro), % (SD)

21.81 (3.24)21.20 (6.95)23.04 (2.82)19.20 (5.19)25.45 (10.72)30.60 (5.83)F1 (macro), % (SD)

aAverage (SD) across six-fold (average value for each metric).
bThe highest value of each metric is italicized.
cLR: logistic regression.
dCB: CatBoost.
eRF: random forest.
fAUROC: area under the receiver operating characteristic.

For the personalized emotional transition detection models, all
models performed quite well in general, and it was not possible
to pinpoint 1 single best ML model and imbalance handling
technique for all the 18 persons. Table 4 reports the performance
measures obtained from RF, XGB, and CB. The standard
deviations of the measures indicate large variabilities across 18
persons. The best measures highlighted in Table 4 demonstrate

the variabilities of the measures across different ML models.
As shown in Table 4, the best average AUROC curve of 88.01%
was obtained by RF without imbalance handling, whereas
SVMSMOTE helped improve recall in general (especially in
XGB) and produced the best average AUROC curve of 88.7%
with CB. The detailed results of all classifiers and imbalance
handling techniques are listed in the Multimedia Appendix 1.
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Table 4. Results of the personalized models for emotional transition detection on the basis of the 5-fold, stratified cross-validation.

Imbalance handling using Support Vector Machines
Synthetic Minority Over-sampling Technique

Machine learning modelsa,b (without imbalance
handling)

Characteristics

CBXGBRFCBeXGBdRFc

92.34 (5.01)89.54 (6.06)90.31 (7.17)94.29 (3.17)94.82 (2.55)93.49 (4.73)Accuracy, % (SD)

70.28 (8.06)75.86 (8.52)66.80 (5.93)66.89 (8.97)65.91 (7.93)66.88 (10.08)Balanced accuracy, % (SD)

42.37 (14.18)35.69 (13.32)34.29 (17.13)48.67 (18.09)52.34 (17.22)49.97 (21.23)Precision (macro), % (SD)

45.82 (15.17)60.76 (16.37)40.77 (13.49)36.45 (18.10)33.71 (15.69)37.12 (20.78)Recall (macro), % (SD)

94.75 (4.53)90.97 (6.03)92.82 (7.63)97.34 (2.33)98.12 (1.42)96.65 (4.91)Specificity (macro), % (SD)

88.73 (6.24)87.74 (6.63)85.08 (7.20)87.62 (7.04)87.84 (6.81)88.01 (5.67)AUROCf (macro), % (SD)

40.44 (13.88)41.85 (13.46)32.92 (12.48)38.34 (17.07)38.00 (15.92)36.40 (17.87)F1 (macro), % (SD)

aAverage (SD) across 18 persons.
bThe highest value of each metric is italicized.
cRF: random forest.
dXGB: XGBoost.
eCB: CatBoost.
fAUROC: area under the receiver operating characteristic.

Compared with the performance of the general models for the
emotional state detection task, the performance of the
personalized models was substantially better. Table 5 reports
the performance measures obtained from CB, XGB, and RF.
As shown in Table 5, the best average AUROC curve of 96.33%
was obtained by CB followed by XGB and then RF. Applying

imbalance handling techniques slightly improved the balanced
accuracy, recall, and specificity. While all classes were
maintained in the general models, the number of classes varied
between 4 and 5 across the personalized models. Complete
results including those from SMOTE are shown in the
Multimedia Appendix 1.

Table 5. Results of the personalized models for emotional state detection on the basis of a five-fold, stratified cross-validation.

Imbalance handling using Support Vector Machines
Synthetic Minority Over-sampling Technique

Machine learning modelsa,b (without imbalance
handling)

Characteristics

RFXGBCBRFeXGBdCBc

78.21 (10.78)81.54 (8.90)85.27 (9.64)80.92 (10.69)82.73 (7.18)86.53 (8.08)Accuracy, % (SD)

70.72 (13.92)74.50 (12.03)77.73 (13.34)67.85 (14.10)69.51 (12.18)74.92 (13.55)Balanced accuracy, % (SD)

75.94 (12.02)77.71 (11.09)84.44 (9.83)82.11 (8.67)82.49 (7.32)87.03 (9.37)Precision (macro), % (SD)

73.30 (11.91)77.23 (10.36)80.00 (10.74)71.96 (10.87)74.54 (7.70)77.88 (11.35)Recall (macro), % (SD)

90.19 (5.67)91.96 (4.71)93.15 (4.84)89.83 (6.58)90.48 (5.64)92.92 (4.80)Specificity (macro), % (SD)

92.93 (5.27)94.51 (3.39)96.26 (3.77)93.74 (5.62)94.81 (2.96)96.33 (3.26)AUROCf (macro), % (SD)

70.73 (13.34)74.51 (12.05)79.47 (12.00)72.46 (12.07)74.87 (8.45)79.48 (11.38)F1 (macro), % (SD)

aAverage (SD) across 18 persons.
bThe highest value of each metric is italicized.
cCB: CatBoost.
dXGB: XGBoost.
eRF: random forest.
fAUROC: area under the receiver operating characteristic.

Feature Analysis Results
Using the output of the XGB classifier for feature importance
analysis, we explored the best-performing features. Figures 3
and 4 show the 20 most important features of the general model
using XGB and SHAP [32] for emotional transition and state

detection, respectively. The contextual information (prefix label)
ranked higher among the 7 categories of features. Contextual
information features appear among the top 4 features for both
emotional transition and state detection. Other important features
included motion, phone state, and temporal for both emotional
transition and state detection.
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Figure 3. Feature importance for emotional transition detection of the general model obtained using XGBoost and shapley additive explanation. The
figure represents the contribution of the corresponding feature to detect whether there is a transition.
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Figure 4. Feature importance for emotional state detection of the general model obtained using XGBoost and shapley additive explanation. The
color-coded portions represent the contribution of the corresponding feature to detect different states (classes) of emotions: 1, discordant; 2, pleased;
3, dissuaded; 4, aroused; 5, submissive; and 6, dominant. SHAP: SHapley Additive exPlanation.

We also explored the influential feature categories by
considering the 3 most important features across all 18 persons.
Figures 5 and 6 demonstrate the importance of the 7 feature
categories for emotional transition and state detection,
respectively. This was done manually; each category is a bin
of a set of features as described in the Feature Engineering
section. Instead of the feature itself, we considered which bins
the top-3 features belong to. This was done over folds for each
person. For calculation, we considered a3 empty matrix, where
7 is for each category and 3 is for the top 3 ranks. Then we

incremented the counter of the corresponding category and
ranked the top 3 features of each fold for each person. For
example, in Figure 3 (although for a general model but for the
sake of explanation), the top 3 features are label: SITTING,
If_measurement:battery_level, and label: Source, where the
first and third features belong to the contextual category and
the second feature falls under the phone state category. This
will increase the first and third rank counters of the contextual
category and the second rank counter of the phone state
category. This was done based on the XGB classifier and SHAP.
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Figure 5. Importance of feature categories for emotional transition detection. The color-coded portions of each category represent their contributions
to the top 3 ranks of features of 18 persons.
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Figure 6. Importance of feature categories for emotional state detection. The color-coded portions of each category represent their contributions to the
top 3 ranks of features of 18 persons.

Figure 5 shows that the most important feature categories for
emotional transition detection are contextual, motion, and audio
signals, whereas the least important categories are temporal and
environmental features. In contrast, as shown in Figure 6, the
most important feature categories for emotional state detection
are contextual and temporal, whereas the least important
category is audio signals. Unlike emotional transition, emotional
state was more influenced by environmental and location
features. This also explains why the personalized emotional
state detection models performed better than the general models
where the location data were ignored. However, contextual data
played the most important role in both emotional transition and
state detection.

Discussion

The 4 major findings of this exploratory study are as follows:

• Emotional transitions in small intervals are detectable from
data captured via smartphones and smartwatches using ML
techniques. We observed that the contextual data, sensed
phone states, and motion-related signals are the most
influential features for emotional transition detection.

• The prevailing emotional states and the direction in the 3
dimensions of the PAD model are detectable by applying
ML algorithms to information captured by smartphones
and smartwatches. The contextual and temporal data play
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important roles in the detection of emotional states in small
time intervals.

• We observed a wide range of interpersonal variations in
terms of the detectability of emotional transitions or states.
In terms of the personalized models, no single ML model
performed the best across all 18 persons.

• Personalized models can better detect emotional states than
general models. We believe that a given individual’s data
contributes most to detecting their own emotional state
rather than using data from other individuals.

This study shows the feasibility of detecting persons’emotional
states and transitions passively by training ML models on the
daily data sensed via smartphones and smartwatches. In practice,
these findings will help in reducing self-reports, enabling
seamless tracking of daily emotions. For example, a person can
be prompted to verify his or her emotional states only if the
smartphone app senses a transition in the emotional state of the
person. In addition, it can provide the capability of tracing the
influential contextual variables that trigger the transition, which
can be adjusted by the person for better self-management and
well-being. Our investigation showed that self-reported
contextual information played the most important role in both
emotional transition and state detection. Although the contextual
data are self-reported in this data set, latest research shows that
contextual data can be labeled from sensed data by smartphone
apps automatically without human intervention [28].

The emotional transition detection results obtained in this study
are promising but not as good as the emotional state prediction
performance. One reason for this could be the highly imbalanced
classes, which can be resolved largely by acquiring data for a
longer period of time (we had a noticeable improvement in the
general models). Moreover, performance can be improved by
combining contextual information with other dominant factors
of emotions such as personality traits, social communication
(eg, incoming-outgoing phone calls, duration, text messages,
social media usage), and physiological signals (eg, heart rates,
skin conductance) captured via smartphones and smartwatches.

Unlike emotional transition detection, the performance of
general models for emotional state detection was poor. Apart
from being a harder task (six-class classification), we believe
this is also due to the high variability across different
individuals. Many state-of-the-art studies stressed the need for
further research on interperson variations in affect, mood, and
mental health [11,33]. One of the aims of our research was to
address this identified gap by exploring subjective variabilities
in emotional state and transition detection. Therefore, in addition
to the general models, we built personalized models. In these
personalized models, each model was trained and tested on each
person’s data to explore the impact of interpersonal variability
on the performance of emotional transition and state detection.
The results of the personalized and generic models of this study
bolster the need to consider subjective variability while building
ML models for emotional state and change detection.

We also observed that simpler models, such as LR, performed
better for emotional transition detection and complex models,
outperformed during emotional state detection. One reason for
this could be the consideration of changes in features between
2 consecutive windows that made the data set sparser (containing
many 0s) and smaller for emotional transition detection.
Although the personalized models performed better than the
general models, especially in the emotional state detection task,
the general models can be used as baseline models, which can
subsequently be personalized for each person.

Although research has suggested the inclusion of dominance
for a better understanding of emotional states [21], it was
ignored in the existing works on emotional state and mood
recognitions. Our study showed that the prevailing emotional
state and its direction in all the 3 dimensions can be detected
using ML models on contextual information and data sensed
via mobile phones and wearable devices. It can provide
data-driven insights on which of the 3 dimensions of emotion
prevailed for the person when, where, and in what direction,
eventually leading the person toward effective lifestyle changes
and better self-management.

Our study shows that a large number of interpersonal
variabilities yield superior detection of the emotional transition
and state for some persons than others. We manually
investigated the reason by considering 3 cases: best, worst, and
average, to explore the association between everyday contexts
and emotions of individuals. We selected persons 9, 2, and 14
as the best, worst, and average cases, respectively. We plotted
the heatmaps of daily spatial contexts, activities, and emotional
states over time for the worst, best, and average cases in Figures
7, 8, and 9, respectively. The 3 figures show that the majority
of the data were collected when the persons were indoors or at
home. For the worst case shown in Figure 7, the day-to-day
activities and the emotional states of the person do not exhibit
noticeable patterns over time. This might explain why the ML
models were unable to capture a strong pattern of the contexts
and emotions. On the other hand, for the best case shown in
Figure 8, we observe clearer patterns in spatial context,
activities, and emotional states over time despite a large amount
of missing data. For example, in the best case, the person’s
emotional state is dissuaded while lying down and pleased while
watching television at home. The average case shown in Figure
9 exhibits some clear patterns of spatial context, activities, and
emotional states over time. For example, a person reported
pleasure mostly while being with friends and dissuaded or
discordant while sleeping at home or outdoors. Therefore,
regular patterns in lifestyle are important for the predictability
of emotional state and transition detection, and this study
showed that such patterns can be captured by leveraging ML
algorithms and data acquired via smartphones and
consumer-grade wearable devices.
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Figure 7. Daily life versus emotional states of person 2 (worst case). The x-axis plots 288 windows per day, and the y-axis plots the number of days
in the data collection period of person 2. The color-coded regions represent (a) spatial contexts, (b) activities, and (c) emotional states in each window
over the period of data collection (8 days). The white regions represent missing data.
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Figure 8. Daily life versus emotional states of person 9 (best case). The x-axis plots 288 windows per day, and the y-axis plots the number of days in
the data collection period of person 9. The color-coded regions represent (a) spatial contexts, (b) activities, and (c) emotional states in each window
over the period of data collection (8 days). The white regions represent missing data.

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 9 | e17818 | p. 16http://mhealth.jmir.org/2020/9/e17818/
(page number not for citation purposes)

Sultana et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 9. Daily life versus emotional states of person 14 (average case). The x-axis plots 288 windows per day, and the y-axis plots the number of days
in the data collection period of person 9. The color-coded regions represent (a) spatial contexts, (b) activities, and (c) emotional states in each window
over the period of data collection (7 days). The white regions represent missing data.

Limitations
There are limitations in this study. First, the results are on the
basis of a relatively small data set from a small geographical
area. In addition, the subjects lacked diversity in age and
occupation as the majority were students and researchers at
UCSD. Moreover, some spatiotemporal patterns may not have

been captured in the data due to large amounts of missing values
as well as limited data collection periods (maximum 9 days).

Owing to the small number of participants included in the data
set, it was infeasible to hold a test set in conjunction with
cross-validation for hyperparameter tuning. As a result, the
classification performances reported in this paper are likely
overestimated.
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In addition, the emotional transition and state classes were
highly imbalanced, where 1 or 2 classes of emotional states
were absent in some persons’ data. Therefore, we suggest
replicating our experiments on larger data sets obtained from
diverse populations and geographic locations for longer periods
of time.

Furthermore, the contextual labels that the classifications were
based on were self-reported. Reliance on self-reported data is
another limitation of the data set. We assumed that this
self-reported information was correct in all cases. Hence, the
results from this study partially depend on the accuracy of this
self-reported information. To extend this study toward truly
passive emotional monitoring, future research should explore
eliminating self-reporting by predicting contextual information
on the basis of raw sensor data.

Although mapping the emotions into the PAD system results
in 3 dimensions, we focused only on the most dominant one.
This simplified the rich, multidimensional information that the
PAD system provided for making classification tasks more
feasible. An alternative is to create a new emotion mapping
system specifically for the ExtraSensory data set via clustering

in the 3D space defined by PAD. This is a worthwhile future
research direction.

Another major limitation is the absence of health-related
information such as BMI, gender, age, and mental health
biomarkers in the data. Therefore, further investigation is needed
to shed light on the association between health status and
emotional transition and state of persons.

Conclusions
In this study, we explored the feasibility of detecting emotional
transitions and states by applying ML techniques to daily data
captured via smartphones and smartwatches. Our results
established an association between emotional transition and
state and contextual information. We also investigated the salient
contextual variables influencing emotional states and transitions.
The interpersonal variability in our results bolsters the need for
further research on personalized prediction of emotional states
and transitions. The findings of this study support the utility of
passive data collection, reduced self-reporting, enhanced
tracking of psychological well-being, self-awareness,
self-management, and risk prediction and just-in-time
interventions.
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ANEW: Affective Norms for English Words
AUROC: area under the receiver operating characteristic
CB: CatBoost
LR: logistic regression
ML: machine learning
PAD: pleasure, arousal, dominance
RF: random forest
SHAP: shapley additive explanation
SVMSMOTE: Support Vector Machines Synthetic Minority Over-sampling Technique
UCSD: University of California, San Diego
XGB: XGBoost
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