
Original Paper

Neural Network–Based Algorithm for Adjusting Activity Targets
to Sustain Exercise Engagement Among People Using Activity
Trackers: Retrospective Observation and Algorithm Development
Study

Ramin Mohammadi1,2, PhD; Mursal Atif2, BA; Amanda Jayne Centi2, PhD; Stephen Agboola2,3,4, MD, PhD; Kamal

Jethwani2,3,4, MD, PhD; Joseph Kvedar2,3,4, MD; Sagar Kamarthi1,2, PhD
1Northeastern University, Boston, MA, United States
2Partners connected for health, Boston, MA, United States
3Massachusetts General Hospital, Department of Dermatology, Boston, MA, United States
4Harvard University, Harvard Medical School, Boston, MA, United States

Corresponding Author:
Sagar Kamarthi, PhD
Northeastern University
360 Huntington Ave
Boston, MA, 02115
United States
Phone: 1 6173733070
Email: sagar@coe.neu.edu

Abstract

Background: It is well established that lack of physical activity is detrimental to the overall health of an individual. Modern-day
activity trackers enable individuals to monitor their daily activities to meet and maintain targets. This is expected to promote
activity encouraging behavior, but the benefits of activity trackers attenuate over time due to waning adherence. One of the key
approaches to improving adherence to goals is to motivate individuals to improve on their historic performance metrics.

Objective: The aim of this work was to build a machine learning model to predict an achievable weekly activity target by
considering (1) patterns in the user’s activity tracker data in the previous week and (2) behavior and environment characteristics.
By setting realistic goals, ones that are neither too easy nor too difficult to achieve, activity tracker users can be encouraged to
continue to meet these goals, and at the same time, to find utility in their activity tracker.

Methods: We built a neural network model that prescribes a weekly activity target for an individual that can be realistically
achieved. The inputs to the model were user-specific personal, social, and environmental factors, daily step count from the previous
7 days, and an entropy measure that characterized the pattern of daily step count. Data for training and evaluating the machine
learning model were collected over a duration of 9 weeks.

Results: Of 30 individuals who were enrolled, data from 20 participants were used. The model predicted target daily count with
a mean absolute error of 1545 (95% CI 1383-1706) steps for an 8-week period.

Conclusions: Artificial intelligence applied to physical activity data combined with behavioral data can be used to set personalized
goals in accordance with the individual’s level of activity and thereby improve adherence to a fitness tracker; this could be used
to increase engagement with activity trackers. A follow-up prospective study is ongoing to determine the performance of the
engagement algorithm.

(JMIR Mhealth Uhealth 2020;8(9):e18142) doi: 10.2196/18142
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Introduction

Background
Studies have reported the efficacy of physical activity in
reducing the risk of disease; however, physical inactivity is on
rise in the United States [1]. Considering that physical inactivity
was the fourth leading cause of mortality in 2016 [2], there is
much emphasis on developing effective methods to maintain
healthy levels of physical activity. One promising solution is
wearable fitness trackers that enable individuals to monitor their
activity levels and patterns to ensure a healthy level of physical
activity [3].

It is reported that about 20% of the general health-tracking
population use smart devices such as medical gadgets, mobile
phone apps, or online tools to track their health data [4]. The
use of technology to objectively monitor physical activity is
associated with higher levels of activity [5]. However, the
potential benefits derived from the use of physical activity
trackers are challenged by the limited and transient adoption of
devices that necessarily require sustained use to exert their
intended effect. Continued engagement with fitness trackers is
an issue that warrants further investigation [5] A previous study
[6] found two factors associated with the adoption and sustained
use of physical activity trackers: (1) the number of digital
devices owned by the participants, and (2) the use of activity
fitness trackers and other smart devices by the participants’
family members. The existence of these two factors bode well
for the increased use of activity trackers; one study [1]
demonstrated that motivational factors are associated with
physical activity levels. Time constraints, fatigue, and aversion
to exercise are some of the barriers to engaging in physical
activity [1]. It has been reported that adjustments to activity
targets are likely to enhance the users’ commitment to physical
activity and engagement with fitness trackers [7].

With the rise of machine learning and availability of activity
tracker data, it is possible to create a model that can learn from
users’ behavior and adjust activity targets. Machine learning
methods have broadly been applied to many health care areas
such as cancer staging, risk assessment, and drug
recommendation systems [8]. Researchers have studied the
accuracy of activity trackers for energy expenditure assessment
[9]. Having an automated personal trainer enabled by data
mining techniques can be useful for an amateur athlete who
cannot afford a personal trainer [10]. Similarly, effective
feedback methods can be used for helping both athletes and
coaches [11].

Although, there have been some attempts to study the benefit
of activity trackers, there is room for studies on how to make
use of activity trackers on a sustained basis. This study, to the
best of our knowledge, is the first of its kind to develop a
machine learning method to adjust the activity target for activity
trackers. Machine learning techniques such as, but not limited
to, lasso regression, ridge regression, Bayesian ridge regression,
neural networks, random forest regression, and support vector
regression have been used for prediction in the medical field
[12].

Feature selection is an important step for improving model
performance [13]. Prior to applying machine learning
techniques, it is essential to study the data to find features that
might negatively or positively affect the model [8]. In this work,
we applied two feature selection techniques with a support
vector machine [14]: principal component analysis [15] and
recursive feature elimination.

We compared predictive models developed over (1) all features,
(2) features generated by principal component analysis, (3)
features selected by recursive feature elimination, and (4)
features found from the authors’ previous study [6] that
characterizes participants environments. Figure 1 shows the
study flow diagram highlighting the key steps undertaken in
this study.
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Figure 1. Study flow diagram.

Objective
The purpose of this study was to develop a predictive model to
estimate achievable weekly step goals. By setting realistic targets
that are neither too easy nor too difficult to achieve, activity
tracker users can be encouraged to continue to meet their weekly
activity goals, and at the same time, to find utility of the tracker.
We chose individuals who were overweight as our first use case,
because the benefits of sustaining or even increasing physical
activity in this population are well known, while there have
been a lack of sustained interventions addressing this issue
[16-18].

Methods

Data Collection
The study was designed as a 9-week, nonrandomized pilot in
which the data were analyzed retrospectively. For this purpose,

adults (N=30) with a BMI of 25 kg/m2 or greater were enrolled
from a local Massachusetts General Hospital–affiliated clinic.
After screening the participants and seeking their consent, the
research team directed the study participants to visit the
Wellocracy website [19] to read information regarding the study
and review different types of activity trackers (and their features)
available for their use during the 9-week study. The study staff
assisted the participants with the device setup process as needed.
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For the study, 27 participants chose to use the FitBit Charge
(Fitbit Inc) model, 2 chose the FitBit One (Fitbit Inc), and 1
chose the FitBit Zip (Fitbit Inc); 10 participants data were not
used for analysis (7 participants either did not use the activity
trackers at all or used less than 3 days a week, and an additional
3 participants demonstrated irregular use of their activity
trackers on week by week basis). The data from the remaining
20 participants were used for model building.

The following surveys were collected from each participant
both at enrollment and at the closeout stages: Behavioral
Regulation in Exercise Questionnaire (BREQ-2) [20]; Barriers
to Being Active (BBA) [21]; Patient Health Questionnaire
(PHQ-8) [22]; Prochaska Stage of Change [23]; and
Patient-Reported Outcomes Measurement Information System
(PROMIS) Global-10 [24]. These surveys included questions
about technology use and the ownership of electronic devices
(BREQ-2), questions related to perceived barriers to exercise
and activity (BREQ-2 and BBA), depression screening questions
(PHQ-8), stages of change (Prochaska), and general health
questions (PROMIS Global-10).

The BREQ-2 is designed to gauge the extent to which reasons
for exercise are internalized and self-determined based on the
following categories: motivation, external, introjected, identified,
and intrinsic. In contrast, the BBA assesses whether participants
gauge certain categories as reasons for inactivity and includes
energy, willpower, time, and resources. A score of 5 or greater
for a category indicates that it is a substantial barrier to a
person’s ability to exercise.

Participants were instructed to continuously wear the activity
tracker for the entire period of the study. The first week was
treated as a run-in period. Participants were contacted minimally
during the remaining 8-week period to facilitate observation of
participants’ activity tracker habits without interference. At the
end of the study, participants completed a closeout survey either
online or in paper format and underwent a phone interview to
gather information on their experiences during the study. All
interviews were conducted and transcribed for analysis by a
trained neuropsychologist.

Experimental Setting
We divided the data into disjoint training and testing sets. We
chose 16 participants’data as training data set and the remaining
4 participants’ data were used as the testing data set. We

explored and fine-tuned hyperparameters using the training data
set. Each participant was informed and had a fixed weekly
activity goal for weeks 2 through 8; it was fixed for each
participant at 110% of their week 1 average daily step count.
Since we didn’t have a means to adjust the activity goal for each
week for each participant, this value was used as an estimate of
the personalized average daily step count goal for each week.
We ignored the week if a participant used the tracker device for
less than 3 days during the week.

Data Preprocessing
We collected all data from questionnaires and the participants’
daily step count data from their activity trackers. The
questionnaires generated 96 variables. The variables were
screened to determine candidate predictors for building a
machine learning model. In the first pass of the variable
screening process, 11 variables whose variance was zero were
eliminated. In the second pass, we examined pairwise
correlations among all remaining variables to eliminate
redundant ones. Since we found that all pairwise correlations
were less than 0.6, we considered all variables to be
nonredundant.

Machine Learning Techniques
Figure 2 presents the models used to predict participants’activity
target. Selection of these models was based on their suitability
and capabilities. Bayesian ridge regression estimates a
probabilistic model of a ridge regression [25]. Lasso regression
is robust to overfitting due to its regularization penalty [26].
Random forest models are versatile for numeric and categorical
predictors and for classification and regression tasks. Random
forest models can also be interpreted easily and are less
susceptible to underfitting [27]. Neural network models consist
of hundreds or thousands of neurons that perform mathematical
operations to recognize patterns [28]. Support vector regression
models are regression models whose optimization is unaffected
by the dimensionality of the data [14].

We employed these models in four cases: (1) using all features,
(2) using new features built by principal component analysis,
(3) using important features found by recursive feature
elimination, and (4) using a subset of features found from the
authors’ previous study [6] that characterizes participants
environments.
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Figure 2. A schematic depicting models developed using the training data.

Feature Selection and Extraction
In this study, we used participants’ mental health, behavioral
information, and weekly activity performance as inputs. For
every 7-day moving window, the subsequent 7 days were
considered as the forthcoming week. The questionnaires
provided a highly redundant and low variance data set. These
features coupled with 7 daily steps counts of the week and a
normalized Shannon entropy (Es) value of the weekly step count
were considered candidate predictors for target step count for
each individual participant for the forthcoming week [29]. The

normalized Shannon entropy was computed as where
i denotes the day, pi denotes the portion of the total weekly steps
completed on day i, and N denotes the number of days per week
(ie, 7). The normalized Shannon entropy varies between 0 and
1. A value close to 0 indicates that the daily step counts of the
participant throughout the week were irregular; in contrast, a
value close 1 indicates that the step counts were consistent.

In total there were 93 candidate features for building the
predictive models: 85 features from the questionnaires, 7
features from the daily steps of the week, and one weekly feature
(ie, Shannon entropy). We used all 93 features for models
developed in case 1.

For case 2, we developed a principal component analysis model.
Principal component analysis is a dimension reduction technique
that is widely used for extracting uncorrelated features
components from correlated variables [14]. The principal
component analysis used the 85 features from the questionnaires.
We combined the principal components with the 7 daily and 1
weekly step count features.

In case 3, to identify the important features, we performed
recursive feature elimination with support vector regression
using the 85 questionnaire variables. We augmented these
features with the 7 daily step count features and the normalized
Shannon entropy value of the weekly step count.

Lastly, for case 4, we selected 2 features that were found to be
important from the questionnaire in our previous work [6]
studying the link between the participants’environmental factors
and the adherence to the use of activity trackers. These features
were (1) the number of digital devices owned by the participants,
and (2) the use of activity fitness trackers and other smart
devices by the participants’ family members. We appended
these two features with the daily step count features, and
Shannon entropy of the weekly step count.

Model Evaluation
We trained the models in this study with 10-fold cross-validation
using the training data set. We compared the performance of

the models using mean absolute error (MAE) and adjusted R2.
We tested the final models (models A, B, C and D) of each case
(cases 1, 2, 3, and 4) on an unseen test data set.

Statistical Analysis
We used Python (version 3.5.0) and R (version 3.4.1) for model
development and statistical tests. We performed a one-sided
paired t test (P<.05 were deemed significant) for statistical
comparison between the models. The null hypothesis was that
the mean error of two models were equal, with the alternative
hypothesis that the candidate model had a lower mean error
than the mean error given by the comparison model.
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Results

Participant Characteristics
We present the characteristics of the study participants in Table
1. Among them, 10 participants were eventually removed from
the study since they stopped using the activity trackers.

Over the span of 8 weeks, not all participants met their
week-by-week step objectives. By and large, under half of
participants met their progression objective every week (see
Table 2). We present the distribution step count for all
participants for each of the 9 weeks in Figure 3. We also
presented the distribution of steps for each day of the week
during the 9-week study period (see Figure 4).

Table 1. Patient demographic data.

Participants (n=20)Enrolled (N=30)Variable

47.7 (10.2)48.9 (9.5)Age (years), mean (SD)

  Gender, n (%)

6 (30)9 (30)Male 

14 (70)21 (70)Female 

  BMI at enrollment

32.8 (4.7)32.5 (4.6)Mean (SD) 

25.0-41.225.0-41.2Range 

  Race, n (%)

14 (70)21 (70)White 

1 (5)1 (3)American Indian or Alaskan Native 

2 (10)3 (10)Black or African American 

3 (15)3 (10)Hispanic 

0 (0)2 (6)Unknown 

  Marital status, n (%)

6 (30)8 (27)Married 

5 (25)8 (27)Divorced or separated 

6 (30)8 (27)Single (never married) 

2 (10)3 (10)Living with partner 

1 (5)1 (3)Widowed 

0 (0)2 (7)No response 

  Education, n (%)

3 (15)5 (17)12 years or completed high school or GED 

2 (10)5 (17)Some college 

8 (40)9 (30)College graduate 

2 (10)2 (7)Post–high school 

1 (5)2 (7)Postgraduate 

2 (10)3 (10)Less than high school 

1 (5)4 (13)Unknown 

  Employment status, n (%)

12 (60)15 (50)Employed/self-employed 

3 (15)5 (17)Disabled 

2 (10)5 (17)Unemployed 

1 (5)1 (3)Student 

1 (5)1 (3)Retired 

1 (5)3 (10)Unknown 
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Table 2. Participants meeting their average daily step goal for the week (110% of the average daily step count in week 1) over the course of the study.

Participants (n=20) who met goal, n (%)Week

4 (20)2

10 (50)3

9 (45)4

4 (20)5

8 (40)6

6 (30)7

4 (20)8

5 (25)9

Figure 3. Weekly distribution of steps among all 20 participants.
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Figure 4. Step count distribution on each day of the week.

Parameter Tuning and Feature Selection
We performed a grid-search with 10-fold cross validation over
the training data set. Lasso regression with α=0.01, Bayesian
ridge regression with α=0.0001, and support vector regression
with polynomial kernel of degree 2 with a regularization
parameter of 0.00001 gave the best performance. Optimal

parameters for random forests and neural networks depend on
feature selection techniques. We found 30 variables from the
questionnaires to be important using recursive feature
elimination with support vector regression (see Figure 5). In
the case of principal component analysis, the top 14 principal
components explained 100% of the variance of the variables in
questionnaires as shown in Figure 6.
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Figure 5. Number of features found to be important by support vector regression.
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Figure 6. Number of components found by principal component analysis.

Model Performance
We report the performance for all models of 10-fold
cross-validation with the training data set in Table 3. We used

mean absolute error (MAE) and adjusted R2 for the model
comparison. Among all models developed, the Bayesian ridge
regression model that used 93 features (case 1) gave the best
performance for the training set (see Figure 7; MAE 1672, 95%

CI 1640-1704; adjusted R2=0.85). The Bayesian ridge regression
model is referred to as model A in the rest of this paper.

Similarly, in case 2, we appended 14 principal components
extracted from principal component analysis to the 7 daily and
1 weekly step count features resulting in 22 features. A random

forest model (MAE 1700, 95% CI 1664-1737; adjusted R2=0.91)
gave the best performance among all models (see Figure 8).
This random forest model is referred to as model B for the rest
of this paper.
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Table 3. Results of 10-fold cross-validation with training set.

P value95% CIMean MAECase and models

1 All features

Model refb1640-17041672Bayesian ridge regressiona

.0021985-20472016Lasso

.0022386-24642425Random forest

.0021813-18991856Neural network

.0022386-24642425Support vector regression

2 Feature selection using principal component analysis

<.0012107-21712139Bayesian ridge regression

<.0012005-20672036Lasso

Model ref1664-17371700Random forestc

.031926-19851956Neural network

<.0012862-30132938Support vector regression

3 Feature selection using recursive feature elimination

.0022100-21632131Bayesian ridge regression

.0021995-20572026Lasso

Model ref1739-18091774Random forestd

.0021855-19581906Neural network

.0022473-26242548Support vector regression

4 Feature selected from previous study

<.0012537-25922564Bayesian ridge regression

<.0012429-24852457Lasso

.041768-18521810Random forest

Model ref1589-16551622Neural networke

<.0012864-30162940Support vector regression

aModel A (ie, this model gave the best performance in case 1).
bReference model for comparisons.
cModel B (ie, this model gave the best performance in case 2).
dModel C (ie, this model gave the best performance in case 3).
eModel D (ie, this model gave the best performance in case 4).
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Figure 7. Cross-validation performance of models using all questionnaire features, 7 daily step count features, and weekly entropy feature. BRIDGE:
Bayesian ridge regression; NN: neural network; RF: random forest; SVR: support vector regression.
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Figure 8. Cross-validation performance of models using features generated by principal component analysis, daily step count features, and weekly
entropy feature. BRIDGE: Bayesian ridge regression; NN: neural network; RF: random forest; SVR: support vector regression.

In case 3, we appended variables found by recursive feature
elimination to the 7 daily step counts and 1 weekly entropy
feature which resulted in 39 features. A random forest model

(MAE 1774, 95% CI 1739-1809; adjusted R2=0.81) offered the
best performance among all the models developed with these
features (see Figure 9). We refer to this random forest model
as model C.

Finally, for case 4, we coupled two features found in the
previous study [6] with the 7 daily step counts and 1 weekly
entropy feature which resulted in 10 features. A neural network
gave the best performance across all models (MAE 1622 steps,

95% CI 1589-1655; adjusted R2=0.89) (see Figure 10). We refer
to this neural network model as model D.

Model D gave the best predictive performance among all the
models. It had the lowest MAE across all models explored. We
compared the predictive power of the model D (neural networks)
with those of models A, B, and C using the testing data set. We
found that model D gave a better predictive performance as
shown in Figure 11. We performed comparisons using t tests
between the errors generated by the model D and errors
generated by models A, B, and C as shown in Table 4. We
observed that model D’s lower errors in comparison to those
of Bayesian ridge regression (model A: P=.01), random forest
(model B: P<.001), and random forest (model C: P=.01) models
were significant.

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 9 | e18142 | p. 13https://mhealth.jmir.org/2020/9/e18142
(page number not for citation purposes)

Mohammadi et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 9. Cross-validation performance of models using all features given by recursive feature elimination, 7 daily step count features, and weekly
entropy feature. BRIDGE: Bayesian ridge regression; NN: neural network; RF: random forest; SVR: support vector regression.

Figure 10. Cross-validation performance of models using features generated from previous knowledge, 7 daily step count features, and weekly entropy
feature. BRIDGE: Bayesian ridge regression; NN: neural network; RF: random forest; SVR: support vector regression.
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Figure 11. Boxplot of errors in terms of steps over the test set for Model A (Bayesian ridge regression), Model B (random forest), Model C (random
forest), and Model D (neural network). MAE: mean absolute error.

Table 4. Breakdown of model results over the test data set.

P value95% CIMean MAEaModel (type)

Model refb1383-17061545Model D (neural network)

.011990-24202210Model C (random forest)

<.0012015-24452230Model B (random forest)

.012310-28452578Model A (Bayesian ridge regression)

aMAE: mean absolute error.
bReference model for comparisons.

We evaluated the naïve rule: using participants’ average daily
step count of the week as the prediction for the subsequent
week’s activity goal [30]. This is a reasonably competitive
approach because the weekly target exhibited strong
autocorrelation. The naïve rule achieved an MAE of 1664 steps
while model D achieved an MAE of 1545 steps (95% CI
1383-1706) for the 4 test participants over a period of 8 weeks.

Sensitivity Analysis
Its reported that the Fitbit activity devices have margin of ±5%
error in their step count readings [31,32]. We tested the
performance of our best model (model D) on three noisy data
sets generated from the original test data set by adding ±1%,
±3%, and ±5% noise. The first noisy data set was generated by
adding random noise between –1% and +1% to the Fitbit
readings. Similarly, the second and third noisy data sets were
generated by adding ±3% and ±5% noise to the original data
set. To conduct the sensitivity analysis, we generated 100
replications of each noisy data sets by adding different random
noises with limit specified for each data set. These data sets
were used to evaluate the performance of model D.

The model D achieved an MAE of 1606 steps (95% CI
1490-1755) for the noisy test data set generated using margin
of ±1% error which is approximately 4% higher than the MAE
achieved for the original noise-free test data set. Similarly,
model D’s MAE was 1670 steps (95% CI 1571-1840) for the
margin of ±3% error which was approximately 8% higher than
the MAE achieved for the original noise-free test data set.
Finally, for the data set generated using margin of ±5% error,
model D’s MAE of 1710 steps (95% CI 1621-1908) was
approximately 10% higher than the MAE achieved for the
original noise-free test data set.

This led to the empirical observation that 2%, 6%, and 10%
noise in Fitbit readings leads to approximately 4%, 8%, and
10% increases in prediction error, respectively. Therefore, we
assume that the model error sublinearly increases with margin
of error in activity tracker readings. However, one might need
to validate this observation with further evaluation data.

Feature Importance
We experimented with integrated gradients [33] in order to
analyze the features of model D. This method provides a score
that reflects the contribution of each variable to the response
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variable by calculating the integral of the gradient of the
response variable with respect to that variable. We report the

top features for model D in Figure 12.

Figure 12. Importance of the features as measured by the integrated gradient method.

Discussion

Precise prescient calculations that consolidate information are
one of the main focuses in predictive analyses [34]. To the best
of our knowledge, this work is one of the first studies to explore
machine learning models with the aim of adjusting step count
goals. Inputs to these models use an individual’s personal, social,
and environmental factors as well as weekly activity data. A
recent study concluded that activity tracker users feel
unmotivated despite having knowledge about the benefits of
physical activity [35]. Users can become unmotivated if they
cannot meet their activity goal [36]. Step count goals that are
too easy to achieve may lead to abandonment of the activity
tracker, and those that are too high will discourage the individual
[37].

In previous work [6], we studied the factors influencing the use
of activity trackers and identified two factors that likely promote
the continued use of activity trackers: (1) the number of digital
devices that the participant owns, and (2) whether or not
members of the participants’ family use activity fitness trackers
and other smart devices. Extending the previous work [6], in
this study, we explored different predictive models to estimate
achievable weekly step goals to encourage the use of activity
trackers. This study can be used to set goals for individuals and
can be accompanied by proper motivation messages to improve
the sustained use of the activity trackers [38-40].

This study has some limitations. The number of participants
was low, and all of the participants were selected from a cohort

with BMI of 25 kg/m2 or greater from the same geographical
area. Participants who choose to participate in this study were
more likely to use from 3 models of Fitbit activity trackers than
those who chose not to participate in the study. Moreover, only
participants who completed the 9-week study were considered
for further analysis. Finally, in this study, we used 110% of
week 1 averaged daily step count as the best estimate of each
participant’s personalized goal for each week. The goal may
have been on heavy side for some participants and on the easy
side for others. This is, of course, a limitation of the study in
the absence of a mechanism for a correct estimate of the goal
for each participant.

As an extension to this work, a new study with the goal of
validating the developed model with a large number of
participants has been undertaken. The new study recruited 120
individuals from the general public to use the neural
network-based predictive model developed herein over a period
of 6 months. This model, hosted on a server, provides each user
with achievable daily steps goals and updates the model
parameters on a weekly basis. The data from the study that is
underway will be used to fine tune the predictive model and to
gain insight into activity tracker users to motivate and manage
their physical activity.
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