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Abstract

Background: Multimodal wearable technologies have brought forward wide possibilities in human activity recognition, and
more specifically personalized monitoring of eating habits. The emerging challenge now is the selection of most discriminative
information from high-dimensional data collected from multiple sources. The available fusion algorithms with their complex
structure are poorly adopted to the computationally constrained environment which requires integrating information directly at
the source. As aresult, more simple low-level fusion methods are needed.

Objective: Inthe absence of adatacombining process, the cost of directly applying high-dimensional raw datato adeep classifier
would be computationally expensive with regard to the response time, energy consumption, and memory requirement. Taking
thisinto account, we aimed to devel op adatafusion techniquein acomputational ly efficient way to achieve amore comprehensive
insight of human activity dynamics in a lower dimension. The major objective was considering statistical dependency of
multisensory data and exploring intermodality correlation patterns for different activities.

Methods: In this technique, the information in time (regardless of the number of sources) is transformed into a 2D space that
facilitates classification of eating episodes from others. This is based on a hypothesis that data captured by various sensors are
statistically associated with each other and the covariance matrix of all these signals has a unique distribution correlated with
each activity which can be encoded on a contour representation. These representations are then used as input of adeep model to
learn specific patterns associated with specific activity.

Results: In order to show the generalizability of the proposed fusion algorithm, 2 different scenarios were taken into account.
These scenarios were different in terms of temporal segment size, type of activity, wearable device, subjects, and deep learning
architecture. Thefirst scenario used adata set in which asingle participant performed alimited number of activitieswhilewearing
the Empatica E4 wristband. In the second scenario, a data set related to the activities of daily living was used where 10 different
participants wore inertial measurement units while performing a more complex set of activities. The precision metric obtained
from leave-one-subject-out cross-validation for the second scenario reached 0.803. The impact of missing data on performance
degradation was also eval uated.

Conclusions: To conclude, the proposed fusion technique provides the possibility of embedding joint variability information
over different modalitiesin just asingle 2D representation which results in obtaining a more global view of different aspects of
daily human activities at hand, and yet preserving the desired performance level in activity recognition.

(IMIR Mhealth Uhealth 2021;9(1):€21926) doi: 10.2196/21926
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Introduction

It is a proven fact that chronic diseases including obesity,
diabetes, and metabolic disorders are highly correlated with
eating behavior and regarding the importance of this issue,
application of wearable sensors for capturing eating-related
activities has been widely studied in the literature [ 1-6]. These
studies can be categorized into 3 groups, including food intake
detection, food type classification, and food content estimation.
Among these groups, food intake detection has been considered
asthefirst phase in food intake monitoring, and studies around
it mainly focused on detecting chewing activity (acoustic-based
assessment) [7-10] or hand gestures movement (motion-based
assessment) [11-13] during eating episodes. The majority of
the proposed methods rely on single sensing approaches, for
example, using electromyography sensor, accel erometer sensor,
or microphone [14-17]. However, it is believed that precisely
discriminating eating episodes from other confounding activities
requires processing multiple parameters from several sources.
For this reason, multimodal assessment is a common target of
interest today. Taking as an example, using data from both
accelerometer and gyroscope sensors proposed in [18] reached
an accuracy of 75% in detecting eating activity. These kinds of
sensors quantify specific features of hand-to-mouth gestures as
well as jaw motion associated with dietary intake. Later on,
adding images of food into data captured by accelerometer and
gyroscope was suggested for eating episodes detection [19].
Analysis of these meal images can also extract information of
food content and estimate dietary energy intake. Data taken by
GPS were also added as input parameters to correctly predict
eating activity [20]. Audio signals of chewing sound was a
further option added to a data set of both motion data and meal
images which improve the accuracy of eating periods detection
up to 85% [21]. Therefore, according to the aforementioned
studies, it is valuable to develop algorithms that can take
advantage of multiple data sources for monitoring applications
rather than focusing on asingle sensor. The sources of different
modalities will provide richer information in comparison to a
single source.

However, although using different modalities provides further
opportunities to explore more complementary information, the
growing number of different modalities has brought new
challenges due to increase in the volume and compl exity of the
data. For dealing with these high-dimensional data sets and
lowering the computational time, some studies implement
feature selection process including forward features selection
[22], random forest [23], and principal component analysis[24]
to reduce the data size and sel ect important parameters/features.
For combining the information captured by different sensors,
the classification score fusion has been introduced in literature
as an option. Papapanagiotou et a [25] fused support vector
machine scores from both photoplethysmography and audio
signals. Regarding discriminating eating episodes from other
activities, researchers applied different classification toolsfrom
support vector machine [26] to artificial neural network [27].
They also found that appropriate epoch size ranges from 10 to
30 seconds[28]. However, recent advancesin machinelearning
methods have increasingly captured the attention of many
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research groups for distinguishing food intake intervals from
others based on deep learning techniques. Convolutional neural
network has been used for automatically detecting intake
gestures from raw video frames [29]. Convolutional neural
network was al so proposed by Cioccaet al [30] for image-based
food recognition.

The aforementioned studies focused on data represented by
features set and its corresponding fusion as well as decision
fusion of classifiers. What remains to be addressed is
investigating the sensor fusion for quantitatively integrating
heterogeneous sources of information. Taking thisinto account,
this study aimed to combine data derived from disparate sensors
such that the resulting information haslower dimension and yet
maintains the important aspects of original data.

To the best of our knowledge, there is no research focused on
sensor fusion for personalized activity identification using
different data sets collected by wearable devices. The proposed
fusion here is based on a hypothesis that data captured by
multiple sources are statistically correlated with each other and
their 2D covariance representation has a unique distribution
associated with the type of activity.

Methods

Implementation of Sensor Fusion Algorithm

The proposed agorithm automatically transformed data from
different sensorsin time into a single 2D color representation
that provides fast effective support for discriminating eating
episodes from others. The idea of this method was on the
hypothesisthat data driven by different sensors have correlation
with each other and a covariance matrix of al these
measurements has a unique distribution associated with each
type of activity which can be visualized as a contour plot. With
2D covariance contour as input data sets, deep model-{earned
specific patterns in 2D correlation representation related to
specific activity.

The following is a summary of the steps followed in the
proposed method to detect eating episodes:

Step 1

Forming the observation matrix derived from all sensors; the
corresponding covariance matrix can then beformed in 2 ways.
Thefirst way is to calculate pairwise covariance between each
sample across al signals. The second way is to calculate

pairwise covariance between each signal across all samples.
The algorithm steps based on the second way are as follows:

The pairwise covariance calculation between each column
combination:

Cij = cov(H(;, i), H(:, ))) (1)
where H is observation matrix.

The covariance coefficient of 2 columns of i and j can be
calculated as follows:

cov(S, §)=1/ (n_l)zmkzl(Sk_ui)(Sk_Uj) )
S=M(, i), §=M(,])
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where |; is the mean of S, | is the mean of §, and m is the
number of samples within the window.

Step 2
Obtaining the covariance coefficient matrix of al columns
according to the following equation:

cov(S5y,5) -
C= ( i "

m!’(Si-Sl.)) (3)
cov(Sy, Sy)

Cov(S,Sa)

where n is the number of observations.

Step 3

Creating afilled contour plot containing the isolines of obtained
matrix C so that given a value for covariance, lines are drawn
for connecting the (x, y) coordinateswhere that covariance value
occurs. The areas between the lines were then filled in solid
color associated with the corresponding covariance value.

Step 4

Feeding contour plot to the deep network to classify the
seguencesrelated to each activity. Two different scenarioswere
considered for this study. These scenarios were different in
terms of covariance matrix calculation, temporal segment size,
type of activity, wearable device, subjects, and deep learning
architecture. Inthefirst scenario, calculating pairwise covariance
between each sample across all signals was considered. In the
second scenario, calculating pairwise covariance between each
signal across al samples was taken into consideration.

Figure 1. Deep learning network architecture.
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First Scenario for Evaluation of Algorithm

Inthefirst scenario, datawere recorded from asingle participant
wearing the Empatica E4 wristband on the right hand for 3 days.
The data set includes the following data: (1) ACC—data from
3-axis accelerometer sensor in the range [-2g, 2g] (sampled at
32 Hz); (2) BVP—data from photopl ethysmograph (sampled
at 64 Hz); (3) EDA—datafrom the el ectrodermal activity sensor
in microsiemens (sampled at 4 Hz); (4) |1Bl—interbeat intervals,
which represent the time interval between individual beats of
the heart (intermittent output with 1/64-second resolution); (5)
TEM P—data from temperature sensor expressed inthe °C scale
(sampled at 4 Hz); and (6) HR—These data contain the average
heart rate values, computed in spans of 10 seconds.

The window length for this scenario was selected to be 500
samples. This analysis was performed on 2954 500-sample
segments after making all signalsin the same size with sample
frequency of 64 Hz. Segmentswere picked so that 1000 of them
contained sleeping intervals, and 1000 of them captured during
working with computer and otherswere during eating episodes.

The deep learning architecture used in this scenario was a deep
residual network. The proposed deep learning architecture for
image-to-label classification is presented in Figure 1 and
consisted of a deep residua network with 3 2D convolution
layers, followed by batch normalization, ReLU, max pooling,
and fully connected layers. The 2D convolutional layer applied
sliding convolutional filters to the input contour image. The
output of this network is a categorical response, and therefore
asoftmax and classification layerswere also added aslast layers.
Thereis also a shortcut to jump over some layers.
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Table 1 provides detailed information about the proposed
network layers. This information includes the sizes of layer
activations. Thetraining parameters of the deep learning model
are given in Table 2. The mini-batch size and the maximum
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number of epochswere set to 100 and 10, respectively. Fivefold
cross-validation was al so used to check the performance of the
model.
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Table 1. Detailed information about the layers of proposed network.
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Number Layer type Activations
1 Image input 300 x 300 x 3
2 Convolution 300 x 300 x 32
3 Batch normalization 300 x 300 x 32
4 ReLU 300 x 300 x 32
5 Convolution 150 x 150 x 64
6 Batch normalization 150 x 150 x 64
7 ReLU 150 x 150 x 64
8 Convolution 150 x 150 x 128
9 Batch normalization 150 x 150 x 128
10 ReLU 150 x 150 x 128
11 Convolution 150 x 150 x 128
12 Addition 150 x 150 x 128
13 Max pooling 75x 75% 128
14 Fully connected 1x1x500
15 Fully connected 1x1x10
16 Fully connected 1x1x3
17 Softmax 1x1x3
18 Classification output _a

&__: Not available

Table 2. Themodel training parameters.
Parameter Value
Initial learn rate 0.001
Learn rate drop factor 0.1
Learn rate drop period 2
Mini batch size 100
Max epochs 10
Learn rate schedule Piecewise

Second Scenario for Evaluation of Algorithm

In the second scenario, an open data set associated with the
activities of daily living was considered. The data set was
collected from 10 healthy participants, performing 186 activities
of daily living while wearing 9-axis inertial measurement units
on both |eft and right arms [31].

The considered activities can be grouped into 4 separate
categories: (1) mobility, including walking, sitting down and
standing up, and opening and closing the door; (2) eating,
including pouring water and drinking from glass; (3) personal
hygiene, including brushing teeth; and (4) housework, including
cleaning the table [31].

The recorded data include quaternions (with resolution of
0.0001), accelerations along the x, y, and z axes (with resolution
of 0.1 mG), and angular velocity along the x, y, and z axes (with
resolution of 0.01 degrees per second) [31].

http://mhealth.jmir.org/2021/1/€21926/

Dataannotation for all the experimentswas manually performed
based on videos recorded by an RGB camera[31].

The window length for this scenario was selected to be 50
samples. This analysis was performed on 4478 50-sample
segments. Segments were picked so that 1132 segments
contai ned walking episodes, 20 segments contained sitting down
episodes, 16 segments contained standing up episodes, 366
segments contained opening the door episodes, 400 segments
contained closing the door episodes, 1208 segments contained
pouring water and drinking from glass episodes, 704 segments
contained brushing teeth episodes, and 632 segments contained
cleaning the table episodes.

Astraining from the scratch on relatively small-scale data sets
is susceptible to overfitting, a pretrained model for extracting
deep features was suggested in this scenario. The deep learning
architecture used in this section was the InceptionResNetV2
pretrained model. This pretrained classification network has
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already learned on more than 1 million images. Asthis network
was trained on extremely large data sets, it is capable of being
served as a generic model. Therefore, this section used layer
activation of the pretrained InceptionResNetV 2 architecture as
features to train a support vector machine for classifying
different activities. The parallel computing platform of Tesla
P100 PCle 16 GB was used for implementing this deep structure.
The depth, size, and number of parameters in the pretrained
InceptionResNetV 2 network were 164, 209 MB, and 55.9 M,
respectively. Leave-one-subject-out cross-validation was
considered for performance evaluation of classification.

Bahador €t d

Results

Applying the Proposed Algorithm on theFirst Scenario

Signals captured from different sensors during eating, sleeping,
and working with computer are plotted in Figure 2. Thisfigure
illustrates how characteristics of data coming from different
sources vary a lot. Figure 3 shows how the values in the
eating-related data captured by different sensors are spread out
in their boxplots, and how their distributions differ from each
other. As these signals cannot be described by the same
distribution, they are said to be heterogeneous. This
heterogeneity brings up the issue of how to integrate the
information from such diverse modalities. This spread in the
range of scales across the various modalities causes a simple
approach to be not enough for reliable activity detection and a
therefore a more sophisticated technique is required.

Figure 2. Time series amplitude of each modality captured during 1 episode of 3 different activities of eating, sleeping, and working with computer

(the number of samples per second is 64).
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Figure 3. Distribution of data captured by different sensors for a portion of eating episode.
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Figure 4 shows the preprocessing steps performed on the raw
data to prepare input data for a 2D deep residual network. As
shown in Figure 5, covariance coefficients between channels
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were first derived and presented in the form of contour map.
The obtained image was fed to a deep network as input image.
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Figure 5 shows examples of covariance coefficients contour  corresponding to low values and bright colors corresponding
generated from different modalities. The horizontal and vertical ~ to high values. As seen in figures, there is a visible difference
axes represent the sample number. The value of correlation in the color patterns of correlation coefficients contour for
coefficients is represented by the color, with dark colors different activities.

Figure 4. Generating covariance coefficients contour for a 500-sample eating episode (pairwise covariance was cal cul ated between each sample across

al signas).
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The performance metrics variations including epoch number,
iteration number, time elapsed, mini-batch accuracy, validation
accuracy, and loss function value for the validation data are
plotted in Figure 6. The number of epochs was chosen to be 10
over 200 iterations. The training and testing proportions, being
considered as 70% and 30%, respectively, were randomly
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assigned from each label. The training data were also shuffled
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Figure5. Examples of covariance coefficients contour for different activities. (A) Eating; (B) Working with computer; (C) Sleeping.
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before every epoch. Learning rate was reduced over epochs and
its speed was updated by decreasing the learning rate, and
multiplying it by a fractional learn rate drop factor over a
specific number of epochs. According to Figure 6, the small
validation loss allows to conclude that this method has
generalization capability.
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Figure 6. Deep learning model performance over observations in the mini-batch.
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Convergence of average accuracy and loss function during Confusion matrix in Figure 9 shows the results obtained from
training and validation for 10 epochs was plotted in Figures 7 validation data sets of covariance coefficients contour.

and 8. The result of the covariance-based model has rapidly
converged to a stable value with no sign of overfitting.

Figure 7. Accuracy variation in each epoch of deep residual network with input images of covariance coefficients contour.
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Figure 8. Loss function variation in each epoch of deep residual network with input images of covariance coefficients contour.
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Figure 9. Confusion matrix for the validation set of deep residual network

with input images of covariance coefficients contour.
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Applying the Proposed Algorithm on the Second
Scenario

Figure 10 shows an example of covariance map generated from
different modalities in the second scenario.

The visualization of performance of the fusion method applied
on the second scenario is plotted in Figure 11 and shows how
the algorithm is confusing 2 classes.
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The elapsed time for the training process of the model was
39.2714 seconds. The latency for making decision on the new
input was 0.1459 seconds. Various statistics calculated from
the confusion matrix for a comprehensive study are listed in
Table 3. Based on classification results, it is possible to find
how well classification of different activitieswas done by taking
advantage of the proposed sensor fusion.
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Figure 10. Covariance map for a 50-sample walking episode (pairwise covariance was calculated between each signal across all samples was taken
into consideration).
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Figure 11. Theresults of applying pretrained deep learning architecture on the fused data
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Table 3. Comprehensive study of pretrained deep learning classifier's performance.

Metrics of classifier’s performance Values

Accuracy 0.95083
Precision (positive predictive value) 0.80335
False discovery rate 0.19664
False omission rate 0.02809
Negative predictive value 0.97190
Prevalence 0.12500
Recall (hit rate, sensitivity, true positive rate) 0.80335
False-positive rate (fall-out) 0.02809
Positive likelihood ratio 28.5965
Fal se-negative rate (miss rate) 0.19664
True-negative rate (specificity) 0.97190
Negative likelihood ratio 0.20233
Diagnostic odds ratio 141.334
Informedness 0.77525
Markedness 0.77525
F-score 0.80335
G-measure 0.80335
Matthews correlation coefficient 0.77525

Comparison With Similar Studies

Data captured by different sensors in order to detect eating
intervals have been explored by many studies. These studies
focused on analyzing several types of data captured by different
sensors from accelerometers and gyroscopes to respiratory
inductance plethysmography and oral cavity. However, as seen
in Table 3, the number of modalitiesinvolved in detecting food
intake intervals has been up to 2. Therefore, this study
investigated whether eating event detection by simultaneous
processing of 8 different modalities (eg, 3-axis accelerometer
sensor, photoplethysmography, electrodermal activity sensor,

Table 4. Comparison of previous studies on food intake episodes detection.

interbeat intervals, temperature sensor and heart rate) isfeasible.
The obtained results showed an overall validation accuracy
comparable to the approaches proposed earlier in the literature
(Table 4). Furthermore, the proposed data fusion framework in
thisresearch provided asimpleway of integrating multiple data
sources applicablefor deep learning methodsin human activity
monitoring, while previous studies focused on applying raw
data. When it comesto cloud computing aswell as big datafor
the purpose of human activity monitoring using wearable
sensor-based technologies, the cost of directly applying
high-dimensional raw data to a deep classifier would be
computationally expensive.

Study Modalities Method Accuracy, %
[32] Acoustic signal Correlation matching 85

[33] Food image and speech recording Support vector machine classification 90.6

[34] Electroglottograph Artificial neural network 86.6

[35] Piezoelectricity Time and amplitude thresholding 86

[36] Accelerometer and gyroscope Decision tree classifier 85.5

[37] Chewing sound (1) Deep Boltzmann and (2) Machine with deep neural network classifier 77

[38] Piezoelectricity Convolutiona neural network 91.9

[39] Acceleration and orientation velocity Convolutional-recurrent neural network 82.5-96.4

Investigating the Effect of Missing Values

The proposed data fusion technique also has the challenge of
data imperfection, which could be overcome by using data
imputation methods. Missing samples can affect the contour

http://mhealth.jmir.org/2021/1/€21926/

representation of covariance matrix to a great extent which
makes it necessary to be recovered using missing value filling
methods.
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Figure 12 demonstrates how the moving median method (as a
sample of interpolation methods) can recover the contour
representation suffered from the missing data. The moving
median was done over a window of length 20. However, there

Bahador et d
is still a huge gap for addressing the issue of data
inconsistencies, which will let the gates open for future studies.

Table 5 shows the impact of missing data without using any
imputation on performance degradation in the second scenario.

Figure 12. Contour representation (A and C) before and (B and D) after applying moving median for missing data.

_%P Contour Plot urtnvarian Matrix

'I

|
II IIII\I IIII i
!!'!*

Sample Number

(A)

_%P Contour Plot of Covariance Matrix

450 | :
i | IIHIIIH-JIH_ ,

g

Num
g 8 &

g

Sample Number

-
wh
[

—
=
=]

== H
BT I

il i

Tore —-: e

g

100 200 300 400 500
Sample Number

(©)

http://mhealth.jmir.org/2021/1/e21926/

XSL-FO

RenderX

5EDI} Contour Plot of Covariance Matrix

450

Mum
4§ £ 88

Sample Number
g 8 8

&

00 200 300 400 500
Sample Number

(B)

5EDI} Contour Plot of Covariance Matrix

450

Mum
4 £ 8 8

Sample Number
g 8 8

&

00 200 300 400 500
Sample Number

(D)

IMIR Mhealth Uhealth 2021 | vol. 9 | iss. 1| €21926 | p. 12
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MHEALTH AND UHEALTH

Table 5. Impact of missing data on performance degradation.

Bahador €t d

Metrics of classifier's performance

Missing value percentage

0 111 222 8.33 155 25
Accuracy 0.95083 0.91400 0.89591 0.89533 0.88501 0.88326
Precision (positive predictive value) 0.80335 0.65603 0.58365 0.58132 0.54007 0.53307
False discovery rate 0.19664 0.34396 0.41634 0.41867 0.45992 0.46692
False omission rate 0.02809 0.04913 0.05947 0.05981 0.06570 0.06670
Negative predictive value 0.97190 0.95086 0.94052 0.94018 0.93429 0.93329
Prevalence 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
Recall (hit rate, sensitivity, true-positive rate) 0.80335 0.65603 0.58365 0.58132 0.54007 0.53307
False positive rate (fall-out) 0.02809 0.04913 0.05947 0.05981 0.06570 0.06670
Positive likelihood ratio 28.5965 13.3506 9.81308 9.71933 8.21996 7.99166
False-negative rate (miss rate) 0.19664 0.34396 0.41634 0.41867 0.45992 0.46692
True-negative rate (specificity) 0.97190 0.95086 0.94052 0.94018 0.93429 0.93329
Negative likelihood ratio 0.20233 0.36174 0.44267 0.44531 0.49226 0.50029
Diagnostic odds ratio 141.334 36.9063 22.1678 21.8259 16.6982 15.9738
Informedness 0.77525 0.60689 0.52418 0.52151 0.47437 0.46637
Markedness 0.77525 0.60689 0.52418 0.52151 0.47437 0.46637
F-score 0.80335 0.65603 0.58365 0.58132 0.54007 0.53307
G-measure 0.80335 0.65603 0.58365 0.58132 0.54007 0.53307
Matthews correlation coefficient 0.77525 0.60689 0.52418 0.52151 0.47437 0.46637

Discussion

Principal Findings

Recent advancesin biosensor technologies[40,41] and consumer
electronics have led to precise physiological monitoring and
more specifically accurate activity recognition. Activity
recognition based on wearable deviceis one of the most rapidly
growing research areasin personalization of analyses. Physical
characteristics, health state, lifestyle, moving style, and gender
are parameters that can be highly personalized. Therefore, in
order to consider generalization of prediction or classification
models, the data should be |abeled personally, and the focus of
research should be more on personalized analysis[42,43]. One
way to personalize data is automatic identification of human
activities and consequently labeling data based on different
activities.

Regarding human activity recognition, we are facing upcoming
transition from analyzing single modality to processing data
collected from multiple sources with enormous diversity in
terms of information, size, and behavior. This increases the
complexity of classification problems and requires low-level
data fusion to simultaneoudly integrate significant information
in al modalities, and yet compressing the data directly at the
source. Thisfusion processisimportant in asensethat reduction
of communication load to other device or to the cloud requires
local extraction of information from raw data stream in the
sensor level. Therefore, fused raw data in a compressed form
are super important in terms of minimizing the amount of data

http://mhealth.jmir.org/2021/1/€21926/

needed to be stored or needed to be sent. It isalso important in
saving battery power and reducing transmission time.

Regarding the importance of implementing a low-level fusion
method with simple structure, this study presented a general
framework for implementing efficient fusion based on
covariance map. The promising classification results reached
precision of 80.3% and showed that global 2D covariance
representation can reliably quantify the difference between
activities, as it provides a simple abstract representation of
correlation over modalities.

For performance assessment of the proposed algorithm, the
method was implemented on 2 separate scenarios. These
scenarios were different regarding the temporal segment size,
type of activity, wearable device, subjects, and deep learning
architecture. The obtained results showed the ability of the
proposed fusion technique to generalize to other data sets with
different modalities, participants, and tasks.

Limitationsin Existing Literature

There are many ways of integrating modalities for activity
recognition task [44-57], with the 3 major groups being
sensor-level [45,49,50], feature-level [44,57], and decision-level
[51-56] fusion. Fusion at thedecision level isthe most frequently
used method which takes advantage of training machinelearning
and deep learning models for each modality. When it comesto
merging scores of these networks for the purpose of datafusion,
the practical applications are limited by their complex process
which lead to more computationally heavy processing and make
them inapplicable for implementing on low-power systems.
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Therefore, such techniques cannot be considered as low-level
data fusion.

There are only afew methods for low-level datafusion, with 2
focused on using Bayesian network for sensor-level fusion
[45,50]. These Bayesian networks usudly involve a
time-consuming process of hyperparameter tuning. Correctly
implementing hyperparameter optimization is usually complex
and computationally expensive. A small change in the values
of hyperparameters can highly affect the performance of model.
In this sense, it could be said that the low-level fusion methods
with simple structure can outperform sophisticated ones.

Strengths of the Proposed M ethod

Unlike complex fusion techniques based on evolutionary
computation [48], machine learning approaches [47,51,53,54],
Bayesian models [44,45,50,55], Kalman filtering [49], and
neural networks [46], the proposed fusion method had very
simple implementing procedure, and yet capable of revealing
the common trends and similarities among recorded modalities.
It was also free of the number and type of sensors used for
collecting data. This could be an important benefit as there is
high diversity in sensor technology deployed for activity
recognition and the choice of sensors vary alot from one case
to another. The sensors used in activity recognition studies
include vibration and contact sensor [44], tap sensor [45], motion
sensor [46], ventilation sensor [47], heart rate sensor [48],
magnetometer sensor [49], temperature sensor [50],
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electrocardiogram sensor [51], accelerometer sensor [52], and
gyroscope[54]. Furthermore, thismethod isuniversal in asense
that it can cover awide spectrum of problemsincluding tracking
activity of daily living, elderly monitoring, fall detection, smart
home, ambient assisted living, behavior analysis, among others.
It could help in decreasing the final cost of the monitoring
framework by deploying fusion in thefirst step of classification
process (applying fusion algorithm in the final step needs
independently analyzing data for every single component and
combining the final results which make the implementation
computationally expensive). Providing the possibility of visualy
representing the correlation among modalities and reducing
dimension by embedding the sensory data in just a single 2D
representation can be considered as other strengths of the studied
technique.

Future Work

A limitation to this research is that both tested scenarios were
performed on healthy volunteers, which may be far from the
cases including actual patients who suffer from movement
disability or mgjor health problem. This could be included in
future work.

Future research direction will also include implementing the
fusion agorithms for the scenarios in which one or more
modalities are missing. The applicability of the findings will
be also tested for other problemsrather than activity recognition.
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