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Abstract

Background: Older adults who experience pain are more likely to reduce their community and life-space mobility (ie, the usual
range of places in an environment in which a person engages). However, there is significant day-to-day variability in pain
experiences that offer unique insights into the consequences on life-space mobility, which are not well understood. This variability
is complex and cannot be captured with traditional recall-based pain surveys. As a solution, ecological momentary assessments
record repeated pain experiences throughout the day in the natural environment.

Objective: The aim of this study was to examine the temporal association between ecological momentary assessments of pain
and GPS metrics in older adults with symptomatic knee osteoarthritis by using a smartwatch platform called Real-time Online
Assessment and Mobility Monitor.

Methods: Participants (n=19, mean 73.1 years, SD 4.8; female: 13/19, 68%; male: 6/19, 32%) wore a smartwatch for a mean
period of 13.16 days (SD 2.94). Participants were prompted in their natural environment about their pain intensity (range 0-10)
at random time windows in the morning, afternoon, and evening. GPS coordinates were collected at 15-minute intervals and
aggregated each day into excursion, ellipsoid, clustering, and trip frequency features. Pain intensity ratings were averaged across
time windows for each day. A random effects model was used to investigate the within and between-person effects.

Results: The daily mean pain intensities reported by participants ranged between 0 and 8 with 40% reporting intensities ≥2.
The within-person associations between pain intensity and GPS features were more likely to be statistically significant than those
observed between persons. Within-person pain intensity was significantly associated with excursion size, and others (excursion
span, total distance, and ellipse major axis) showed a statistical trend (excursion span: P=.08; total distance: P=.07; ellipse major
axis: P=.07). Each point increase in the mean pain intensity was associated with a 3.06 km decrease in excursion size, 2.89 km

decrease in excursion span, 5.71 km decrease total distance travelled per day, 31.4 km2 decrease in ellipse area, 0.47 km decrease
ellipse minor axis, and 3.64 km decrease in ellipse major axis. While not statistically significant, the point estimates for number
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of clusters (P=.73), frequency of trips (P=.81), and homestay (P=.15) were positively associated with pain intensity, and entropy
(P=.99) was negatively associated with pain intensity.

Conclusions: In this demonstration study, higher intensity knee pain in older adults was associated with lower life-space mobility.
Results demonstrate that a custom-designed smartwatch platform is effective at simultaneously collecting rich information about
ecological pain and life-space mobility. Such smart tools are expected to be important for remote health interventions that harness
the variability in pain symptoms while understanding their impact on life-space mobility.

(JMIR Mhealth Uhealth 2021;9(1):e19609) doi: 10.2196/19609
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Introduction

The world population of adults aged 65 years or older is rapidly
growing [1]. This phenomenon, unprecedented in history,
highlights a need to maintain and promote programs that manage
chronic diseases and symptoms causing increased risk of loss
of mobility and disability. The National Center for Health
Statistics [2] reports that, of adults 65-75 years old, 30% and
14.3% have physical impairments and difficulty walking one
quarter-mile (approximately 400 m), respectively. Rates are
higher in those older than 75 years—48.6% have physical
impairments, and 27.7% have difficulty walking one
quarter-mile (approximately 400 m). These impairments have
a significant negative impact on life-space mobility—the daily
activities and geographical area in which people engage. As a
result, many older adults anchor to their houses [3].
Osteoarthritis is the most common age-related joint disease in
the United States, affecting over 30 million US adults [4]. Pain
associated with osteoarthritis is accompanied by a reduction in
daily functioning, limitations in walking, and increased risk of
overt disability. Pain experiences have within- and
between-person variability due to physiological, medical,
behavioral, and environmental differences [5]. This variability
is complex and cannot be captured with traditional recall-based
pain surveys. As a solution, ecological momentary assessments
(EMA) record repeated pain experiences throughout the day in
a person's natural environment. It minimizes retrospective [6,7]
and recent-experience bias [8,9]. However, there are drawbacks
as the EMA tools that utilize paper surveys or dedicated digital
boxes tend to be intrusive, cannot be easily customized, and are
not wearable. In prior work [10], microinteraction EMAs—in
which people are prompted with questions, similar to those of
ROAMM, that can be understood at a glance and answered in
a few seconds—were developed on smart watches and compared
to less frequent EMA prompts on smartphones; researchers
found that although prompts on the watch were 8 times more
frequent than those on the phone, participants adhered 35%
more to microinteraction EMAs on the watch. Participants also
responded to EMAs in less time and reported the EMAs to be
less distracting on the watch than those on the phone [11].
Therefore, EMAs on a smartwatch might serve as an excellent
approach for enhancing adherence.

Mobility within the perspective of life-space can be described
as the habitual movement of individuals [12-14]. Life-space
mobility includes spatial size and frequency of interaction with
the surrounding environment. The construct is influenced by

physical function and spatial extent of movement, but also the
cognitive, psychological, social, and environmental disposition
of an individual. Life-space mobility has been measured using
various methods [12,13,15,16]. Life-Space Diary, introduced
by May et al [13] in 1985, was the first measure. It asked
participants to report daily their zone out of 5 predefined
concentric zones, referenced to their bedrooms. Similarly,
Life-Space Questionnaire, introduced by Stalvey et al [14] in
1999, consisted of 9 yes or no questions asking whether a
participant was in a certain region within their environment in
the last 3 days. Life-Space Assessment, introduced by Baker et
al [12] in 2003, added another perspective by documenting how
far and how often an individual travels to predefined regions
within their environment, while also considering any assistance
needed during mobility. However, there remain issues with
life-space mobility assessment—paper-based and recall of
information are an added burden on participants and introduce
more challenges related to adherence and recall bias.

The use of personal devices such as smartphones and
smartwatches is growing rapidly in both young and older adult
population groups. According to the International Data
Corporation Worldwide Quarterly Wearable Device Tracker,
smartwatches accounted for 44.2% of the wearable market in
2018; this is expected to rise to 47.1% by 2023 [17]. The
widespread use of wearables and their high computational and
sensory capabilities provide a platform to reach and interact
with a large share of population, particularly individuals with
medical conditions. This is highly significant due to the ability
to monitor individuals continuously and intervene whenever
and wherever medical conditions occur [18]. It also opens new
opportunities to link complex states in a temporal manner.

In this demonstration study, we used a custom-designed
smartwatch platform called Real-time Online Assessment and
Mobility Monitor (ROAMM) that synchronizes EMA of pain
experiences with GPS data to examine their temporal
associations in older adults with symptomatic knee osteoarthritis.
We hypothesized that higher pain experiences would be
associated with lower life-space mobility features.

Methods

Study Population
This study was approved by the University of Florida
institutional review board (UFIRB 201601858), and written
informed consent was obtained from all participants. We
enrolled 19 older adults. Inclusion criteria were age ≥65 years
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and diagnosis of unilateral or bilateral symptomatic knee
osteoarthritis. Exclusion criteria were failure or inability to
provide informed consent; diagnosis of dementia; and being
unable to communicate because of severe hearing loss or speech
disorder. A convenience sample was drawn from a population

of older adults with knee osteoarthritis. Two participants were
not interested in participating after being informed about the
study. Each participant received compensation of a US $50 gift
card. Table 1 shows the descriptive characteristics of
participants.

Table 1. Participants’ descriptive characteristics.

Value (n=19)Characteristics

73.1 (4.8)Age (years), mean (SD)

Gender, n (%)

6 (32)Male

13 (68)Female

28.23 (4)BMI (kg/m2), mean (SD)

Ethnicity, n (%)

15 (79)White

3 (16)African American

1 (5)Asian

Education, n (%)

10 (53)Graduate

6 (32)College

2 (10)High school

1 (5)Declined to respond

Live alone, n (%)

4 (21)Yes

15 (79)No

Housing, n (%)

16 (84)Single Family Home

1 (5)Other

2 (11)Other (mobile home, boat)

Ecological Momentary Assessment of Pain Using
ROAMM
ROAMM was developed at the University of Florida to enable
real-time capture of patient-generated information—wearable
sensor data collected simultaneously with symptom EMAs. For
this study, EMA of pain was evaluated using the 11-point Box
Scale (0=no pain, 1-2=mild pain, 3-5=moderate pain, 6=severe
pain, 7-9=very severe pain, 10=worst possible pain), a valid
and reliable numerical rating scale [19,20]. Participants were
instructed about the anchors.

Participants were prompted about their pain intensity at random
times in the morning (8 AM to noon), afternoon (noon to 4 PM),
and evening (4 PM to 8 PM). The smartwatch application also
captures GPS coordinates (latitude and longitude) every 15
minutes throughout the day. Data were transferred every 15
seconds and stored securely in a remote server. The application
interface was developed after holding a focus group as explained
by Manini and colleagues [21]. ROAMM architecture is
explained in detail in our published papers [22,23] (Figure 1).
shows ROAMM app for answering a pain prompt on a
smartwatch (Samsung Gear 3, Samsung Group).

JMIR Mhealth Uhealth 2021 | vol. 9 | iss. 1 | e19609 | p. 3http://mhealth.jmir.org/2021/1/e19609/
(page number not for citation purposes)

Mardini et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. ROAMM app on Samsung Gear 3. Participants rotate the bezel on the watch to select the intensity on a scale from 0 to 10 and the color
changes accordingly.

GPS Data Collection and Feature Extraction
In this demonstration study, there were some technical
difficulties during the initial phase of data collection. These
difficulties included weak GPS signal coverages in some places
and data transmission problems. The watch required manual
checks on mobile networks, roaming, and location services.
These issues were discovered and solved during the data
collection process. However, data quality checks during the
analysis revelated that insufficient GPS data for 9 out of 28
participants. Participants with missing data were similar age
(mean 73.3, SD 6.1 years old) and female proportion (7/9,
77.8%) compared to the 19 participants in our paper. Thus, we
believe the missing data were randomly lost and did not cause
a selection bias.

GPS, the global positioning system, is a navigation utility that
furnishes the position of a receiver by measuring its distance
from a number of satellites. GPS has been used in the health
care domain in behavior [24,25] and gerontological research
[26].

Excursion features included excursion size, excursion span, and
total distance. Excursion size is the farthest distance an
individual travels from home within a specific time window.
Excursion span is the farthest distance between all locations
away from home. These features provide an individual’s travel
pattern that can be generally described as (1) compact and away
from home; (2) sparse and away from home; (3) compact and
close to home; and (4) sparse and close to home (Figure 2).
Total distance provides overall view of mobility by summing
between all the location points.

Ellipsoid features used a spanning ellipsoid (or ellipsoid hull),
which is defined as the minimum area that encompasses all
points in 2 dimensions. We used this method to draw an ellipse
such that all GPS coordinates lie inside or on the boundary of
the ellipse. We aggregated 3 features from the ellipse: (1) ellipse
minor axis, which is the shortest diameter passing through the
center of the ellipse; (2) ellipse major axis, which is the longest
diameter passing through the center of the ellipse, and (3) area
of the ellipse (Figure 3).

Figure 2. Illustration of possible travel patterns using excursion size and span features. The solid line represents excursion size, and the dashed line
represents excursion span.
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Figure 3. An illustration of the ellipse encompassing all the GPS coordinates for a participant during a 1-day time frame. The dashed line passing
through the center represents the ellipse minor axis, and the solid line passing through the center represents the ellipse major axis.

Clustering features provided information on where individuals
spend most of their time. This is essential to understand the
variability in locations. We used a distance-based clustering
mechanism, where nearby locations are clustered together. Each
cluster has a centroid, and the distance from the centroid
determines the membership of a coordinate in that cluster. We
used an adaptive k-mean algorithm to cluster locations, which
does not require a predefined number of clusters that the
conventional k-mean algorithm requires. Before providing GPS
coordinates to the adaptive k-mean clustering algorithm, we
classified them into stationary and moving coordinates by
calculating the time derivative at each location. When the time
derivative was <1 km/h), the GPS coordinate was considered
stationary. Only stationary points were considered as input to
the clustering algorithm. We ran a simulation to find the optimal
number of clusters, with a threshold of 500 m from the cluster’s
centroid as an inclusion criterion for each cluster. We started
with one cluster and gradually increased the number of clusters
until all GPS coordinates were assigned to a specific cluster.

After clustering all points, we aggregated 2 relevant features:
number of clusters and entropy. The number of clusters is simply
a count of the generated clusters. The entropy provides
information on the distribution of time in different clusters.
Entropy measures the degree of disorder or the level of
uncertainty in the information theory. In our analysis, entropy
was used to measure the level of uncertainty in the time spent
in different clusters. Entropy is calculated using the following
formula:

where pi is the percentage of time a participant spends at cluster
i, and pi is between (0,1].

A low entropy value means a lower level of uncertainty and
that the participant spent most of the time at one location, which
is an indication of lower life-space mobility (Figure 4).
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Figure 4. Illustration of clustering for a participant’s coordinates within a 1-day time frame. A total of 4 clusters are shown on the map, where each
cluster contains a collection of GPS coordinates.

Frequency of trips and homestay percentage provided
information about the number of trips away from home and
time spent at home, respectively. First, we classified the GPS
coordinates as home or away from home, then calculated the 2
features accordingly. Homestay is represented as a fraction
between 0 and 1. It is the ratio of the number of GPS coordinates
within the home radius (ie, 100 m) to the total number of
coordinates. Homestay is considered 0 (or 0% when all the GPS
coordinates are outside home in a given time period of interest,
and 1 (or 100%) when all the GPS coordinates are within the
home radius. A trip is calculated when a sequence of GPS
coordinates—home, away from home, home—occurs
chronologically. The number of trips occurring within a specific
time window are summed to yield the frequency of trips.

Statistical Analysis
We evaluated the relationship between EMA of pain (predictor)
and the measures of life-space mobility using GPS features
(outcomes). Pain intensity ratings were averaged across
day-windows. This was done to better connect to the day-based
frequency of measurement for the GPS features. In addition to
that, we graphically expressed pain intensities into 2 groups:
low pain (<2) and high pain (≥2), but statistical comparison was
not performed.

A 2-level random effects model (participant and day) was used
to account for repeated measurements. The model was fit after
disaggregating the within and between-persons effects. Parceling
these effects allows a more in-depth understanding about the

association between GPS features and EMA pain. The approach
used person-mean centering around the grand mean
(between-person effect) and the within person effect (each
person-specific mean for the time varying covariate) [27-29].
We used the xtcenter command (Stata/MP; version 16.0 for
Windows; StataCorp LLC) and entered terms for within-person
and between-person effects into the model. The model was also
adjusted for age, living alone, and gender covariates as fixed
effects. An independent-covariance structure, which was
confirmed as the most efficient without loss of model fit using
the Akaike information criterion, was used in all models. All
analyses were conducted using Stata/MP. Statistical significance
was confirmed at the P≤.05 level. Because this study is a
demonstration project, P≤.10 was considered as a trend effect.

Results

Participants wore the smartwatch for a mean of 13.16 (SD 2.94)
days and responded to a mean of 82% of pain prompts. Figure
5 shows the distribution of reported pain intensities by all
participants. A pain intensity rating of 0 was the most common
intensity and the highest was 8. The mean pain intensity for the
low pain group was 0.26 (SD 0.44) and for the high pain group
was 2.78 (SD 0.93). Descriptive characteristics of the life-space
mobility features are listed in Table 2. Multimedia Appendix 1
shows that some GPS features were intercorrelated—there were
strong correlations between excursion features and ellipsoid
features and weak correlations between the remaining features.
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Figure 5. Histogram showing pain distribution.

Table 2. Descriptive characteristics of life-space mobility features.

KurtosisMedianSDMeanFeatures

17.8718.9918.9711.35Excursion size (km)

15.344.7219.7311.33Excursion span (km)

10.438.6738.2123.14Total distance (km)

42.398.00342.11104.89Ellipse area (km2)

5.871.494.653.41Ellipse minor axis (km)

16.757.3423.4214.59Ellipse major axis (km)

8.4624.202.88Frequency of trips

–0.310.740.310.66Homestay percentage

0.8621.082.02Number of clusters

0.050.200.340.30Entropy

The median and mean of the daily GPS features of the low pain
group were generally higher than those of the high pain group
for excursion features (Figure 6) and ellipsoid features (Figure
7). The results of the mixed-effect model are shown in Table
3. There were no between-person effects of pain intensity on
GPS features (Figure 8 and Figure 9), but within-persons
association were predominant. The majority of GPS features (7

out of 10) indicated that having high pain was associated with
a lower value (ie, life-space mobility). Among these GPS
features, within-person pain intensity was significantly
associated with excursion size, and others (excursion span, total
distance, and ellipse major axis) showed a statistical trend
(P<.10).
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Figure 6. Distance features including excursion size, excursion span, and total distance for each pain group.

Figure 7. Ellipse minor axis, ellipse major axis, and ellipse area for each pain group.
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Table 3. Mixed effect association between pain and GPS features adjusted for age, living alone, and gender covariates.

95% CIP>|z|SECoefficientGPS features and mixed-model effectsa

Excursion size

–12.65, 5.06.404.52–3.79Between

–6.16, 0.04.051.58–3.06Within

Excursion span

–12.41, 6.05.504.71–3.18Between

–6.11, 0.35.081.65–2.89Within

Total distance

–29.94, 5.95.199.16–11.92Between

–11.93, 0.51.073.17–5.71Within

Ellipse area

–228.07, 111.62.5086.66–58.23Between

–85.65, 22.81.2627.67–31.42Within

Ellipse minor axis

–3.43, 0.82.231.08–1.31Between

–1.21, 0.28.220.38–0.47Within

Ellipse major axis

–15.78, 6.06.385.57–4.86Between

–7.50, 0.22.071.97–3.64Within

Frequency of trips

–0.47, 1.49.310.500.51Between

–0.38, 0.49.810.220.05Within

Homestay percentage

–0.08, 0.08.940.04–0.003Between

–0.01, 0.06.150.020.03Within

Number of clusters

–0.35, 0.58.630.240.11Between

–0.14, 0.19.730.080.03Within

Entropy

–0.18, 0.10.530.07–0.04Between

–0.05, 0.05.990.03–0.0003Within

aValues represent the within- and between-person effect.
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Figure 8. Clustering features including number of clusters and entropy for each pain group.

Figure 9. Frequency of trips and homestay percentages for each pain group.

Discussion

This study used a customized smartwatch app for EMA of pain
and life-space mobility as a demonstration project. Previously,
these constructs have not been coupled into a single platform
that permits synchronizing of symptoms with objective measures
of mobility in the natural environment. The results suggest that
EMA of pain is negatively associated with most but not all
life-space mobility features. Importantly, within-person effects,
but not between-person effects, were more likely to be
statistically significant. In general, older adults with confirmed
knee osteoarthritis had lower life-space mobility, when pain
intensity exceeded 2 out of 10. The results confirm the feasibility
and analytic procedures for using smartwatch technology to
harnesses sensor data alongside EMA of clinically relevant
symptoms.

Chronic pain, such as pain from symptomatic knee osteoarthritis,
is dynamic [30]. The variability of pain within and between
days makes it hard to fully capture pain experience [5]. There
has been long-standing interest in understanding daily pain
[5,31]. Earlier endeavors relied on patient recall of pain, which
is susceptible to recall bias and lack of ecological validity of
the assessment [32]. EMA is an alternative tool to allow

researchers to capture and assess a person's pain multiple times
in the person's natural environments. Electronic handheld
devices have provided additional features to EMA research via
their ability to capture moment-by-moment data generated by
their built-in sensors, allowing an in-depth understanding of the
impact that pain experiences have on mobility patterns (eg,
life-space mobility). Studies [33-36] have used handheld devices
(eg, smartphones and iPod) for EMA of pain; however, the use
of these devices was limited to electronically record participants’
diaries without utilizing the built-in sensors, and no studies have
used smartwatches for data collection.

In our study, 10 semantically meaningful features were extracted
from the GPS coordinates according to previous work [24-26]
and redefined as life-space mobility metrics. We chose to
separate within- and between-person effects to study the
associations of pain intensity ratings on GPS features. This was
done because typical coefficients from random effects models
represent a blend of both [37]. The within-person associations
demonstrate that pain and life-space mobility relate to each
other on an individual level. This is important because previous
research demonstrates that life-space mobility is lower in people
reporting higher levels of pain [37]. The within-person
associations found in this study not only support the previous
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between-person findings, they also support the notion that
pain-related interventions are likely to have an impact on an
individuals’ life-space mobility. Specifically, excursion features
were negatively associated with pain intensity. Among these
features, within-person pain intensity was significantly
associated with excursion size, and showed a statistical trend
(P<.10) with excursion span and total distance. Each point
increase in the mean pain intensity was associated with a 3.06
km decrease in excursion size, 2.89 km decrease in excursion
span, and 5.71 km decrease in total distance. This suggests
overall travel patterns are closer to home and more compact
when older adults are experiencing a higher mean pain intensity.

The spanning ellipsoid, which summarizes the GPS coordinators
into 2 dimensions, was negatively associated with within-pain
intensity. The ellipsoid features represent a close approximation
of the life-space concept (ie, reaching circular levels away from
home). Ellipse major axis, which indicates the maximum
distance across life-space, was significantly associated with
pain intensity. Each point increase in the mean pain intensity

was associated with 31.4 km2 decrease in ellipse area, 0.47 km
decrease in ellipse minor axis, and 3.64 km decrease ellipse
major axis. Notably, the ellipse tends to have a smaller area,
length, and width with higher pain intensity, which is similar
to our observation about excursion features. Point estimates
suggest that higher intensities of pain may constrain individuals
to their home and limit the number of places they can visit.

Location clustering provides information about the distribution
of places individuals spend outside of their homes. The number
of clusters and entropy both contribute to understanding the
variability of places visited by participants. While not
statistically significant, the directionality of the coefficients
indicated that higher pain intensities were associated with a
higher number of places an individual stays at (stationary
places). In other words, higher pain appears to be associated
with spending more time at a lower number of locations, but
this needs to be confirmed in larger samples.

The directionality of the point estimates demonstrated that the
frequency of trips was higher when pain intensity was high.
Although this may seem counterintuitive, coupled with the other
results, it appears that these frequent trips were close to home.
Similarly, point estimates for homestay percentage were
positively associated with pain intensity. Given the weak
associations of these features, trip frequency and homestay
percentage may not be useful features for understanding the
impact of pain on life-space mobility.

The association between pain and life-space mobility has not
been widely studied, and more research is needed in this regard
[38,39]. Despite the lack of relevant research, our results agree
with those of Rantakokko et al [38] and Liddle et al [40], where
life-space mobility was found to be negatively associated with
pain. Rantakokko et al [38] examined the association between
life-space mobility and multiple outcomes, including pain, in
patients with Parkinson disease. They followed a paper-based

questionnaire and assessed life-space mobility using life-space
assessment. They found that life-space mobility is negatively
associated with pain [38]. Similarly, Liddle et al [40] examined
life-space mobility among patients with Parkinson disease using
GPS on smartphones. They found that people with more
symptoms spend more time at home and travel shorter distances.

Other studies have found strong associations between life-space
mobility and depression [25], visual impairment [41], and
personal and social characteristics [42,43] using GPS. Among
these studies, only Cornwell et al [42] used smartphones for
GPS tracking and EMA collection to examine the social
environments relevant to older adults’ everyday lives, where
they found that certain activities such as exercising, shopping,
socializing, and social activities were likely to take place outside
of residential tracts. These studies [25,41-43] show the important
role GPS features play, when coupled with other outcomes, in
understanding individuals’ behavior and their experience in
natural environment and the importance of wearables in linking
complex states in a temporal manner.

This demonstration study provided insights on the potential
relationship between life-space mobility and pain in older adults
with symptomatic knee osteoarthritis by utilizing smartwatches.
Our results demonstrate that a custom-designed smartwatch
platform was effective at simultaneously collecting rich
information about ecological pain and life-space mobility.
ROAMM could potentially help clinicians in assessing pain or
other patient-reported outcomes in patients’ natural
environments, while continuously collecting relevant sensory
data. Though our results point to interesting insights in
understanding the relationship between life-space mobility and
EMA of pain, our study had limitations. The sample size was
not large enough to generalize and infer causality between
life-space mobility and pain. Additionally, the overall pain
reported by participants was low, with the majority reporting a
pain intensity less than 4. In the future, we aim to recruit a larger
sample size with more diversity in terms of pain intensity.

The major goal of this study was to demonstrate that a
smartwatch platform—ROAMM—could be used to collect
EMA of pain with concurrent mobility tracking via GPS for
life-space mobility assessment in older adults with symptomatic
knee osteoarthritis. Point estimates from other life-space
mobility features confirm that the directionality of associations
is plausible and provides initial evidence for their utility in
future studies. In general, it appears that higher intensities of
pain intensity tend to limit their life-space mobility by either
constraining them to their residence or limiting their excursion
lengths. This area of research is still in its infancy, but with apps
similar to ROAMM, the demand for these tools is expected to
increase remote health endeavors that are gaining significant
momentum in health care. Such connected technologies have
a potentially important role giving practitioners information
about their patients' behaviors, symptoms, and health condition
sequalae in their patients' natural environments.
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