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Abstract

Background: Transcutaneous cervical vagus nerve stimulation (tcVNS) is a promising alternative to implantable stimulation
of the vagus nerve. With demonstrated potential in myriad applications, ranging from systemic inflammation reduction to traumatic
stress attenuation, closed-loop tcVNS during periods of risk could improve treatment efficacy and reduce ineffective delivery.
However, achieving this requires a deeper understanding of biomarker changes over time.

Objective: The aim of the present study was to reveal the dynamics of relevant cardiovascular biomarkers, extracted from
wearable sensing modalities, in response to tcVNS.

Methods: Twenty-four human subjects were recruited for a randomized double-blind clinical trial, for whom electrocardiography
and photoplethysmography were used to measure heart rate and photoplethysmogram amplitude responses to tcVNS, respectively.
Modeling these responses in state-space, we (1) compared the biomarkers in terms of their predictability and active vs sham
differentiation, (2) studied the latency between stimulation onset and measurable effects, and (3) visualized the true and
model-simulated biomarker responses to tcVNS.

Results: The models accurately predicted future heart rate and photoplethysmogram amplitude values with root mean square
errors of approximately one-fifth the standard deviations of the data. Moreover, (1) the photoplethysmogram amplitude showed
superior predictability (P=.03) and active vs sham separation compared to heart rate; (2) a consistent delay of greater than 5
seconds was found between tcVNS onset and cardiovascular effects; and (3) dynamic characteristics differentiated responses to
tcVNS from the sham stimulation.

Conclusions: This work furthers the state of the art by modeling pertinent biomarker responses to tcVNS. Through subsequent
analysis, we discovered three key findings with implications related to (1) wearable sensing devices for bioelectronic medicine,
(2) the dominant mechanism of action for tcVNS-induced effects on cardiovascular physiology, and (3) the existence of dynamic
biomarker signatures that can be leveraged when titrating therapy in closed loop.

Trial Registration: ClinicalTrials.gov NCT02992899; https://clinicaltrials.gov/ct2/show/NCT02992899

International Registered Report Identifier (IRRID): RR2-10.1016/j.brs.2019.08.002
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Introduction

Transcutaneous cervical vagus nerve stimulation (tcVNS)
devices have emerged as inexpensive and convenient alternatives
to implantable devices for stimulation of the cervical vagus
nerve [1]. Over the last half decade, tcVNS-based devices have
been approved by the Food and Drug Administration (FDA)
for the treatment of migraine and cluster headache, and have
demonstrated efficacy in myriad applications, ranging from
pain and inflammation reduction to emotional/mental stress
attenuation [2-5]. As a noninvasive, nonpharmacologic therapy
with minimal side effects [6], the capacity for the widespread
use of tcVNS is promising [7]. Yet, to achieve this potential in
time-sensitive applications such as in response to traumatic
stress, real-time information regarding the patient’s state and
response to tcVNS must be incorporated. Thus, a compelling
need exists to understand observable biomarker dynamics in
relation to tcVNS. This would advance scientific knowledge
by uncovering temporal dependencies at finer time resolutions,
facilitate real-time predictions of physiological responses to
tcVNS for improved treatment titration, and pave the way for
optimal estimation approaches to simultaneously track
physiological state.

In enabling such closed-loop approaches to tcVNS, initial
challenges include (1) identifying noninvasively measured
biomarkers of desirable effects, (2) understanding how these
biomarkers change dynamically with the delivery of tcVNS for
a deepened understanding of the characteristic responses, and,
accordingly, (3) predicting each subject’s responses to tcVNS
for improved treatment outcomes. In current psychiatric practice,
the responses to interventions are primarily assessed through

patient reports and qualitative judgments of symptoms [8].
However, these methods are limited by the subjectivity of such
reporting and may not be reflective of the true nature of a
psychiatric disturbance or subsequent therapeutic response due
to factors that include disorder-based perceptual distortions (eg,
dissociation), subjective bias, or alternative motivations (eg,
malingering) [9]. Alternatively, by studying objective measures
that reflect underlying physiological processes, these limitations
could potentially be mitigated.

Unfortunately, the existing literature on such objective
biomarkers is limited to invasive or obtrusive measures (eg,
brain imaging or blood biomarkers) [4,10,11],
next-day/longitudinal assessment [2], or static features extracted
over minute-long time windows [5,12]. Improving upon this,
we applied parametric modeling methods to digital (or
physiological) biomarkers [13] that have been deemed to be the
most promising in previous work [12]. Specifically, we used
state-space models in an input-output formulation to model the
dynamic responses of heart rate and photoplethysmogram (PPG)
amplitude to tcVNS, as illustrated in Figure 1. State-space
models were selected as the machine-learning framework of
choice owing to their superior utility in real-time estimation
and control applications [14,15]. This work thereby presents a
first-of-its-kind dynamic analysis of physiological biomarker
responses to tcVNS and furthers the state of the art by: (1)
identifying PPG amplitude as a superior digital biomarker to
heart rate for the prediction of real-time responses and appraisal
of tcVNS effects; (2) quantifying a consistent delay in
tcVNS-induced downstream cardiovascular biomarker variation;
and (3) uncovering characteristic dynamic response signatures
that separate PPG amplitude and heart rate responses to tcVNS
from a sham stimulation.

Figure 1. High-level illustration of the modeling task investigated in this study. Transcutaneous cervical vagus nerve stimulation (tcVNS) is treated
as the input to the underlying physiological system, while the observed cardiovascular responses found pertinent to tcVNS effects in previous work are
treated as the output signals. This work focuses on the dynamics described by linear time-invariant difference equations, formulated as discrete-time
state-space equations. The latent state is depicted here as variable x, while f and g are nonlinear functions. HR: heart rate; PPG: photoplethysmogram;
ECG: electrocardiogram.
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Methods

Human Subjects Experiment
As part of a collaborative study approved by the Institutional
Review Boards of the Georgia Institute of Technology
(#H17126), Emory University School of Medicine
(#IRB00091171), SPAWAR Systems Center Pacific, and the
Department of Navy Human Research Protection Program, 24
healthy human subjects, including 12 women and 12 men, with
a mean age of 31 (SD 9) years, height of 173.4 (SD 8.9) cm,
and weight of 77.9 (SD 13.7) kg, were recruited. All subjects
had a history of prior psychological trauma, but without current
posttraumatic stress disorder or other major psychiatric disorder,
and written informed consent was obtained. Conforming to a
randomized double-blind protocol spanning 3 days
(ClinicalTrials.gov NCT02992899), each subject received four
administrations—two on the first day and one on each of the
following two days—of either “active” tcVNS or “sham”
stimulation. These four administrations were accompanied by
no other form of stimulus to focus solely on the effects of tcVNS
on human physiology. Overall, 96 doses of either active or sham
tcVNS were administered in total to the 24 subjects (with 12
allocated to the active group).

The active and sham devices (gammaCore, electroCore, Basking
Ridge, NJ, USA) were identical in both appearance and
operation, differing only with respect to the stimulation
parameters. The active devices administered voltage signals
consisting of five 5-kHz sinusoidal pulses repeating at a rate of
25 Hz, while the sham devices delivered biphasic square pulses
at a rate of 0.2 Hz, resulting in a perceptible tingling sensation.
For both active and sham devices, electrical stimulation was
delivered transcutaneously to the left side of the neck, targeting
the cervical vagus nerve projection. At specified times, the
researcher initiated the device and adjusted the stimulation
amplitude (ranging from 0 to 5 arbitrary units [AU],
corresponding to 0-30 V and 0-14 V for the active and sham
device, respectively) to as high as the subject could comfortably
endure (active: 3.0 [SD 0.8] AU; sham: 4.4 [SD 1.2] AU). The
amplitude was then kept fixed for the remainder of a 120-second
period, following which the device automatically stopped,
reducing its stimulation amplitude to zero. This 2-minute
timeframe replicates the programmed administrations onboard

the tcVNS devices that are currently in use [16]. For further
protocol and stimulation details, the reader is referred to Gurel
et al [5].

Physiological Sensing, Signal Processing, and
Biomarker Extraction
Electrocardiogram (ECG) and transmissive PPG signals, taken
from the finger, were continuously measured at the locations
displayed in Figure 2 using the Biopac RSPEC-R and Biopac
PPGED-R systems (Biopac Systems, Goleta, CA, USA),
respectively. All data were acquired at a 2-kHz sampling rate
using the Biopac MP150 16-bit data acquisition system.

To extract the instantaneous heart rate from the ECG signal,
finite impulse response bandpass filtering (passband of 0.6-40
Hz) was applied to cancel out-of-band noise while maintaining
the waveform shape [17]. By then detecting the R-peaks, the
instantaneous heart rate was computed in beats per minute by
taking the reciprocal of the time length, in minutes, between
each pair of R-peaks (R-R interval). These R-peaks were
subsequently leveraged to beat-separate the bandpass-filtered
PPG signals (passband of 0.4-8 Hz [18]). PPG amplitude (in
AU), was then calculated on a beat-by-beat basis by subtracting
the global minimum of each PPG beat from its global maximum.

The focus on heart rate and PPG amplitude as the biomarkers
of interest for this work was based on a rationale that both
cardiac and vascular downstream responses to stimulus were
of interest scientifically and may indicate different
autonomically mediated mechanisms following tcVNS. Heart
rate is a hallmark measure of the cardiac response to changes
in autonomic tone and is controlled by both the sympathetic
and parasympathetic branches of the autonomic nervous system.
Parasympathetic decreases in heart rate are mediated by the
release of acetylcholine that binds to muscarinic receptors in
the heart, whereas sympathetic increases in heart rate are
mediated by the release of epinephrine and norepinephrine that
bind to beta-1 receptors in the heart. PPG is a measure of
peripheral blood volume pulse, and represents a surrogate
measure of vasodilation or vasoconstriction resulting primarily
from changes in sympathetic tone. Peripheral vasoconstriction
is mediated by alpha-1 receptors in the smooth muscle of the
vasculature [19].

Figure 2. Physiological sensing, signal processing, and modeling preparation. Twenty-four subjects (12 active) underwent a clinical protocol, wherein
the electrocardiogram (ECG) was measured with electrodes placed in a three-lead configuration and the photoplethysmogram (PPG) was measured
from the fingertip in a transmissive LED-photodiode setup. Transcutaneous cervical vagus nerve stimulation (tcVNS) or sham stimulation was administered
at predefined times, where the exact stimulation location was identified by locating the left carotid pulse. Following signal processing and biomarker
extraction, the biomarkers were prepared for modeling via 5-point causal averaging, resampling to 1 Hz, normalizing to rest, and finally parsing into 4
separate vectors associated with the 4 tcVNS/sham administrations studied. By referencing stimulation initiation, the corresponding input amplitude
waveforms were then constructed to replicate device administration. Amp.: amplitude; D1: day 1; D2: day 2; D3: day 3.
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Preparing the Biomarker Time Series for Modeling
Following feature extraction, the heart rate and PPG amplitude
values existed as beat-to-beat time series of nonuniform
sampling rates (due to variability in heart rate). Thus, prior to
any modeling, a few time-series processing steps were employed
(Figure 2). First, each subject’s biomarker time series were
prepared using a causal moving average of 5 data points
(approximately 5-second, rectangular windows) to attenuate
high-frequency artifacts. The filtered time series were then
resampled at a constant frequency of 1 Hz to satisfy uniform
sampling rate requirements [20], followed by normalization to
each day’s resting value (subtracting and then dividing by rest)
to account for intersubject variability during our subsequent
population-level analysis.

To then separately investigate the effects of tcVNS/sham
administration on each of the two biomarkers, the resultant time
series were parsed according to the 4 administrations per subject.
Based on the data available, parsing was achieved by leaving
60 seconds of data prior to each 120-second administration and
retaining 120 seconds of data postadministration, for a total of
300 seconds per administration. Note that missing data at the
end of the 300-second interval relevant to our analysis affected
3 administrations among the 96 collected, and therefore the
corresponding data vectors were shortened accordingly.

The accompanying input data were then created for each of the
192 subject-administration-biomarker combinations (2
biomarkers × 4 administrations × 24 subjects). This was
accomplished by modeling the relative tcVNS/sham amplitude
delivered to each subject with pulse-like trapezoidal signals that
replicated the ramping and stabilization of true stimulation.
These inputs were formed by passing a boxcar input of
120-second width and unit amplitude through a 5-point moving
average filter. Since stimulation amplitude remains the only
variable modulated during tcVNS/sham administration,
stimulation amplitude was specified as the input variable, as
done in related work [21,22]. This ensured that the subsequently
analyzed input-induced effects modeled the tcVNS-induced
effects under study. Note that the digital biomarker response
dynamics modeled in this study correspond to a particular
therapy—FDA-approved tcVNS—that exhibits equivalent input
bandwidths across all administrations. Therefore, modeling the
input-output relationship for the specific input variability
exhibited during practical device usage remains invaluable to
future analysis and development. For further reasoning and
evidence behind this approach, please see Multimedia Appendix
1.

State-Space Modeling and Cross-Validation
Considering the established diversity in VNS outcomes, which
itself remains an active area of research [23], subject-specific
models were developed for our study, leaving the identification
of consistencies across relevant subject groupings for the
subsequent model analysis phase. To address biomarker
differences, heart rate and PPG amplitude were modeled
separately to foster comparison between the estimated systems
and responses for each of the two biomarkers. This maneuver
to disentangle outputs that seemingly respond to tcVNS/sham
simultaneously derives from a result in state-space input-output
modeling, where the absence of output feedback–controlled
effects on the input under study allows for the disentangling of
multiple-output systems [24] (see Multimedia Appendix 1).

The forthcoming equations and corresponding explanations will
thus depict single-input single-output systems. The discrete-time
state-space model structure in innovations form is governed by
the following two difference equations:

xk+1=Axk +Buk–τ + Kek (1)

yk=Cxk + Duk–τ + ek (2)

where k represents the discrete time step, τ represents the input
delay of the system (also known as the “dead time” between
changes in input and resultant changes in system behavior), y

∈ R represents the output, u ∈ R represents the input, x ∈ RM

represents the latent state of the dynamical system (referred to
as the state vector), where M is referred to as the model order
of the system, e ∈ R is the residual computed as the innovation

estimate, and A ∈ RM×M, B ∈ RM×1, C ∈ R1×M, D ∈ RM×M, and

K ∈ RM×1 are matrices consisting of free parameters that are
estimated to best describe the data provided. In the context of
this work, the scalar D is set to zero, as it quantifies the
feedthrough component’s contribution on the output (ie, the
static contribution of the input that circumvents dynamics
entirely).

In this study, we initialized model estimates using subspace
identification [25] and then employed prediction error
minimization to ameliorate any limitations of the
computationally cheaper subspace method [26]. In accordance
with our subject-specific modeling objective, leave-one-out
cross-validation was used to train and evaluate the state-space
models. Specifically, each of the 4 administrations was used
for testing exactly once, with the remaining 3 administrations
used for model estimation. This eventually resulted in an overall
4 models per biomarker per subject, following the optimization
process detailed below. Figure 3 illustrates this cross-validation
process.

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 9 | e20488 | p. 4http://mhealth.jmir.org/2020/9/e20488/
(page number not for citation purposes)

Gazi et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Modeling, optimization, and cross-validation; quality assurance; and analysis. (Left) Modeling, optimization, and testing were performed in
a leave-one-out cross-validation (CV) scheme, where, out of the four administrations, each administration was considered once as the unseen test set.
The model order (M) and input delay (τ) were optimized by minimizing the small sample size-corrected Akaike information criterion (AICc). For each
model order-input delay combination, a state-space model was trained by first initializing the parameter estimates using subspace estimation (N4SID);
this was then followed by prediction error minimization (PEM) to refine the parameter estimates. Ridge regression was then performed for this specific
model configuration by iterating lambda (λ) logarithmically over a specified interval and minimizing the mean square error. The 1-step-ahead prediction
performance was evaluated using a fit percentage formula based on the root mean square error (RMSE) normalized by the standard deviation of the
data (σ). (Middle) For quality assurance beyond subjective satisfaction in visual results, the models were evaluated against two objective baseline tests
from the literature: the mean test and the naïve test. (Right) To extract the model information pertinent to a deepened dynamic understanding of biomarker
responses, (1) optimal input delays were compiled to assess the expected response latency following stimulation onset, (2) the biomarkers were compared
against each other to identify superiority in monitoring dynamic changes following transcutaneous cervical vagus nerve stimulation (tcVNS), and (3)
the responses were quantifiably visualized via controlled simulation to produce population trajectories of expected dynamic changes following
transcutaneous cervical vagus nerve stimulation (tcVNS) administration, in comparison to sham.

Regularization and Hyperparameter Optimization
The small sample size-corrected Akaike information criterion
(AICc) was employed to select the optimal model configuration
(M*, τ*); the AICc was used instead of the standard AIC due
to the ratio between training data points, N, and the number of
parameters, p, in the largest candidate model remaining less
than 40 [27,28]. For technical details on usage, please refer to
Multimedia Appendix 1.

To optimize τ, based on a previous effort to subjectively
annotate the delays between tcVNS and biomarker changes
[29], the interval was set to 0 ≤τ≤35; this was to circumscribe
a 99% confidence interval about the reported result of 18
seconds (SD 7). For M, the lack of broadband input constrained
the parameter total to below the order of input persistence of
excitation for any candidate model [30]. The order of persistent
excitation is estimated by counting the number of distinct
frequencies with spectral content larger than a set threshold
[31]. By performing this computation iteratively across all input
signals used in this study, including those associated with
datasets missing data points, the order never decreased below
50. Thus, our optimization interval was safely restricted to a
maximum of 50 parameters, corresponding to model order 10
for modal form estimates (see Multimedia Appendix 1).

Once the optimal state-space model was selected for each
training set of 3 administrations, the model was then regularized
separately via ridge regression [32]. The parameter λ was
selected by minimizing the mean square error over the interval

λ   [10–15, 104]. The lower bound was selected due to
MATLAB’s machine epsilon for double-precision floating

points (2–52) and the upper bound was selected during an
experimentation period. These optimal, regularized model
estimates were then used for the remaining analyses. The
methods described in this subsection and the previous section
correspond to the box on the left in Figure 3.

Fit Percentage Definition and Baseline Testing
The models were evaluated against two established baselines
for dynamic modeling tasks: the mean test and the naïve test.
The mean test involves comparing out-of-sample 1-step
prediction performance vs mean predictors, and the naïve test
involves comparing 1-step prediction performance vs the naïve
predictor [33-35] (see Multimedia Appendix 1 for further
details). This out-of-sample testing is depicted in the box on
the right of Figure 3 (left). Figure 3 (middle) also summarizes
the baseline testing.

The metric used herein for evaluation is the fit %, defined as:

where ŷ=[ŷ1ŷ2… ŷN]T represents the predicted output values

from time step 1 to N and y=[y1y2… yN]T represents the true
output. This exact metric has been widely used to quantify
time-series model validity (eg, [21,24]), along with its variants
(eg, [33]). Note that the above fit % formula can be equivalently
rewritten as (1 – RMSE/σ) × 100%, where RMSE is the root
mean square error between the predicted and true values and σ
is the standard deviation of the data. Thus, the fit % used here
is commonly referred to as a fit % metric based on standard
deviation – normalized RMSE, which represents an estimate of
the output variability the model can accurately reproduce [24].
This is seen to be the case when comparing the fit % to the
coefficient of determination, given by:

demonstrating that the fit % simply replaces the mean square
error and variance with the RMSE and standard deviation,
respectively. It thereby exhibits improved spread for RMSE <
σ/2.
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Model Configuration and Fit Comparisons
Figure 3 (right) illustrates the subsequent methods of analysis.
To determine the presence of any notable differences in
predictability between the biomarkers in question, the biomarker
fit percentages were compared. Additionally, the optimal model
orders associated with each biomarker’s models were compared
to determine whether any model complexity differences could
be posited. In this case, unlike fit %, lower model orders are
generally favored, as they signify relatively simpler systems.

To further investigate the optimal model configurations, the
automatically optimized input delays, τ*, for each of the two
biomarkers were compiled. These two sets of latencies were
then compared against the manually annotated delays of
previous work. As detailed in Gurel et al [29], this manual
labeling was performed independently by three investigators
with an interannotator agreement of 90%.

Statistical Testing
With 4 fit % values, model orders, and input delays obtained
per subject-biomarker combination (corresponding to the 4
models produced via cross-validation), all quantities were first
averaged across all 4 models prior to comparison/compilation.
To examine biomarker differences in fit % and model order,
pairwise t tests or Wilcoxon signed-rank tests were employed
for normally and nonnormally (tested using the Shapiro-Wilk
test) distributed variables, respectively. For comparison of the
delay results, after failing to reject normality and sphericity
(tested using the Mauchly sphericity test), a one-way
repeated-measures analysis of variance was used; α=.05 was
used as the level of significance for these comparisons.

Investigating Biomarker Responses to tcVNS vs Sham
As a final analysis step, we investigated the tcVNS-induced
response dynamics captured through modeling by simulating
both the active and sham models forward from a controlled
state. To leverage the previously resampled biomarker time
series, we assembled a second set of plots corresponding to the
true experimental responses. To facilitate qualitative
comparisons, both sets were constructed by
compiling/simulating the true/artificial biomarker time series
such that 10 seconds existed prior to the true/simulated stimulus
administration and 120 seconds remained afterward. The 120
seconds corresponds to the 2-minute poststimulus period used
during modeling, and the 10 seconds were included to better
understand the true biomarker values prior to stimulation.

Resampled Experimental Responses
For each of the 4 administrations for the 24 subjects, the heart
rate and PPG amplitude time series were extracted by simply
considering the values produced as a result of the modeling
preparation steps. With resampled and normalized time series
in hand, each biomarker’s overall response was constructed by
first averaging the biomarker responses across all 4
administrations, followed by additional average and SEM
calculations across all 12 subjects in each device group.

Simulated Model Responses
To visualize the biomarker dynamics captured by the models,
each model was simulated forward by (i) setting the initial
conditions to zero (ie, initializing the system at its equilibrium)
to guarantee equivalence between active and sham time series
(setting x1=0 guarantees that the system will remain there for
as long as no stimulus is present); (ii) constructing an input
waveform equivalent to the input used during the modeling
process, nonzero between time points 10 and 130 seconds; and
(iii) solving the difference equations forward in time for each
model, ignoring the contribution of Ke and e in Equations (1)
and (2), respectively, as these quantities represent the unmodeled
aspect of the system, along with noise, lumped into residual
terms [36]. Each biomarker’s overall response was constructed
by averaging across all 4 simulated model responses, followed
by calculation of the average and SEM across each device group.
For further details regarding the advantages of this approach
and insight into the subsequent simulation analysis, please refer
to Multimedia Appendix 1.

Results

Baseline Test Results
Figure 4 (left) displays the heart rate and PPG amplitude data
in response to a single administration of active tcVNS from a
representative subject. For illustrative purposes, the
corresponding model predictions are overlaid. To produce these
predictions for each biomarker, the model was trained on the
remaining three datasets for this subject and tested on this
particular dataset.

The naïve test results across all subjects are shown on the right
side of Figure 4. Note that the mean predictors, by definition,
always produce fits of 0%. Hence, the models for both
biomarkers passed both the naïve test and the mean test,
exhibiting significantly higher fit percentages than the naïve
predictors (P<.001) and mean predictors (P<.001).
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Figure 4. Example model predictions vs true data, along with naïve test box plot results for the entire sample. (Left) Both model vs data plots shown
originate from one administration of a single active transcutaneous cervical vagus nerve stimulation (tcVNS) subject. Each biomarker’s model was
trained on the three other tcVNS administration datasets available for this subject; the test results on the remaining unseen dataset in a 1-step-ahead
prediction task are shown. The gray dashed lines demarcate the time frame in which tcVNS was administered, and the fit percentages are calculated as
previously defined. The y-axis represents relative changes from rest in percent form. (Right) The regularized, optimal state space models strongly
satisfied both the naïve test and the mean test. The statistically significant (P<.001) naïve test results are shown, where the box plots indicate results for
the entire sample; * denotes statistical significance. The blue squares indicate outlier points, where outliers lie above the upper quartile or below the
lower quartile by more than 1.5 times the interquartile range. Significance (P<.001) held for the mean test as well for both biomarkers (not shown).

Modeling Amenability Comparison
Table 1 summarizes the results from the biomarker fit % and
model order contrast. The fit of each of the PPG amplitude

models was significantly better than that of the heart rate models
(P=.03), albeit without compensation through an increase in
model order/complexity. Model order did not differ between
heart rate and PPG (P=.14).

Table 1. Mean (SD) fit % and model orders for each biomarker’s state-space model.

PPGa amplitudeHeart rateMetric

81.64 (7.07)76.67 (6.96)Fit %

9.39 (0.34)9.52 (0.38)Model order

aPPG: photoplethysmogram.

Automatically Estimated Input Delays vs Manually
Labeled Onset Delays
Figure 5 shows the automatically estimated input delays for
both biomarker models, as well as the manually annotated result
from previous work [29]. The mean input delay for the heart

rate and PPG amplitude state-space models was 17.65 seconds
(SD 5.17) and 20.58 seconds (SD 5.81), respectively, and the
mean manually labeled delay was 18 seconds (SD 7). No
statistically significant differences were found between the three

sets of onset delays (F2, 22=0.71, P=.51, η2
p=.06).
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Figure 5. Delayed effects of transcutaneous cervical vagus nerve stimulation (tcVNS) in downstream cardiovascular biomarkers. By including input
delay as a free parameter necessitating optimization, the objective, quantitative state-space model optimization process described in this paper reproduced
the tcVNS delay findings of the manual, subjective annotations of [29]; no statistically significant differences existed between the three sets of onset
delays. The coral-colored square represents an outlier, and the black crosses represent the means.

Biomarker Responses to tcVNS vs Sham
Figure 6 shows the heart rate and PPG amplitude responses to
tcVNS or sham administration. The graphs on the left
correspond to the resampled experimental responses, and those
on the right correspond to the simulated model responses.
Although conclusions are weakened when comparing the true
active and sham responses due to the lack of controlled initial
conditions, one can posit possible dynamic response signatures

for PPG amplitude and heart rate in response to active tcVNS
when comparing against their respective sham counterparts.
Through modeling and simulation, we remedy these initial
condition concerns. Rubin causality is therefore exhibited in
response to tcVNS, allowing for causal inference to be
legitimately made by comparing the active and sham responses.
Moreover, the underlying dynamic response signatures of tcVNS
can be better visualized in comparison to the uneventful sham
responses.

Figure 6. Dynamic responses to transcutaneous cervical vagus nerve stimulation (tcVNS) for heart rate (HR) and photoplethysmogram (PPG) amplitude.
The curves themselves, along with their accompanying shaded regions, represent average (SEM). (Left) True responses, resampled for population
averaging and subsequent dynamic modeling. The y-axis values represent relative changes from rest in percent form, and the orange dashed lines
demarcate the period of active/sham stimulus administration (t ∈ (10, 130) seconds). (Right) Simulated responses to tcVNS, produced by solving the
state-space model difference equations forward in time. The y-axis values represent relative changes from rest in percent form, and the orange dashed
lines demarcate the period of simulated active/sham stimulus administration (t ∈ (10, 130) seconds).

Discussion

PPG Amplitude is a More Reliable and Predictable
Biomarker of tcVNS Effects
Based on the results in Table 1, we found that the models were
able to reproduce the PPG amplitude data significantly better
than the heart rate data, albeit without requiring any increase in
model complexity to compensate. PPG amplitude may thus be

a more trackable dynamic marker of the physiological
responsiveness to tcVNS than those previously investigated.
Notably, such biomarkers have thus far remained elusive in the
existing tVNS literature [37]. Hence, in conjunction with the
consistency of PPG amplitude discovered in previous work
[5,12], the finding that PPG amplitude remains more amenable
to our modeling approach suggests that PPG amplitude may
serve as a superior biomarker for real-time tcVNS systems, and
thus should be given precedence in a multimodal sensing setting.
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Biomarker characteristics that could explain this distinction
involve measurement location and physiological origin. Heart
rate is a cardiac measure originating centrally from the heart,
whereas the PPG signals measured in this study were sensed at
the periphery—in particular, transmissively at the fingertip. As
described in the Methods section, a clear physiological
distinction exists; these differences may in fact explain the
relative contrasts observed in this study, as well as the previous
difficulties encountered in identifying a trustworthy biomarker
derived from the heart (eg, heart rate variability measures) [37].

Cardiovascular biomarkers extracted from peripheral processes,
mediated solely by the sympathetic nervous system (eg,
vasoconstrictor sympathetic nerve activity [38] and PPG
amplitude [18]), have shown repeated success in capturing the
effects of tVNS. An explanation for this may involve
physiological control. In comparison to the peripheral blood
vessels and their sympathetically mediated vasoconstriction,
heart rate is regulated by both the sympathetic and
parasympathetic nervous systems; additionally, the heart, owing
to its critical role in maintaining blood supply to the entire body,
is subject to far tighter regulation [19,39]. The peripheral
vasculature thus remains more susceptible to external
modulation, or in a systems sense, external “disturbances.”
Thus, a promising approach for sense-and-react systems that
seek to assess the effects of external modulation may be to
leverage peripheral biomarkers that measure quantities subject
to looser homeostatic control.

tcVNS-Induced Effects are Delayed in Digital
Cardiovascular Biomarkers
Figure 5 illustrates the consistency found between the optimized
input delays of this work and the manually annotated latencies
of prior work [29]. Note, however, that these delay values of
approximately 15 seconds may in fact be overestimates in certain
situations due to the approximate 5-second ramp-up period
during administration. Since this aspect was accounted for
during modeling, one can reasonably deduct 5 seconds from
the delays listed for purposes involving closed-loop system
design and hypothesizing the dominant mechanism of action.
Our reasoning is that for a closed-loop system adapted for a
particular subject, the threshold of comfort will likely be known,
thereby eliminating the ramp-up period. To provide quantitative
evidence for a dominant mechanism of action, protocol-related
delays are not necessarily relevant to determining the underlying
pathways that tcVNS affects when causing downstream
cardiovascular effects. Nevertheless, as determined by the
notched confidence intervals shown in Figure 5, mechanistically
relevant delays remain at latencies of >5 seconds, even after
factoring in the 5-second deduction. Thus, for closed-loop
tcVNS systems, a delay greater than 5 seconds must be taken
into consideration and designed for accordingly [40,41].

In providing quantitative evidence for the likely dominant
mechanism of action for tcVNS effects on downstream
physiology, we here highlight the two prevalent hypotheses for
tcVNS at either the cervical or auricular branch of the vagus
nerve [42,43] (see Multimedia Appendix 1 for a detailed
illustration). The first hypothesis involves electrical activation
of vagal efferents terminating at the heart [44]; this mechanism

would in fact induce the expected decrease in heart rate, which
has been frequently cited in previous animal studies (eg, [45])
and was also found to be the case here. However, this hypothesis
may not necessarily explain the sympathetically mediated effects
observed at the periphery during tVNS administration (eg,
vasoconstrictor sympathetic nerve activity [38]). The second
hypothesis implicates afferent vagal stimulation as a pathway
to brain activity in autonomically relevant brain areas, followed
by downstream effects induced by resultant efferent signaling.
Although brain imaging and electrophysiological measurements
have confirmed the activation of vagal afferents during tcVNS
[10,46], it remains unclear whether these “bottom-up” effects
serve as the dominant cause for the resultant autonomic efferent
activity.

The results presented herein seem to align with the latter
hypothesis: namely, that the delayed effects modeled—and
subjectively observed in previous work—are a byproduct of
afferent vagal activity, processing in the brain, and resultant
efferent-mediated autonomic effects. Synthesizing previous
sensing and measurement studies of tcVNS, afferent signatures
(P1-N1 vagal somatosensory evoked potentials) tend to occur
within 1 second of amplitude stabilization [46]. Considering
that finite element modeling results suggest that only A and B
vagal fibers can be stimulated through gammaCore tcVNS [47],
and that efferent B fiber conduction velocities range from 5 to
10 m/s [44], we would expect that if the dominant pathway for
cardiac effects occurred through direct efferent stimulation,
these effects would occur within 2-3 seconds of amplitude
stabilization. Instead, we conclude that the dominant tcVNS
effects on cardiovascular physiology likely occur after 5-10
seconds have elapsed, following amplitude stabilization (after
reasonably deducting a 5-second ramp-up period from the
~15-second delays reported). This suggests that downstream
cardiovascular effects are likely mediated by the prolonged
afferent-brain-efferent mechanism of action.

Distinct Dynamic Signatures Characterize
tcVNS-Induced Effects
Heart rate and PPG amplitude responses were visualized both
for resampled data averaged across administrations and subjects,
and for simulated responses produced by solving the estimated
difference equations forward in time. As shown in Figure 6
(left), the average active PPG amplitude response to tcVNS
clearly exceeded the average sham response to tcVNS, although
they coincidentally initialized at similar relative values. In
contrast, the average active heart rate graph displays a transient
decrease in response to tcVNS that lasts about 50 seconds,
followed by a return to prestimulus values. Interestingly, this
agrees with recent findings in the auricular tVNS literature,
which noted 3-4% transient drops in heart rate that recovered
over the course of 30 seconds following stimulation onset [48].
Unlike the PPG amplitude responses, the average heart rate
responses of the two device groups initialized with an almost
4% relative difference between them, which is an important
point to consider when comparing the two trajectories. Although
the average active heart rate response seems starkly different
from the average sham heart rate response, if one were to
artificially shift the two responses’ initial conditions vertically
to level the playing field, the active response would remain
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beneath the sham response, but definitively by less. Moreover,
this disregards the concerns associated with performing such
an artificial transformation for causal inference and comparison
[49].

This issue of Rubin causality (see Multimedia Appendix 1) is
ultimately resolved on the right side of Figure 6. Since the
dynamic models developed thus far were simulated forward
from the same equilibrium condition, we arrived at
population-level characteristic responses to tcVNS that exhibited
the necessary equivalent prestimulus behavior. With this added
causal inference power, we not only observed apparent
similarities between the plots on the left and right of Figure 6,
but we also discovered evident differences between the active
and sham groups in their responses to tcVNS. In particular, the
active group’s simulated PPG amplitude responses significantly
exceeded the relatively flat sham PPG amplitude trajectories;
analogously, but in the opposite direction, the active heart rate
trajectories displayed a clear decrease in comparison to the sham
responses, where the sham responses again remained relatively
constant. Thus, the exact same modeling and simulation
methodology were applied to data from both device groups, and
yet stark differences arose in the characteristic responses to
stimulation. Furthermore, the sham group displayed relatively
subdued responses to the simulated stimulus, as expected. These
results serve as further validation for the current approach and
ultimately imply the presence of distinctive dynamic signatures
that characterize the continuous-time effects of tcVNS on digital
cardiovascular biomarkers.

Limitations and Future Work
A few limitations are to be noted for this study. Although
nonlinear approaches to difference equation modeling are
generally discouraged at the outset unless expert knowledge or
sufficient evidence seems to suggest otherwise [24], nonlinear
dynamics exist in general. Nevertheless, in agreement with
previous findings demonstrating that a considerable percentage
of dynamic variability exhibited by cardiovascular biomarkers
such as heart rate can be modeled linearly [50], we found that
approximately 80% of the biomarker variability observed can
still be predicted accurately. Hence, this paper presents a “best
linear approximation” that could further be built upon in future

work directed at characterizing the nonlinearities of tcVNS
responses [24].

Although all tcVNS clinical protocols reported to date have
used the gammaCore device to which the present results readily
apply, future control approaches will need to venture beyond
this standardized waveform and vary parameters during
stimulation to achieve desired regulation goals, while
simultaneously maintaining user safety. This would additionally
help in satisfying the stringent input requirements for system
identification [24], which are conditions that have not been met
thus far.

Finally, we note that biomarkers other than PPG amplitude and
heart rate were found to be statically relevant in quantifying
tcVNS effects in previous work [5], although static PPG
amplitude and heart features were found to be the most salient
[12]. Thus, a multimodal closed-loop system that utilizes signals
other than ECG and PPG may benefit from further application
of such dynamic modeling and analysis.

Conclusions
In this work, we studied heart rate and PPG amplitude responses
to tcVNS and derived three key findings by approaching this
question from a dynamic modeling perspective. First, PPG
amplitude demonstrates preeminence in both modeling
amenability and active vs sham response separation, suggesting
its superiority as a digital biomarker for real-time response
prediction and tcVNS effect quantification. Second, a consistent
delay of greater than 5 seconds exists between tcVNS onset and
downstream cardiovascular biomarker responses. Latency must
therefore be considered and accounted for appropriately during
clinical monitoring and closed-loop system design. Moreover,
this delay may provide measurable evidence for the dominance
of the hypothesized vagal afferent-to-brain-to-autonomic efferent
pathway in downstream cardiovascular modulation. Lastly,
state-space models can successfully predict heart rate and PPG
amplitude dynamics in response to tcVNS, and can help to
identify the characteristic dynamic signatures that separate these
biomarker responses to tcVNS from sham stimulation. This
dynamic modeling and analysis thereby deepens our
understanding of tcVNS effects and lays the groundwork for
future closed-loop approaches in time-sensitive applications.
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Abbreviations
AICc: small sample size-corrected Akaike information criterion
AU: arbitrary units
ECG: electrocardiogram
FDA: Food and Drug Administration
PPG: photoplethysmogram
RMSE: root mean square error
tcVNS: transcutaneous cervical vagus nerve stimulation
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