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Abstract

Background: Wearable devices are now widely available to collect continuous objective behavioral data from individuals and
to measure sleep.

Objective: This study aims to introduce a pipeline to infer sleep onset, duration, and quality from raw accelerometer data and
then quantify the relationships between derived sleep metrics and other variables of interest.

Methods: The pipeline released here for the deep phenotyping of sleep, as the DPSleep software package, uses a stepwise
algorithm to detect missing data; within-individual, minute-based, spectral power percentiles of activity; and iterative,
forward-and-backward–sliding windows to estimate the major Sleep Episode onset and offset. Software modules allow for manual
quality control adjustment of the derived sleep features and correction for time zone changes. In this paper, we have illustrated
the pipeline with data from participants studied for more than 200 days each.

Results: Actigraphy-based measures of sleep duration were associated with self-reported sleep quality ratings. Simultaneous
measures of smartphone use and GPS location data support the validity of the sleep timing inferences and reveal how phone
measures of sleep timing can differ from actigraphy data.

Conclusions: We discuss the use of DPSleep in relation to other available sleep estimation approaches and provide example
use cases that include multi-dimensional, deep longitudinal phenotyping, extended measurement of dynamics associated with
mental illness, and the possibility of combining wearable actigraphy and personal electronic device data (eg, smartphones and
tablets) to measure individual differences across a wide range of behavioral variations in health and disease. A new open-source
pipeline for deep phenotyping of sleep, DPSleep, analyzes raw accelerometer data from wearable devices and estimates sleep
onset and offset while allowing for manual quality control adjustments.

(JMIR Mhealth Uhealth 2021;9(10):e29849) doi: 10.2196/29849
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Introduction

Background and Challenge
Prolonged daily episodes of sleep behavior are expressed nearly
ubiquitously in all members of our species, as they are innate
and undergird both physical and mental health across the
lifespan. Multiple studies have suggested that sleep loss or poor
sleep quality are predictors (and potentially moderators and
mediators) of mental illness symptoms and poor cognitive
performance [1-6]. While the use of modern digital devices
influences sleep timing, these devices also afford new
low-burden opportunities to measure sleep [7-10]. This paper
introduces an open-source sleep-analysis pipeline called
DPSleep, referring to the deep phenotyping of sleep that we
offer to the community as a platform to facilitate longitudinal
studies of sleep using data from widely available wearable
devices [11].

The current gold standard for documenting sleep timing and
content is polysomnography (PSG), during which multiple
physiological measures are recorded, usually in a clinic or
laboratory setting [12,13] or recently in ambulatory settings
[14,15]. Although PSG is a comprehensive assessment of sleep
stages, there are limitations associated with cost and subject
burden, and it is difficult to obtain in-patient or at-home versions
of PSG for extended periods [16,17]. Actigraphy, defined as
recording activity-related data, mainly acceleration, using
wearable devices, has been suggested as an efficient and reliable
alternative to measure certain features of sleep patterns in
natural, at-home settings [18,19]. Actigraphy data, estimated
from accelerometers, are a common output of many wearable
and held devices, including wrist watches, ankle bands and
wristbands, smartglasses, sewn-in or attached devices, and
smartphones [15,20-24]. At the same time, openly available
feature-extraction algorithms with the capability to retain and
present the features from raw to derived measures are essential
for a reproducible large-scale understanding of human sleep,
even in the presence of proprietary algorithms associated with
many of the devices.

Objective
In actigraphy-based sleep assessment using wristbands,
acceleration is typically measured in 3 dimensions, where each
axis—x, y, and z—reflects linear acceleration along with one
dimension of a triaxial accelerometer; some devices also
measure environmental factors such as ambient light,
temperature, or physiological measures such as heart rate
variability or electrodermal activity [25]. A body of literature
investigating the sensitivity and specificity of wristbands to
detect sleep parameters, including total sleep time, sleep onset
latency, wake after sleep onset, and sleep efficiency, has evolved
[26-28]. Although several of these approaches have been
validated using PSG and self-reported sleep quality ratings
under certain controlled conditions, there is ongoing research
to validate the software and develop in-house algorithms for
different applications and under real-world circumstances
[29-31]. Several of the devices, in order to save memory and
battery, provide preprocessed, 1-minute averaged acceleration

data [6,32-35], whereas others provide continuous
high-frequency data [36-38].

This study contributes to this evolving field by providing a
comprehensive pipeline to analyze raw accelerometer data to
estimate minute-based activity and detect the major Sleep
Episode, defined as the longest continuous sleep episode of at
least 100 minutes. The overall goals are to (1) develop an
open-source processing pipeline to detect major Sleep Episodes
from commonly available accelerometer data; (2) apply and
validate the estimation procedure using real-world data,
including individuals studied over extended periods who
independently rated their sleep; and (3) apply the processing
pipeline to exemplar data to illustrate its application. To this
end, we aim to analyze data from undergraduate students who
are studied over 6-9 months during college to illustrate sleep
patterns that fluctuate with environmental demands and in
relation to other self-report measures of sleep and mental state.
We also aim to analyze data from 2 individuals who are
outpatients with severe mental illness to illustrate the boundaries
of the methods and their ability to measure dramatically altered
sleep patterns.

Methods

Participants
Participants were enrolled into 2 distinct cohorts to obtain
actigraphy data across a range of individuals. The samples are
described separately.

Study 1: Undergraduate Study
In total, 6 undergraduate participants (all aged 19 years; 3
females; 4 White participants, 1 unspecified, and 1 Asian; all
non-Hispanic) were recruited from a local private institution
and participated for one academic year (165-268 days), including
a buffer extending into the summer break. These individuals
had successfully participated in a shorter, earlier pilot study that
did not use the present actigraphy device or processing pipeline.
Participants were compensated per hour for the lab visits and
for completing daily app-based questionnaires and given
milestone bonuses to encourage continued participation.
Participants were required to be enrolled full-time in classes
and own an iPhone or Android smartphone compatible with the
study smartphone app, Beiwe, which is part of the open-source
Beiwe platform for digital phenotyping [39]. The Beiwe app
was configured to collect passive phone use, phone acceleration,
and GPS data at an almost continuous rate, as well as active
self-report data on a regular, daily basis. As each participant
served as their own baseline, participants were not excluded for
current or past psychiatric disorders or medication use. Mental
health history was measured by self-report of current or past
diagnoses of mental disorders, current or past use of prescribed
psychotropic medications, and current or past concerns about
mental health symptoms (undiagnosed). Only 1 participant
reported any current or past mental health history (current
psychotropic medication for anxiety). All study procedures were
approved by the Institutional Review Board of Harvard
University.
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Study 2: Clinical Study
Two individuals (aged 62 and 24 years; 1 female) were recruited
from an ongoing cohort following the clinical progression of
severe mental illness at a local hospital. Individuals were
diagnosed with psychotic disorders (bipolar, n=1; schizophrenia,
n=1) using a structured clinical interview for Diagnostic and
Statistical Manual of Mental Disorders (DSM)-IV [40]. The
diagnoses were initially acquired before DSM-V gaining
traction. However, the primary diagnosis was reviewed
periodically, and DSM-V-(revised version) [41] criteria were
referenced when adjusting the diagnoses. Participant enrollment
for this study targeted obtaining >1 year of data for each
participant (duration: 543 and 309 days), which included a
nearly continuous collection of smartphone and actigraphy data
via the Beiwe platform [39] and wearable watch, respectively,
from each participant. Participants were compensated for these
data and for monthly in-person study visits during which clinical
assessments were recorded to quantify disease progression using
clinical gold standard measures. Milestone bonuses were
provided to encourage continued participation. All study
procedures were approved by the Institutional Review Board
of Partners Healthcare.

Wrist Actigraphy and Ancillary Data Acquisition
The present pipeline was developed using triaxial acceleration
data from a commercially available waterproof watch worn on
the wrist (GENEActiv, Activinsights Ltd) and is intended as a
general open resource for processing accelerometer data from
any device that saves raw triaxial, high-frequency, continuous
accelerometer data, sampled at a fixed and known rate.
Missingness of data was assumed to occur completely at
random. Data saved as minute-based or shorter activity estimates
can also be accommodated. The frequency of data sampling
was set to 30 Hz for study 1 and 20 Hz to preserve the memory
in case the patients missed their study visits for study 2.
Following the initial consent and receipt of the watch,
individuals in studies 1 and 2 visited the lab every 4-5 weeks
to return the watch and receive a new, fully charged watch with
formatted memory; participants in study 2 were given the
watches during their in-patient study visits. Participants were
instructed to wear the watch continuously, including during
sleep and while bathing. Using the same sampling rates across
modalities of 30 Hz in study 1 and 20 Hz in study 2, the watch
collected acceleration (g), light (lux), and ambient temperature
(C). In addition, the wristband recorded key presses. Participants
were instructed to press the key when they started to go to sleep
and when they woke in the morning. The acceleration data are
the primary data used for the automatic detection of episodes
that would be scored as sleep with additional corrections from
light and key press data when available and when necessary.

Data obtained from a smartphone (iPhone or Android) were
used as an ancillary data source [39,42]. None of the automated
processing or manual Sleep Episode adjustments used data from
the smartphone. The smartphone data provided valuable
independent information for validation. Individuals installed
the research smartphone app, Beiwe, to collect active
(questionnaire), passive phone use (via timestamping of
lock-unlock events), accelerometer, and GPS data [39,43,44].

The GPS location of the phone was sampled every 10 minutes
for a 2-minute duration, and phone acceleration was sampled
10 seconds on and 10 seconds off. At 5 PM each day, an in-app
questionnaire appeared that asked about the quality of the
previous night's sleep on a Likert scale (5-point Likert scale
from 0 [exceptional] to 4 [terribly]), the amount of caffeine
consumed in the previous 24 hours (5-point Likert scale from
0 [none] to 4 [five +]; Multimedia Appendix 1), and a set of
questions about their mood and social and academic activities.
Answers to these questions and passive estimates of phone use
were used to validate the identification of the major Sleep
Episodes from the independent watch actigraphy data.

DPSleep: A Processing Pipeline for Deep Phenotyping
of Sleep

Raw Actigraphy Data and Removal of Missing Data
(Wrist-Off)
Raw wrist actigraphy data were originally saved as large,
compressed files, each containing multiple weeks of data. Each
file comprises a table with columns of acceleration, light, and
temperature (depending on the device). To overcome the
challenge of time-consuming access to specific rows during
analysis, the first step in our processing pipeline is to parse and
save the data into separate daily files from midnight to 11:59
PM. For days on which a watch change occurred (to allow
continuous data sampling), a new, already charged watch was
placed on the wrist. As the old watch keeps collecting nonwrist
data until it is connected back to the data extraction station, the
data from the new watch were formatted to overwrite any data
from the previous watch at the same clock times.

Raw actigraphy data (30 Hz) are displayed for one daily data
file illustrating each separate accelerometer trace (Figure S1 of
Multimedia Appendix 2). This type of raw actigraphy data
measures linear acceleration and is thus most sensitive to
dynamic movements with varying amplitudes and frequencies
during different activities such as walking, phone typing, or
even tossing and turning in bed [45]. The amplitude of the
fluctuations, measured in units of gravity (g), reflects the relative
acceleration of the actigraphy device related to the gravity of
the Earth. Each axis—x(g), y(g), and z(g)—reflects linear
acceleration along with one dimension of a triaxial
accelerometer. The raw data always include the Earth’s gravity
component, which can be reflected on different axes depending
on the orientation of the device. The separate channels are highly
correlated and, for our purposes here, provide redundant
information that can be interrogated separately or combined to
make estimates more robust. The amplitude of the accelerometer
fluctuations varies across the awake hours but shows a stark
reduction in fluctuation in all three axes during the sleep period.
As explained below, the DPSleep processing pipeline is
optimized to detect the reduction in fluctuations and estimate
a single extended episode each day.

An immediate challenge is that, even for compliant participants
with charged waterproof actigraphy watches, they occasionally
removed their devices. Figure 1 shows an epoch in which the
watch was off the wrist. Unlike the Sleep Episode, which
contains residual periodic low levels of fluctuations, the

JMIR Mhealth Uhealth 2021 | vol. 9 | iss. 10 | e29849 | p. 3https://mhealth.jmir.org/2021/10/e29849
(page number not for citation purposes)

Rahimi-Eichi et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


accelerometer traces are nearly flat during the wrist-off periods.
The first step is to detect and remove the wrist-off minutes. As
the focus of these analyses is to identify the major Sleep
Episode, a window size of 150 minutes is used to detect the
wrist-off minutes. The SD of the acceleration time series for
each of the three axes was calculated for each minute. A
forward-and-backward–moving window of SD for each axis
was calculated for a window size of 150 minutes. Then, the root

mean square (RMS) of the moving average SD values for the
three axes is compared with a small experimental threshold of
0.0185 to detect the wrist-off minutes. This threshold was
determined based on more than 600 hours (5 volunteers from
our research group for 5-7 days each) of annotated data collected
in-house. The minute of data is considered wrist-off if the RMS
of the variance of the three channels is below this threshold.
The remaining data were considered for further analyses.

Figure 1. The DPSleep processing pipeline. The sequential steps in the processing pipeline are illustrated with example data for key steps. The pipeline
begins with raw accelerometer data and derives estimates of individualized sleep scores (A) and raw (B) and corrected Sleep Episodes (C). Sleep
variables are calculated based on the corrected Sleep Episodes as estimated in C. Specifically, as the first step, the SD of the acceleration along three
axes is averaged over 150-minute windows forward and backward to find the wrist-off minutes. The power density spectrum of the acceleration signal
is calculated at different frequencies, and the area under the curve estimates power as the root mean squared integrated over the three axes. Minutes are
classified based on 10, 25, 50, and 75 percentile thresholds and can be visualized (A; blue, cyan, green, orange, and red display the minutes based on
increasing power scores). A series of forward and backward moving average windows is used to flag the candidate Sleep Episodes that are then further
filtered to derive the raw sleep estimate (B). Quality control and adjustment for the local time zone then yield to the final corrected sleep estimate (C).
QC: quality control; RMS: root mean square.

Scoring Activity Level for Each Minute
After removing the wrist-off minutes from the analysis, the
power density spectrum of the acceleration signal in each minute

was calculated using Welch formula [46]. The power of the
signal in each minute is the area under the curve of the power
density spectrum. Within-individual power thresholds were then
determined for 10, 25, 50, and 75 percentiles. A 15-minute-wide
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window of the average RMS power that combines across the
three axes is used to find the percentile thresholds specific to
each individual. Data from each minute of the study were
classified based on their spectral power in comparison with
these percentile cut-offs, and color-coded daily maps of the
activity scores for each individual were generated (Figure 1,
center-left). Highly active minutes are colored in red and orange,
minutes with medium activity are colored in green, and low
active minutes are colored in blue and cyan. Daily maps provide
intuitive information about the sleep patterns of the individual.
As the watch is recording continuous actigraphy without
reference to the external world, when the time zone is changed
due to traveling, the sleep pattern is shifted and will need to be
accommodated at a later stage of processing, as can be seen in
Figure 1 at approximately day 150. Standard or daylight saving
time transitions require correction.

Estimating Major Sleep Episodes
To automatically estimate the timing of the Sleep Episode, we
used multiple moving windows that slide over a weighted
transformation of the minute-based activity levels. The minutes
with less than 25% activity (25th percentile of the empirical
distribution of activity for the person) are assigned a sleep score
of 1, and those with higher than 50% activity are penalized by
negative experimental scores (-0.75 and -1). Then, two moving
windows of narrow (60 minutes) and wide (100 minutes) sizes
were used to sweep the scores and find a provisional nocturnal
episode of sleep, while the narrower window adjusts the
beginning and end estimates of the major Sleep Episode. The
separation of tasks between two window sizes was found, in
pilot analyses, to better capture the distinct targeted events,
where detecting the nocturnal Sleep Episode benefitted from
the larger window, but the precision of the sleep onset and offset
time estimates benefitted from the smaller window. A clean-up
90-minute wide moving window was then used to connect
adjacent short candidate Sleep Episodes with more than
three-quarter sleep-scored minutes in each 90-minute window.
However, this process, on some occasions, left two separate
candidate Sleep Episodes that were separated by a period of
activity during the middle of the night. As a convention, the
automated algorithm joined discontinuous Sleep Episodes into
one longer episode if they fell within 22.5 minutes (a quarter
of the 90-minute window) of one another. This is a decision of

convention and occurred in 2.34% (34/1448) of the cases in
which sleep was measured in healthy young adults.

The outcome of these steps is an estimate of a single provisional
Sleep Episode for each day. The estimate, via the filtering
approaches used, usually underestimates the full Sleep Episode
duration by not including minutes on either temporal side of
the sliding windows that have low activity. To mitigate this
bias, as a final step, the initial estimate was expanded or shrunk
to include all adjacent minutes that show less than 25% activity
so long as they were after (when available) the evening button
press (indicating the participant’s intended start of attempting
to sleep) and before their waking button press. A button press
was considered available if the device successfully recorded a
button press within 60 minutes of the estimate. The compliance
of the individuals to provide informative (within 60 minutes of
the estimate) button presses for sleep or bed ranged from 76.9%
to 90.4% across the 6 participants in study 1 (mean 84.0%, SD
5.5%) and was 0.3% and 22.6% for the 2 participants in study
2. The duration of the major Sleep Episode after these
corrections is recorded in the data output files as the
automatically generated SleepDuration with its beginning
(SleepOnset) and end (SleepOffset) times.

Figure S2 of Multimedia Appendix 2 displays examples of the
initial automatic estimate of the Sleep Episode (yellow bottom
bar) and the final corrected Sleep Episode (middle green bar)
in the third row of panels A, B, and C. A third estimate, shown
as a blue bar, expands from the final Sleep Episode to include
adjacent minutes when the activity is below the 50% threshold,
such as when individuals are resting in bed but not yet asleep.
We store the beginning of the expanded epoch as the
BedrestOnset, the end as the BedrestOffset, and the duration as
the BedrestDuration. For some purposes, the time from the
beginning of the BedrestOnset to SleepOnset can be used as a
distinct measure (eg, SleepOnsetLatency). The variables are
listed in Textbox 1. The estimated light exposure level from the
watch is also shown in Figure S2 of Multimedia Appendix 2,
as well as the timestamps of the recorded button presses. The
light level is not used by the algorithm to estimate the Sleep
Episode but is visualized because it can aid manual adjustments
that are applied during quality control. An assumption of the
present approach is that a single Sleep Episode will occur that
is usually 100 minutes or more; the limitations of this
simplifying assumption will be discussed.
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Textbox 1. Sleep variables generated by the DPSleep pipeline.

Parameter name and description

• OffWrist: percentage of wrist-off time per 24 hours (%)

• SleepOnset: beginning of the Sleep Episode (hh:mm)

• SleepOffset: end of Sleep Episode (hh:mm)

• SleepDuration: difference between SleepOnset and SleepOffset (min)

• BedrestOnset: beginning of Bedrest Episode (hh:mm)

• BedrestOffset: end of Bedrest Episode (hh:mm)

• BedrestDuration: difference between BedrestOnset and BedrestOffset (min)

• SleepOnsetLatency: difference between BedrestOnset and SleepOnset (min)

• SleepEfficiency: percentage of SleepDuration or BedrestDuration (%)

• ActiveMinutes: number of minutes during Sleep Episode with activity higher than the 40th percentile

• ImmobileMinutes: number of minutes during Sleep Episode with activity lower than the 40th percentile

• ActiveBouts: number of bouts (sequences) during Sleep Episode with continuous ActiveMinutes, with 1-Min immobility tolerance

• SleepImmobility: percentage of immobile minutes or sleep duration (%)

• LightMinutes: number of minutes during Sleep Episode with light greater than 1 lux

• LightBouts: number of bouts during Sleep Episode with continuous LightMinutes, with 1-minute darkness tolerance

• PhoneMinutes: number of minutes during sleep episodes with any phone event, including locked, unlocked, or in use

• PhoneBouts: number of bouts during Sleep Episode with continuous PhoneMinutes, letting 1-minute no-event tolerance

Smartphone Data
In addition to wearing the actigraphy watch, most of the
individuals in studies 1 and 2 installed the Beiwe app on their
smartphones. The Beiwe app was configured to passively collect
phone on or off times and the GPS location of the phone. An
independent pipeline was used to securely analyze the GPS data
and extract the places most visited by the individual during the
study and estimate their major locations every 12 minutes. Then,
a daily map was color-coded based on the presence of the
individual at those points of interest. The GPS map provides
the time zone of the locations where the subject has visited and
evidence of location stability or movement around the time of
the major Sleep Episode.

When participants traveled across time zones, a challenge arose
as a matter of practice: when the new time zone was behind the
old time zone, the data shifted back and overwrote the previously
recorded data, and when the new time zone was ahead of the
old one, the data shifted forward, and there was a missing data
gap. The time shifts occurring during the actual days of travel,
especially when travel occurs by plane, are challenging to
incorporate, and we considered these days as missing data with
the days before and after being retained with data shifted to
reflect the time zone experienced by the participant. The
participants in study 1 traveled two to four times during the
course of the study, whereas the participants in study 2 did not
travel. A similar time-shifting issue occurs for standard or
daylight saving time transitions. In these cases, the time is
shifted forward or backward accordingly, and the two transition
nights are considered as missing data. Alternate goals, such as
estimating circadian rhythms, may be better served by analyzing
the data in a continuous fashion and will be different from the

present focus, where the discrete daily patterns require these
practical adjustments.

The smartphone data from Beiwe also provided relevant data
for validation, including accelerometer and phone use data (via
the recorded lock-unlock events). The DPSleep pipeline allows
the integration and visualization of smartphone data when
available. To integrate accelerometer data for the validation
purposes of this study, a simple SD analysis was applied to the
phone acceleration along the x-axis as a representative of the
acceleration score to recognize minutes of high movement. The
distribution of the acceleration score in all minutes during the
study for each individual was used to find minutes with greater
than 75 and 90 percentile movement (normalized to the
individual). These minutes were color-coded in yellow and red,
respectively, contrasting the lower acceleration minutes in gray
and plotted in relation to the daily Sleep Episode estimates
(Figure S3 of Multimedia Appendix 2). In addition, the
locked-unlocked events of the phone document when the phone
is in use. Phone in use time was defined as the time between
every consecutive unlocked-locked event lasting no more than
15 minutes. This is to soften the strong assumption of the phone
being in use all the time after the unlocked event and before it
is locked again. The daily map is then color-coded to show the
locked-unlocked minutes in red and blue, respectively, in
addition to in-use minutes in green (Figure S3 of Multimedia
Appendix 2). These data are used in this study to build
confidence in the DPSleep estimates of the major Sleep
Episodes. They may also be useful for understanding the
relationship between digital technology use and sleep patterns,
for example, as might occur if individuals use their phone
sporadically at night.
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Sleep Estimation Quality Control
DPSleep should not be expected to deliver a perfectly accurate
output when operating in automatic mode. Several assumptions
are made, and the structure of an individual sleep night can be
complex. Instead, DPSleep provides an elaborative day-by-day
report, examples of which appear in Figure S2 of Multimedia
Appendix 2. The user can decide about the confidence of the
estimated Sleep Episode and revise the results manually, if
necessary. DPSleep includes editing tools. Every page of the
report presents the data about one day from 6 PM on the
previous day to 6 PM on the original day. The report also
includes, when available, smartphone data, as illustrated in
Figure S3 of Multimedia Appendix 2. The daily report is a
significant help to the investigators to decide about and increase
the precision of the sleep estimation results based on the
availability and richness of the data.

All results in this paper have been quality-controlled by 2
individuals independently relying on only the watch actigraphy
data and not any ancillary data from the smartphone to make
modifications. Thus, the data are analyzed here, as would be
from any typical study that only obtained watch actigraphy data.
The guidelines used for quality control are described in
Multimedia Appendix 3. Figure S4 of Multimedia Appendix 2
illustrates the plots of sleep duration across nights before and
after manual adjustments for each of the 6 individuals in study
1. As shown, most nights show identical values before and after
quality control, meaning no adjustment was required, whereas
many others showed slight adjustments. For several nights, a
large adjustment was required (eg, in Figure S4 P6 of
Multimedia Appendix 2, there is an outlier value; in Figure S4
P5 of Multimedia Appendix 2 there are several values that were
substantially corrected). The automated values showed a
correlation with the final corrected values that ranged between
r=0.92 and r=0.98. Figure S5 of Multimedia Appendix 2
illustrates examples of errors that require manual adjustments.
Manual adjustments were made for 18.02% (261/1448) of the
nights. As illustrated in Figure S4 of Multimedia Appendix 2,
although approximately one in five nights were adjusted, most
were small adjustments that would not impact most analyses.
Approximately 9.05% (131/1448) of the nights were adjusted
to change the major Sleep Episode estimate by greater than 1
hour.

Data Security
Throughout the analysis, the pipeline is designed to handle the
data securely without exposing any identifiable information.
Days are reported as the days of the study relative to the
individual’s consent days. We consider the GPS data identifiable
not only when the actual coordinates are presented but also the

patterns of the daily maps as presented with significant (for the
individual) locations. Therefore, the pipeline was designed to
work with the encrypted data and avoid saving any of the
coordinates or maps as unencrypted scratch files. The final
results are saved directly in an encrypted format.

Within-Individual Statistical Modeling
To analyze the longitudinal association between
actigraphy-based sleep estimation and self-reported data, a
simple individual-level linear model was used with self-reported
sleep quality as a predictor and actigraphy-based sleep duration
as the outcome. This simple linear model was selected after
using a mixed linear model analysis to account for the time and
autocorrelation of the observations. The categorical day of the
week was included as a covariate to account for weekly structure
related to course schedules and weekday-weekend differences.
Only data collected during the academic year were included (ie,
fall and spring semesters, including exam periods and
Thanksgiving and spring breaks, but excluding winter and
summer breaks) to account for differences between the school
year and extended school breaks. All analyses were conducted
in R (R Foundation for Statistical Computing) using the stats
package lm() function [47].

Code Availability
The DPSleep pipeline software package is available [11] as an
open-source package to be downloaded and used by the research
community.

Results

Longitudinal Activity-Based Sleep Estimates Within
Individuals
Longitudinal sleep patterns and daily sleep maps are the key
outcomes of the DPSleep pipeline (Figure 1; see the Methods
section). To show the performance of the pipeline, four examples
of processed data are shown for individuals from study 1 (see
the Methods section; Figures 2 and 3; Figure S6 and S7 of
Multimedia Appendix 2). The data are from the full academic
year with travel to and from campus and across daylight saving
time. Each figure contains five plots, and three plots on the left
are described here. Plot A is the color-coded daily map of
activity scores that show the minutes with high (>50% orange;
>75% red), low (<25% cyan; <10% blue), and medium
(25%-50% green) activity. Plot B represents the raw estimated
Sleep Episodes for each day. Plot C is the time zone–adjusted
and quality control–adjusted longitudinal plot of sleep behavior.
The third plot represents the data used for all the quantitative
analyses and validations.
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Figure 2. Longitudinal Sleep Episode estimates in P1 related to phone use. Three left panels display longitudinal activity score and Sleep Episode
estimates for 243 days. Day 1 is near to the ninth day after the beginning of the semester. Winter break falls near days 102 to 133. Each vertical line
displays data for a 24-hour day. (A) The top panel displays the continuous activity scores colored by the threshold for each day. For each day, the plot
begins at 6 PM at the bottom and ends at 6 PM at the top, allowing the nighttime sleep period to plot in the center of the graph. Over days, the low
activity band (in blue) is relatively consistent except for a dramatic shift at day 118, which is attributed to travel outside of the time zone. (B) The middle
panel displays the same data revealing the automated detection of Sleep Episodes and nap periods. (C) The bottom panel C displays the time zone–adjusted
and fully quality-controlled estimates of the final Sleep Episodes. On the right panels, the Sleep Episodes of panel C are plotted (light blue) in relation
to independently estimated phone events. (D) The phone status is shown with colored hashing for when the phone is locked (red), unlocked (blue), and
in use (green). Note that there is no phone use during the estimated Sleep Episodes. The phone use events, on many nights, occur up until and just before
the beginning of the Sleep Episode. However, on most mornings, there is a gap between when the Sleep Episode ends and phone use begins, which
often begins abruptly around 9 AM, possibly reflecting that phone use begins with an alarm-triggered event. (E) Phone acceleration data are plotted
and also reveal no phone movement during the Sleep Episodes.
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Figure 3. Longitudinal Sleep Episode estimates in P4 in relation to phone use. Longitudinal activity score, Sleep Episode estimates, and phone use
data for 257 days are plotted. Day 2 is near to the beginning of the semester. Winter break falls near days 112 to 143. (A) The top-left panel shows the
continuous activity scores colored by the threshold for each day. (B) The middle-left panel displays the same data revealing the automated detection of
Sleep Episodes and nap periods. (C) The bottom-left panel demonstrates the time zone–adjusted and fully quality-controlled estimates of the final Sleep
Episodes. On the right panels, the Sleep Episodes of panel C are plotted (light blue) in relation to independently estimated phone events. (D) The phone
status is shown with colored hashing for when the phone is locked (red), unlocked (blue), and in use (green). (E) Phone acceleration data are plotted
and also reveal no phone movement during the Sleep Episodes. This individual shows highly irregular Sleep Episodes. Note that the phone status and
phone acceleration events track the irregular Sleep Episodes.

Figure 2 shows the sleep data for P1 with a highly regular sleep
pattern where the subject goes to bed sometime between 1 AM
and 2 AM and wakes up consistently near 8 AM. On weekends,
the participant wakes up about an hour later than usual. Figure
3 shows the sleep data for P4, which displays the most irregular
sleep patterns. There are some nights when this participant goes
to bed at around midnight and does not wake up before 9 AM,
and on other nights, the individual does not go to sleep before
6 AM and sleeps for only a few hours. The irregular sleep
pattern does not appear to be related to the academic calendar
because the participant displays a similar sleep pattern during
breaks. In addition, the sleep data for P2 and P3 with a less
regular sleep pattern compared with P1 are shown in Figure S6
and S7 of Multimedia Appendix 2. The effect of beginning the
academic year is notable, with a gradual transition to a later
sleep time (first 25 days). Break and travel also significantly
affect the sleep schedule during days 125-150.

Smartphone Use Tracks Sleep Episodes
One way of validating the estimated Sleep Episode arises from
the independent phone data collected simultaneously through
the Beiwe app on each individual’s cell phone. Even though
these data do not continuously measure activity, as the phone
can be put down, they do indicate the minutes during which the
individual is clearly not sleeping. The right parts of Figures 2
and 3 and Figure S6 and S7 of Multimedia Appendix 2 plot the
smartphone data for the 4 participants analyzed above. In each
plot, panel D shows the phone status via locked-unlocked events.
When the phone is not used, there should be no change in the
phone status. Panel E displays phone acceleration that, similar
to the wristwatch, provides a measure of dynamic movement
when the phone is picked up, used, or is moving with the
participant’s body.

In all participants, the phone activity measures were generally
outside the time of the estimated Sleep Episodes and tracked
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the variations in sleep period from night to night. P2 and P3
(Figure S6 and S7 of Multimedia Appendix 2) show this quite
clearly because their sleep patterns change gradually during the
first 25 nights of measurement. Phone activity measures tracked
these transitions. P4, who showed the most erratic sleep patterns,
also demonstrated clear evidence that phone use was frequent
and intensive only outside the time of the major Sleep Episodes
(Figure 3). Beyond the general correspondence between phone
and sleep, there were also interesting features in the details of
the phone use that are relevant for comparing the activity- and
phone-based data types.

As an additional visualization, Figure S8 of Multimedia
Appendix 2 shows data from P1 with the horizontal axis
representing clock time (48 consecutive hours, with the second
24 hours on each horizontal line repeated in the first 24 hours
of the next horizontal line) and day number down the y-axis.
This is the plotting convention often used by investigators
interested in circadian rhythms [48]. DPSleep allows plotting
using either lateral (as in most figures in this paper) or horizontal
(eg, Figure S8 of Multimedia Appendix 2) conventions.

Actigraphy Measures of Sleep Duration Track
Self-report Sleep Quality
In each individual, the DPSleep pipeline yielded an estimate of
sleep duration (SleepDuration in Textbox 1), the time difference

between SleepOnset and SleepOffset. Each day, the individuals
also reported the quality of the previous night’s sleep on a Likert
scale (Multimedia Appendix 3). Figure S9A of Multimedia
Appendix 2 shows the variation in sleep duration across days
in each of the 6 individuals from study 1, and their self-reported
sleep rating. Missing data excluded from the analysis included
data from winter break (the gaps near day 120) and
noncompliant data (eg, the wristband was removed or the survey
was submitted the following day).

An individual-level linear model analysis was used to evaluate
the longitudinal association between self-reported sleep quality
(for both concurrent night and nights preceding) as the predictor
and actigraphy-based sleep duration as the outcome. There was
a significant correlation between the concurrent night's
self-reported sleep rating and the actigraphy-measured sleep
duration in each of the 6 participants (Figure 4A): short sleep
duration predicts self-reported ratings of poor sleep. The
observation that sleep rating and sleep duration measures track
one another in healthy young individuals provides evidence of
validity. No correlation or a weakly positive correlation was
observed for the preceding night.
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Figure 4. Correlation, autocorrelation, and weekly patterns of sleep rating and sleep duration. (A) Individual-level linear model applied to each subject
shows the association between self-report sleep rating and actigraphy-based sleep duration. In each case, the self-report sleep rating negatively predicted
sleep duration when the sleep rating targeted the night of sleep (red line and circles). When the sleep rating was shifted to the next day so that the rating
no longer matched the night of sleep duration, the relationship between sleep rating and sleep duration in most participants showed either no relation
(P1 and P3) or a small positive relation, perhaps a form of sleep rebound (P2, P4, and P6; blue triangles and lines). P5 showed negative association for
both nights. The larger gray circles to the left of each plot show the mean (SD) sleep duration across the study for each participant. The larger gray
circles below each plot show the most frequent mode (SD) sleep rating across the study for each participant. The bottom-left box in each panel indicates
which associations are significant (P<.05). (B) The autocorrelation, or the correlation of each variable’s time course with itself at varying lags, is plotted
for actigraphy-based sleep duration (blue) and self-report sleep rating (red) averaged across the 6 participants of study 1. Shading illustrates the SE of
the mean. Increased autocorrelation values at lags of 7 and 14 days indicate that sleep duration and sleep rating for a given weekly night (eg, Friday or
Saturday) are more similar to the same weekly nights on different weeks than to the immediately adjacent nights falling on different weekdays. Although
autocorrelation is generally weak, there is a time-dependent structure within the data that should be considered when the data are modeled. (C) Sleep
onset and offset (wake) times show differences depending on the day of the week. Each participant’s sleep onset (circles) and offset (diamonds) times
are displayed (large circles or diamonds =medians) on a 24-hour clock format. Between-subject sleep onset and offset times are variable, as well are
weekday patterns within the same individuals. These structured patterns, which can vary from participant to participant, should be considered when the
data are modeled.

Sleep Duration and Sleep Ratings Show Structured
Weekly Variation
One of the outcomes of accurate estimation of major Sleep
Episodes in individuals is the ability to investigate nonstationary
effects that fluctuate with the weekly schedule, holidays, and
academic calendar. An autocorrelation analysis was performed
to evaluate the weekly variation. Actigraphy-based sleep
duration showed almost no lag effect, such that one night’s
duration showed little association with the next (Figure 4B).
Interestingly, there was a notable lag effect on days 7 and 14,

suggesting a strong autocorrelation between the same days of
the week. Self-report sleep rating shows similar lag day 7 and
lag day 14 effects and a temporal autocorrelation at lag days 1
and 2, suggesting a poor or good sleep rating predicted a similar
rating on subsequent nights despite no evidence of
autocorrelation in the actigraphy-based sleep duration.

When data were analyzed by day of the week (Figure S9B of
Multimedia Appendix 2), most participants showed relative
stability in their sleep duration. We used a circle plot to show
the sleep onset and offset distributions for each participant
separately on weekdays (Figure 4C). Each point indicates the
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beginning or end of a major Sleep Episode and their medians.
Although there were participants with stable average sleep onset
(P1) and offset (P6), the plots confirm different effects of
weekdays for different participants, such as the effect of the
weekend from Friday to Monday on late sleep in P5; the effect
of Monday, Tuesday, and Thursday on very late sleep in P4;
and the effect of Monday, Tuesday, and Thursday on earlier
wake up in P2, that is, specific structured sleep patterns are
highly idiosyncratic to individuals. The daily caffeine
consumption was also assessed. Figure S10A of Multimedia
Appendix 2 shows the variation in caffeine consumption ranging
from 0 (none) to 4 (5+ drinks) for each of the 6 participants in
study 1; Figure S10B of Multimedia Appendix 2 shows the
weekly variation; Figure S11 of Multimedia Appendix 2 shows
the individual-level linear model for each participant modeling
the relationship between caffeine consumption and sleep
duration. Although the effect is quantitatively small, 4 of the 6
participants show a statistically significant relationship such
that more caffeine consumption predicts shorter sleep duration
for the upcoming night.

Example Use Case: Sleep Patterns Show State
Variation in Severe Mental Illness
To explore the feasibility and utility of sleep measures from
extensive longitudinal assessments in patients, data from 2
individuals managing severe mental illness from study 2 were
analyzed using the DPSleep pipeline. Individuals participated
for 543 and 309 days, with 89.1% (484/543) and 59.2%
(183/309) of completed days of data obtained after data loss
due to missingness and quality control, respectively.

Figure 5 illustrates the data from P11, who is managing mood
fluctuations originally diagnosed with bipolar disorder. Of
interest are the slowly changing sleep patterns that can be
immediately visualized in the activity score plots (Figure 5A).
Two separate features of the data are interesting and require
distinct measures for quantification. The first is that the shifts
to low-level activity, indicative of sleep, begin earlier and end
considerably later across two long episodes that begin near day
110 and day 300. The reduced activity scores extended until
noon on many days. The change in sleep onset and sleep offset
and increase in sleep duration was quantified with a
14-previous-day sliding window with less than three missing
value tolerance in the DPSleep output shown in Figure 5C. The
Sleep Timing Regularity Index (STRI) was also calculated as
a 0-1 similarity index for 24-hour sleep and wake minutes of
every day compared with an assumed day with the averaged
sleep onset and offset. The STRI is a modified version of the
Sleep Regularity Index (SRI) introduced by Phillips et al [2].
The SRI "calculates the percentage probability of an individual

being in the same state (asleep vs awake) at any 2 minutes 24
hours apart", thus focusing on day-to-day, circadian fluctuations
in sleep. The STRI, our modified version of the SRI, compares
each study day with each participant's average sleep day.

Computing a participant’s average sleep day involves several
steps to select the minutes from each day during which a
participant is most frequently asleep such that the total duration
is equal to the participant's average daily sleep duration. The
daily STRI is then computed by comparing each daily Sleep
Episode with the average Sleep Episode at the minute level and
computing the proportion of minutes for which these two Sleep
Episodes matched in sleep. This value, demonstrated in Figure
5C with a backward 14-day sliding window, shows noticeable
drops that roughly occur at the beginning of the period of longer
sleep intervals. Data with more than three missing values during
the sliding window were considered missing.

What is further notable is that the major Sleep Episodes include
higher activity score periods than during typical sleep,
suggesting interrupted and inconsistent sleep. This feature is
picked up in the derived measures of SleepImmobility
percentage, defined in Textbox 1 as the percentage of
ImmobileMinutes in the major Sleep Episode illustrated as
similar sliding window values in Figure 5C. Adopting a
previously described quantitative framing of Immobility [34],
the ImmobileMinutes are defined in Textbox 1 as minutes with
lower than a cut-off threshold (40th percentile activity here),
which is the threshold to show the activity level in Figure S3
of Multimedia Appendix 2 (see the Methods section). To further
illustrate the use of these data, the clinical severity of illness,
measured using the Positive and Negative Syndrome Scale Total
Score, is shown overlaid on top of the major Sleep Episode in
Figure 5B. The periods of sleep disruption and extended sleep
offsets correspond to the periods of high illness severity.

In addition, Figure S12 of Multimedia Appendix 2 illustrates
data from P12, who lives with psychosis associated with
schizophrenia. The activity scores displayed irregular and slowly
drifting patterns, including a shift to low activity episodes that
occurred later in the day around day 55 and then an earlier shift
beginning near day 70 (Figure S12A of Multimedia Appendix
2). The period of most severe illness symptoms occurred near
the most irregular sleep periods after day 75. It is to note that
this individual has generally poorer clinical scores (Figure S12B
of Multimedia Appendix 2) as compared with P11 and a
generally lower STRI (Figure S12C of Multimedia Appendix
2). These data illustrate the complexity and richness of
information that can be obtained through extensive longitudinal
analysis of the actigraphy data and how different individuals
can be from one another.
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Figure 5. Example longitudinal sleep pattern over 500 days in a patient with severe mental illness. Three panels display longitudinal activity score,
Sleep Episode estimates, and clinical severity score and quantitative metrics derived from the actigraphy for P11 of study 2. (A) The top panel displays
the continuous activity scores colored by the threshold for each day. (B) The middle panel displays the time zone–adjusted and fully quality-controlled
estimates of the Sleep Episodes with the severity of the clinical score overlaid by a red line. The clinical score reflects the total score on the Positive
and Negative Syndrome Scale. (C) Temporally smoothed (14-day backward moving average) estimates of three activity-based measures are plotted:
the estimated sleep duration (labeled Duration), the Sleep Timing Regularity Index, and the SleepImmobility percentage (labeled Immobility). Gaps in
the plots reflect missing days; if more than 2 days were missing, the temporal average that would include those days is absent. Clear state changes in
the sleep patterns can be observed (demarcated by dashed black lines in B) that are temporally coincident with negative changes in the clinical score.
PANSS: Positive and Negative Syndrome Scale; STRI: Sleep Timing Regularity Index.
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Example Use Case: Sleep Patterns Related to Deep
Dynamic Phenotyping
To demonstrate how sleep measures can be combined with
additional forms of digital phenotyping information, 2
individuals from study 1 are displayed in Figure 6 and Figure
S13 of Multimedia Appendix 2. In each plot, the sleep patterns
for each individual are illustrated through the course of an
academic year, along with the quantified measures of sleep
duration and STRI. In addition, self-report measures of social
and academic behaviors (time on homework and time

interaction) and mood (happy and stress) were displayed aligned
to the estimates of the longitudinal Sleep Episodes. The
examples illustrate clear dynamics of sleep, including weekend
(empty circles) or weekday (filled circles) effects, changes
between the active semester and breaks, and intermittent
deviations for regular patterns. These data illustrate the potential
of using low-burden wearables in combination with
smartphone-based digital phenotyping to capture a great deal
of information about life rhythms and changes due to
environmental demands.

Figure 6. Example year in the life of college student P1. Four panels display multimodality longitudinal data from the full academic year in a college
undergraduate (P1 of study 1). (A) Actigraphy-based estimates of the Sleep Episode are displayed, colored by academic period (black=academic school
year; red=winter break). Missing data with gray backgrounds reflect missing (wrist-off) or quality removed data (eg, on a travel day across time zones).
The mean Sleep Episode is shown to the left in blue. (B) Temporally smoothed (3-day backward moving average with no missing tolerance) estimated
of the sleep duration (Duration) and Sleep Timing Regularity Index. (C) Temporally smoothed estimates of time spent interacting and time spent doing
homework from the self-report questionnaire. (D) Self-report estimates of mood, including happiness (Happy) and stress (Stress). This individual
displays stable and regular sleep patterns with periodic deviations. Note the deviations in time spent interacting and time spent doing homework during
the break period. STRI: Sleep Timing Regularity Index.

An Example of Limitations
In showing examples of the utility of the DPSleep processing
pipeline and example apps, we wanted to also show, as the last
point, a clear example of a limitation. The present pipeline and

quality control adjustments make assumptions that have been
selected because they work most of the time in the range of
contexts for which they were tested. However, real-life situations
are complex. Figure S14 of Multimedia Appendix 2 shows an
interesting example. In this example, the daily data from Figure
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S2 of Multimedia Appendix 2 are replotted along with phone
use and GPS location data from the same participant of the third
example. What is notable is that our original estimate, based
only on watch actigraphy data and the button press, combined
with the rule used to join episodes of low activity as a
continuous major Sleep Episode, likely mischaracterizes this
night's true continuous Sleep Episode. The phone data reveal
that the nighttime period of activity is followed by missing GPS
data, intermittent phone use, and eventual arrival at a new
location. This individual most likely woke up early and got on
a bus or train. Our automated estimation procedures, as well as
our quality control, using only watch actigraphy,
mischaracterizes this Sleep Episode.

Discussion

Principal Findings
This work describes and demonstrates the utility of an
open-source, longitudinal sleep-analysis platform called
DPSleep. The platform was applied to two cohorts of
participants that possessed extended data over months to years
and included clinically healthy undergraduates and outpatients
living with severe mental illness. The goal of these diverse
explorations was to validate the approach and demonstrate its
utility across multiple real-world participant cohorts. The results
revealed that the approach captured the major Sleep Episode
and detected dynamic patterns of sleep behavior, including in
individuals presenting with episodic clinical illness (eg, Figure
5 and Figure S12 of Multimedia Appendix 2).

Several previous studies have investigated the validity and
accuracy of wrist-worn actigraphy devices to estimate sleep
parameters and compare them against gold standard
PSG-derived measures and self-reported sleep quality [49].
DPSleep uses frequency-based analysis and begins with
high-frequency raw data from the wrist-worn accelerometer.
The high precision of the sampling frequency and the continuity
of the collected data in our samples provided ideal data sets for
frequency-based analysis, a robust and efficient tool to analyze
the activity of the individual that complements alternative
procedures such as zero crossing mode, time above threshold,
or digital integration mode [19]. Frequency-based analysis
inherently and automatically discounts the alternating gravity
effect on different axes, without the need to eliminate the
amplitude of the signal [50]; at the same time, it disentangles
the natural high-frequency shakes of the body from the actual
repositioning dynamic, which is the focus of sleep research. As
explained earlier, the raw accelerometer data contain the gravity
component offset that can be systematically removed in the
frequency analysis.

A challenge with our approach was related to participant burden,
as the participants had to visit the lab every 4-5 weeks to get a
refreshed battery and download data. An alternative solution to
attenuate the burden on subjects is to use wireless data transfer
and cloud storage; however, this approach has its own
limitations, based on the wireless storage size and battery usage
in addition to data security concerns. We expect advances in
widely available commercial technologies to gradually alleviate
existing challenges. Another challenge was the time changes

caused by travel or standard or daylight saving switches during
the study. To reduce the uncertainty around participants’ true
sleep behavior when the time was shifted, days with time
transitions were removed and considered missing data, although
future steps could leverage the phone-based GPS data to exclude
the relocating epochs from sleep and adjust the data on those
days with more confidence.

In our study, self-reported sleep quality showed a strong
correlation with the activity-based sleep duration measure;
therefore, the focus of our sleep algorithm development was
mainly to optimize this parameter, while building a platform to
explore other relevant sleep-related parameters in future work.
Despite existing sleep detection algorithms that look for 5-15
low activity minutes [50,51], DPSleep starts with a structural
analysis of the daily activity to first detect the large episode of
the day with the lowest average activity, and then the edges of
the episode are adjusted using smaller moving windows and
heuristic rules. This approach is an efficient solution to eliminate
the need for any kind of sleep diary or ambient light assumptions
because the former is not usually available and accurate, and
the latter could be misleading because the wristband can be
blocked by a long sleeve at any time of the day. Moreover, this
approach distinguishes short naps or inactive periods during the
day from the long, continuous, and disrupted Sleep Episodes
without any assumptions about sleep time. Structural analysis
of the activity scores during the whole study, using the
individual's statistics and moving average windows with
different sizes, suggests the most likely episode for the
individual’s sleep during the day. In addition to moving average
windows to automatically detect the major Sleep Episode,
DPSleep provides a helpful tool for investigators to decide, with
reasonable confidence, about idiosyncratic sleep behaviors such
as no sleep or very short Sleep Episodes. Additional button
presses, if available, and adjacent activities are used to tune this
episode and connect smaller pieces to shape the entire Sleep
Episode.

Caveats and Limitations
As illustrated in Figure S14 of Multimedia Appendix 2, our
approach can make mistakes. Although we illustrate how
inexpensive and easy-to-obtain actigraphy data can be analyzed
to estimate the major Sleep Episodes and dynamic patterns over
many days, the real world is messy. Atypical behavioral patterns
(eg, many short naps without a clear extended primary Sleep
Episode) and behaviors that yield extreme accelerometer
readings are challenging for our approach. Specifically, using
our methods, actigraphy-based sleep detection is not appropriate
for measuring sleep when an individual is on a shaking platform
such as a plane, train, or bus. This is an unavoidable situation
in longitudinal studies; however, as the on-plane sleep effect
was not the focus of our study, and those days were very few
compared with the days of the entire study, we were able to
detect those days using GPS data and eliminate them from the
results. To solve the continuous shaking challenge in similar
situations or in studies on individuals with Parkinson disorder,
sleep detection devices based on ambulatory circadian
monitoring are recommended [28]. More broadly, as actigraphy
research grows and repositories of annotated data from common
and less common activities become available, machine learning
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techniques can be leveraged to further refine the present
approach (and others) handle a wider variety of situations. The
validation and exploration of DPSleep, as illustrated in these
initial explorations, provides a tool that can be used today and
continues to be refined and expanded through its open-source

release. Future directions include examining whether the
association between mood and actigraphy-based sleep and
activities can serve as a biomarker of psychiatric illness, and
eventually use these objective measures to predict clinical
patients’ mood fluctuations.
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