
Original Paper

Complete and Resilient Documentation for Operational Medical
Environments Leveraging Mobile Hands-free Technology in a
Systems Approach: Experimental Study

MinJae Woo1, PhD; Prabodh Mishra2, MS; Ju Lin2, MS; Snigdhaswin Kar2, MS; Nicholas Deas3, BS; Caleb Linduff2,

MS; Sufeng Niu4, PhD; Yuzhe Yang5, MS; Jerome McClendon6, PhD; D Hudson Smith7, PhD; Stephen L Shelton8,

MD; Christopher E Gainey8, MD; William C Gerard8, MD; Melissa C Smith2, PhD; Sarah F Griffin9, MPH, PhD;

Ronald W Gimbel9, PhD; Kuang-Ching Wang9, PhD
1School of Data Science and Analytics, Kennesaw State University, Kennesaw, GA, United States
2Department of Electrical and Computing Engineering, Clemson University, Clemson, SC, United States
3School of Computing, Clemson University, Clemson, SC, United States
4Linkedin Inc, Mountain View, CA, United States
5NetApp, Sunnyvale, CA, United States
6Department of Automotive Engineering, Clemson University, Clemson, SC, United States
7Watt Family Innovation Center, Clemson University, Clemson, SC, United States
8Department of Emergency Medical Services, Prisma Health Richland Hospital, Columbia, SC, United States
9Department of Public Health Sciences, Clemson University, Clemson, SC, United States

Corresponding Author:
Ronald W Gimbel, PhD
Department of Public Health Sciences
Clemson University
501 Edwards Hall
Clemson, SC, 29634
United States
Phone: 1 864 656 1969
Email: rgimbel@clemson.edu

Abstract

Background: Prehospitalization documentation is a challenging task and prone to loss of information, as paramedics operate
under disruptive environments requiring their constant attention to the patients.

Objective: The aim of this study is to develop a mobile platform for hands-free prehospitalization documentation to assist first
responders in operational medical environments by aggregating all existing solutions for noise resiliency and domain adaptation.

Methods: The platform was built to extract meaningful medical information from the real-time audio streaming at the point of
injury and transmit complete documentation to a field hospital prior to patient arrival. To this end, the state-of-the-art automatic
speech recognition (ASR) solutions with the following modular improvements were thoroughly explored: noise-resilient ASR,
multi-style training, customized lexicon, and speech enhancement. The development of the platform was strictly guided by
qualitative research and simulation-based evaluation to address the relevant challenges through progressive improvements at
every process step of the end-to-end solution. The primary performance metrics included medical word error rate (WER) in
machine-transcribed text output and an F1 score calculated by comparing the autogenerated documentation to manual documentation
by physicians.

Results: The total number of 15,139 individual words necessary for completing the documentation were identified from all
conversations that occurred during the physician-supervised simulation drills. The baseline model presented a suboptimal
performance with a WER of 69.85% and an F1 score of 0.611. The noise-resilient ASR, multi-style training, and customized
lexicon improved the overall performance; the finalized platform achieved a medical WER of 33.3% and an F1 score of 0.81
when compared to manual documentation. The speech enhancement degraded performance with medical WER increased from
33.3% to 46.33% and the corresponding F1 score decreased from 0.81 to 0.78. All changes in performance were statistically
significant (P<.001).
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Conclusions: This study presented a fully functional mobile platform for hands-free prehospitalization documentation in
operational medical environments and lessons learned from its implementation.

(JMIR Mhealth Uhealth 2021;9(10):e32301) doi: 10.2196/32301
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Introduction

Prehospitalization information provided by the first responders
is often essential to subsequent treatment efforts including the
accurate assessment of a patient, medical diagnosis, and
rationale for treatment decisions in the emergency care settings.
A patient record documented in the field promotes a continuum
of care, playing a vital clinical role in the subsequent treatment
of patients in emergency rooms, trauma centers, or other
receiving facilities. Complete and effective documentation of
prehospitalization care informs clinicians and staff of presenting
vitals and symptoms, the initial assessment of the condition,
attempted prehospitalization interventions, and observed
response to the interventions [1-3]. Failure to report initial
findings and interventions in the field may result in clinical
errors such as inadvertent overdose due to duplicate
administration of the same medication by paramedic and
emergency department physicians [4-6]. However,
prehospitalization documentation is a challenging task and prone
to loss of information, as paramedics operate under urgent and
disruptive environments requiring their constant attention to
the patient [6-9].

The US military has demonstrated an ongoing interest in
potential technological approaches that enable efficient
prehospitalization documentation at the point of injury in
advance of a patient’s arrival to a field hospital [10-14].
Adequate prehospitalization documentation plays a critical role
in ensuring casualties’ maximal chance of survival in the
operational environments [15-19]. In the past, the United States
Army Medical Research and Development Command has
successfully deployed a PDA-based mobile platform that
enabled efficient data entry to the electronic patient record and
transmission of patient information through a wireless network
[12,13]. A new challenge has arisen from the PDA-based design
interrupting the flow of care when entering electronic health
record (EHR) data using keyboards or a stylus. The loss of time
for direct patient care is often prohibitive in emergency
environments as medical personnel have to continuously conduct
hands-on interventions for patients to save their life and limb.

Given the necessity of seeking solutions that will not degrade
the clinical workflow, technology solutions using automatic
speech recognition (ASR) have been explored for hands-free
clinical documentation [20-23]. A mobile platform based on
ASR technologies has the potential to enable hands-free
documentation by extracting medical information from the
incoming audio stream without hand-operated input devices.
However, the technologies have not yet proven to be reliable
in noise-intensive real-world environments in the context of

emergency medicine. In military operations, the environment
often involves high levels of noise from factors such as blasts,
gunshots, and aircraft. It has been well-documented that the
performance of contemporary ASR systems is degraded by
heavy background noise, leading to more word errors in speech
recognition output [24-29]. Moreover, the noise in ASR audio
input may result in specific types of word errors in the output
text interfering with the documentation when extracting relevant
medical information. The existing publicly and commercially
available ASR models are optimized for the daily conversation
and thus may perform poorly when applied to domain-specific
clinical speech [30,31].

ASR consists of multiple components to convert input audio to
output text. There are componentwise interventions known to
address the listed challenges at a single component level. Recent
studies demonstrated acoustic signal processing algorithms that
offer improved resilience of ASR to background noise [27,32].
Some studies improved the noise resilience by implementing
speech enhancement algorithms for noise filtering in input audio
[33,34], while others trained ASR for various noise patterns to
improve its robustness against noise [35,36]. There are
well-established methods to establish a customized lexicon for
a domain of interest so that ASR could better detect
domain-specific terms [37-39]. Some research demonstrated
solutions to effectively extracting medical information from
clinical text containing both semantic and syntactic errors
[40,41].

Despite a number of available component-level interventions,
it remains unknown how a combination of all these interventions
simultaneously affects the overall performance of hands-free
prehospitalization documentation in a noise-intensive operational
environment. A technology approach encompassing all possible
improvements at every process step of the end-to-end solution
has the potential to make a substantial contribution to addressing
similar challenges in the daily emergency and prehospital
clinical practice.

In this paper, we describe the design of our mobile platform for
hands-free documentation in the operational medical
environment and lessons learned from its use in a simulated
environment. The purpose of the study is to perform a systematic
evaluation of improvement opportunities for the platform by
aggregating and assessing all possible component-level solutions
at every process step. The platform was built to extract
meaningful medical information from the real-time audio
streaming and generate complete documentation before a patient
arrives at a simulated field hospital. To this end, the
state-of-the-art ASR solutions with relevant component
interventions for modular improvement were thoroughly
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explored. Development of our platform was guided by
qualitative research and structured evaluation to identify and
address the relevant challenges through modular improvement
at every process step of the end-to-end solution.
Physician-supervised clinical simulation drills were conducted
for the precise assessment of the system performance in the
emergency settings.

Methods

This research was approved by the Institutional Review Boards
of Clemson University (Clemson, South Carolina) and Palmetto
Health System (Columbia, South Carolina), with secondary
review and approval by the US Army Medical Research and
Material Command (Ft Detrick, Maryland).

Qualitative Analysis for Platform Design and Clinical
Simulation
Presimulation focus groups and follow-on simulation drill
observations were used to assess medical workflow, scope
medical information communicated, user requirements during

operation, documentation needs, and overall design of platform.
Six focus groups were held with 26 individuals across three
categories of employment including emergency medical
services, transport nurses, and emergency department physicians
(Table 1). Focus groups were conducted by trained facilitators
using a semistructured interview guide organized to facilitate
a workflow discussion of tasks, communication, and
documentation strategies as they approach an emergency, the
transition to active treatment, and then transition the patient to
the next care team. A total of 21 simulation drills were observed
over 3 days. Observers monitored their interaction between
equipment, verbal communication, and nonverbal
communication as they approached the scene, provided active
treatment, and transitioned the patient to the next phase of care.
Short debriefing interviews were conducted after each drill to
gather participant feedback on the process. A postsimulation
focus group was also conducted with participants after each day
of drills. Data were documented through detailed notes provided
on the observation forms and from the two postsimulation drill
focus groups (Multimedia Appendix 1).

Table 1. Focus group participants.

Experience un-
known, n (%)

Experience >20
years, n (%)

Experience 10-20
years, n (%)

Experience <10
years, n (%)Female, n (%)Male, n (%)Participants, n (%)

1 (17)3 (50)1 (17)1 (17)1 (17)5(83)6 (23)Emergency medi-
cal services

0 (0)8 (73)2 (18)1 (9)3 (27)8 (73)11 (42)Transport nurses

0 (0)4 (44)2 (22)3 (33)8 (89)1 (11)9 (35)Physicians

1 (4)15 (58)5 (19)5 (19)12 (46)14 (54)26 (100)Total

Hardware Architecture Design
The overall system architecture design consisted of three major
platforms: field mobile platform, field hospital platform, and
headquarter back-end platform (Figure 1). The field mobile
platform operated on a GoPro camera (video capture),
microphone, onboard storage (SDXC memory card), and a
mobile form factor graphics processing unit (GPU) system
(NVIDIA Jetson TX2; Figure 2). The field mobile platform
operated on a 7.4V 7000 mAh LiPo battery, which provided
continuous power to the platform for up to 8 hours. The
transmission between the field device and the field hospital
platform was realized through a closed secure network with

multiple Linksys Velop WHW0303 routers under Wi-Fi
Protected Access II (WPA2) encryption. The field hospital
platform operated on a laptop computer where the received
information from the field platform was displayed and converted
to Fast Healthcare Interoperability Resources–based data types
for improved interoperability with EHR platforms. Dell
Poweredge R620 equipped with Cerner Sandbox was deployed
as a virtual EHR server throughout the project. The headquarter
platform operated on a NVIDIA DGX1 with 8 x NVIDIA Tesla
32GB V100 GPUs and 2 x 20-Core 2.20 GHz Intel Xeon
E5-2698v4 central processing units. The ASR training was
performed on DGX1 from the headquarter platform, and the
output model was downloaded to TX2 in the field platform.
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Figure 1. Documentation platform architecture design. EHR: electronic health record; FHIR: Fast Healthcare Interoperability Resources; GPU: graphics
processing unit; HQ: headquarters.

Figure 2. Overview of hardware specifications for field platform.

Software Architecture Design
The field mobile platform was designed to perform a basic
preprocessing of audio captured at the point of injury for the

hands-free prehospitalization documentation. The captured
audio was converted into a transcript through the ASR module.
The Tactical Combat Casualty Care (TCCC) card was selected
as the standard format for prehospitalization documentation
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throughout the study; it has been well-documented that the
complete TCCC documentation results in a higher casualty
survival rate [11,15]. The ASR output was analyzed to generate
bookmarks for the captured video for immediate retrieval of
video footages relevant to injuries of interest and to fill out a
TCCC card for patients (Figure 3). The captured audio was first
passed on to the voice activity detection module, which decides
whether the given input is a human voice or not. Next, the audio
containing the human voice was processed by a speech
enhancement module to emphasize the human voice and

minimize background noise (Figure 4). Upon the audio
preprocessing, the acoustic model generates the initial
transcriptions, which then are corrected and improved through
the language model. The language model was designed to infer
each word based on its context by using a probability
distribution over sequences of words. During the postanalysis,
the transcribed text was processed by a post natural language
processing module to generate bookmarks for the point of
injuries and preliminary documentation of injuries on the TCCC
card.

Figure 3. Overview of Tactical Combat Casualty Care card.

Figure 4. Data processing workflow for hands-free medical documentation. TCCC: Tactical Combat Casualty Care.

Modular Improvement for Noise Resilience
The selection of each componentwise intervention was guided
by relevant literature and a series of preliminary experiments
(Multimedia Appendix 2). A hybrid deep neural network model
was used to achieve noise-resilient ASR with its performance
comparable to that of the current state of the art. For the
implementation of the ASR module, an open-source speech
recognition platform, Kaldi, was used for the training of the
selected models. A Gaussian mixture model–hidden Markov
model was first trained to obtain senones (ie, tied triphone
states). Next, the corresponding aligned frames were used for
training time delay neural network (TDNN) [42]. The TDNN

structure includes an input layer, 11 TDNN layers, and one
linear output layer with each TDNN layer set to have 1536 nodes
[43]. All weights and biases were discriminatively trained by
optimizing the cross-entropy between the target probability and
the actual SoftMax output with the backpropagation algorithm
[44]. The initial training data consisted of the Switchboard data
set (260 hours) and the Common Voice data set (500 hours).
Parallel training of the TDNNs using up to 8 NVIDIA Tesla
32GB V100 GPUs was done on the training data with 6 epochs.

The speech enhancement module was deployed based on Speech
Enhancement Generative Adversarial Network (SEGAN), which
enabled the rapid enhancement process without the need for

JMIR Mhealth Uhealth 2021 | vol. 9 | iss. 10 | e32301 | p. 5https://mhealth.jmir.org/2021/10/e32301
(page number not for citation purposes)

Woo et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


explicit assumptions about the raw data and generalizability to
various speakers and noise types [45]. The module was trained
using noisy data sets generated by mixing clean data sets with
battlefield noise. The original SEGAN has been further
improved through log-power spectra-based operation and forked
generative adversarial network (ForkGAN) structure to extract

both speech and noise information (Figure 5). The ForkGAN
architecture operated directly on spectral domain features instead
of on raw audio with aims to learn a mapping from the
log-power spectra feature input to its feature output, which has
demonstrated to outperform other well-known GAN-based
speech enhancement techniques [33].

Figure 5. Overview of the generative adversarial network–based speech enhancement architecture.

Multi-style training was adopted for additional noise resilience
in the operational environment. In specific, ASR was trained
with a noisy audio data set containing various types of battlefield
noise. A total of 17 battlefield noise files were collected from
Signal Processing Information Base [46]. These noises included
different types of guns, helicopters, tanks, jets with different
speeds, speech babble, and white noise. Additionally, the
following other continuous noise types were randomly selected
and added to the original training data sets: helicopters, armored
vehicles, and tanks. Continuous signal-to-noise ratio values
from 0 dB to 20 dB were used to signify different noise power
levels. The noisy training data set was created in addition to the
original training data sets.

Modular Improvement for Medical Information
Extraction
Our initial investigations showed the original language model
was unable to detect medical and military terms used by the
medical professionals during the simulation drills. The primary
cause of the failure was that these terms were not present in the
dictionary that was created from the original ASR training data.
To address the issue, a new customized lexicon was trained
from medical and military terms used in battlefield-related
injuries and medical evacuation. First, the relevant medical and
military fields were identified in the TCCC card, the most
predominant documentation template of battlefield injuries.
Using the Carnegie Mellon University Sphinx Knowledge Base
Tool, a dictionary with these domain-specific words and their
corresponding phonemes was generated to update the existing
language model [47]. The original dictionary and language
models were merged with their corresponding new versions,
and then the new merged dictionary was compiled to acquire
the new lexicon. The Stanford Research Institute Language
Modeling toolkit was used to combine the merged language
model and dictionary to generate the new grammar model [48].
The new lexicon, new grammar model, and the existing hidden
Markov model context-dependency lexicon grammar (HCLG)
graph used for the baseline ASR model were combined to
construct the updated HCLG graph.

Although all of the aforementioned methods focused on the
accurate transcription of conversation between patients and
medics, additional processing extracting medical information
from the machine-transcribed unstructured text was necessary

for completing TCCC documentation. MetaMap is a key tool
developed by the National Library of Medicine that has been
widely used in biomedical information retrieval and data mining
applications to obtain Unified Medical Language System
Concept Unique Identifiers (CUIs) with corresponding textual
descriptions [49]. The post natural language processing module
used MetaMap 2018 for medical information extraction. The
following semantic type mappings were configured for the
implementation: anatomical abnormality, anatomical structure,
antibiotics, body substance, body location, body part, clinical
drug, drug delivery device, diagnostic procedure, disease,
finding, medical device, quantitative and qualitative concepts,
sign, temporal concept, and therapeutic procedure. To prevent
excessive false-positive issues [50], a number of sample clinical
notes on gunshot, explosion, and head trauma were manually
crafted and inputted to MetaMap for identification of the
potential CUIs of interest and the corresponding entry location
within the TCCC documentation. To clarify, the module was
designed for a closed domain application by discarding concepts
that are not in the preidentified CUI list. Lastly, the extracted
information was automatically entered into the appropriate
TCCC sections through a predetermined mapping.

Clinical Simulation
A total of three clinical simulation drills were conducted in
2017-2019 at Palmetto Health Simulation Center in Columbia,
South Carolina. Each physician-supervised drill simulated a
typical rescue mission in the medical operational environment.
The scope of the simulation spanned from the battlefield to the
field hospital, and thus, only the field and field hospital
platforms were deployed during the drills. Three common
battlefield injury types were used for the clinical scenarios:
gunshot wound, amputation due to explosion, head trauma
[10,51]. Throughout the drills, all emergency medical care
providers taking a role as a medic were wearing the field mobile
platform described in Figure 2. The scenarios were loosely
scripted by suggesting general descriptions and numbers for
vital signs. The medics were allowed to improvise in their verbal
reports. The participants acting as patients were also allowed
to improvise their responses to medics based on the general
description of scenarios.

Each simulation drill started in a room simulating the landscape
of field and sky. Various types of battlefield noises were
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simulated in the room using multichannel high-output speakers.
The medics treated patients as they would on a real battlefield
during the first encounter. After the initial treatment, the patients
were escorted to the flight paramedics waiting at the next
meeting point. The patients were then transported to the next
room simulating inside of a medical helicopter. Likewise,
helicopter noises were simulated in the room using multichannel
high-output speakers. After a certain amount of flight time,
patients were then transported to an outdoor space where a field
hospital had been set up. The patients received the basic
examinations at the field hospital, which concluded one
simulation drill. The same three clinical scenarios (gunshot
wound, amputation, head trauma) were used for each simulation
drill in turn. A total of 27 complete patient cases spanning from
field to field hospital were simulated and collected, resulting in
a total of 5.05 hours of audio recordings. The maximum noise
level of 89 decibels was maintained for gunshot and helicopter
noise when measured from the patient’s position.

Overall Performance Evaluation and Statistical
Analysis
For qualitative evaluation, thematic analysis using a hybrid
inductive and deductive approach was completed in Atlas.Ti 8
(Scientific Software Development GmbH) [52,53]. The analysis
process began by reviewing focus group transcripts and
observation notes using an open coding format to identify
various ways participants described their experiences during
different stages within the emergency. This was followed by a
round of deductive coding focused on communication strategies
and device interaction through the ABCDs of Emergency Care.
A final round of axial coding produced four thematic areas. All
coding was conducted by one member of the research team.

A standard measure to evaluate ASR performance, word error
rate (WER), was used to verify whether the acoustic and
language models achieved performance comparable to the
current state of the art. However, it was suboptimal to include
all conversations captured throughout the drills measure since
the main goal of our platform was adequate documentation of
injuries rather than transcribing daily conversations. Thus, the
primary evaluation measures relied on medical WER and
referred to WER for only the sentences from medically oriented
speech. For example, sentences from nonmedical conversations
between the medics were not considered when evaluating the
medical WER. The WER was calculated by comparing
machine-transcribed text output and text transcribed by human
medical transcriptionists who listened to the audio recording of
all simulations. Another primary performance measure was
based on the completeness of captured clinical information in
the autogenerated TCCC documentation. The captured clinical

information was assessed using the F1 score calculated by
comparing the autogenerated documentation to the manual
documentation by physicians. The cost-effect analysis to identify
opportunities for modular improvement was based on how much
more clinical information could be captured after each
componentwise intervention. McNemar test with Bonferroni
correction was used to detect the statistical significance of the
improvement effect with respect to medical WER. A total of 4
settings with different combinations of modular improvements
were tested using the selected measures. Additionally, one
setting based on a commercial ASR solution was assessed using
the same performance measures. Dragon Medical Practice
Edition 4 (DMPE 4) software (Nuance Communications) is one
of the predominant speech recognition solutions that assist
clinicians with hands-free voice-dictated documentation in
clinics. A setting with its ASR powered by DMPE 4 was
compared with the settings with the different modular
improvements (Multimedia Appendix 3).

Results

Qualitative Study Findings
Four thematic areas include communication methods,
communication content, device interaction, and information use
(Table 2). Communication methods varied across workflow
phases, provider type, and care setting. For example, several
focus group participants described frequently using verbal and
nonverbal communication strategies with their partner while
providing care, and those with military experience discussed
this even further. Participants also described situations that they
labeled complex communication, whereby they are
communicating with and about different patients at one time.
This was most frequently discussed as a battlefield experience
more so than a transport or field hospital phenomena. Although
communication content could vary greatly depending on the
workflow phase, the content was remarkably similar within
each phase, regardless of the provider type.

Focus group and simulation drill participants’ feedback
emphasized the need for device flexibility and for the person
wearing it to have control. They also encouraged the design
team to make the device strong, durable, and lightweight.
Simulation participants recommended that users would have to
be trained to use the device and to talk aloud during care so that
the device can capture what is being done. Finally, participants
shared that short notes and recording that could replace charting
would increase user perception of value and thus motivation to
use. Physician providers noted that short notes or videos or
photos of the injury or emergency site transmitted before patient
arrival could be helpful.
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Table 2. Overview of qualitative study findings.

DelegationContextBehavior during interactionAntecedentTheme

Communication methods •••• Must be charted/record-
ed

Often chaoticMore nonverbalUse of mnemonics
• ••Verbal Can dictate if verbal or

nonverbal
To patient

• Very different process
at each phase

• To partner

Communication content •••• Preference for who
provides hands-off by
provider type

Dictates depth/detailOnly what is necessaryRoles tasks
•• Sound an issue for

some settings
If not safe, very little
verbal communication

• Content is same at each
phase of delegation

• Conversely sometimes
lots of content at same
time—chaotic

Device interaction •••• When/how to turn off
device

Flexible locations for
different types of
providers—helmets,
chest, shoulder, etc

Cannot get in the wayAbility to turn on and
off prior to hot zone

Information use •••• Help next teamN/AN/AaPlanning and prepara-
tion

aN/A: not applicable.

Modular Improvement With Componentwise
Interventions
The total number of 15,139 words necessary for completing
TCCC documentation were identified through transcription
from audio recordings collected from all simulation drills. The
field mobile platform equipped with baseline ASR achieved a
medical WER of 69.9% with 10,582 word errors of 15,139
words (Table 3). Multi-style training incorporating both clean
and noise-injected training data sets improved medical WER
by a 26.9% decrease in the error rate from 69.9% to 43.0%. The
updated language models further reduced medical WER to
33.3%. Although the multi-style training and updated language
model decreased the medical WER, deployment of the speech
enhancement module increased the error rate to 46.3%. All
increases and decreases in the medical WER with the
componentwise intervention were statistically significant. The
participating physicians identified a total of 768 unique CUIs

relevant to the TCCC documentation of gunshot wounds,
amputations, and head trauma on the battlefield. The field
mobile platform equipped with baseline ASR achieved an F1
score of 0.61. Upon the deployment of the multi-style training,
the F1 score increased by 0.11 to 0.72. The updated language
models further improved the score to 0.81. However, the score
decreased to 0.78 with the deployment of the speech
enhancement module.

Among all the componentwise interventions, the combination
of multi-style training and an updated language model resulted
in the most improvement in medical WER; the error rate was
reduced by 36.6% when compared to the baseline model. For
specific examples of improvement made by the updated
language model, see Table 4. The autogenerated TCCC
documentation from our best model (baseline + multi-style
training + new language model) achieved an F1 score of 0.81
with 559 true positives, 119 false positives, and 137 false
negatives.

Table 3. Automated transcription and documentation performance by different settings.

Automated TCCCb documenta-
tion

ASRa transcription outputSetting

F1 scoreRecallPrecisionP valuecMedical word error rate (%)

0.6110.8280.484N/Ad69.9Setting 1: baseline

0.7170.8240.634Setting 1 vs 2: <.00143.0Setting 2: baseline + multi-style training

0.8130.8240.803Setting 2 vs 3: <.00133.3Setting 3: baseline + multi-style training + updated language
model

0.7810.8190.747Setting 3 vs 4: <.00146.3Setting 4: baseline + multi-style training + updated language
model + speech enhancement

aASR: automatic speech recognition.
bTCCC: Tactical Combat Casualty Care.
cMcNemar test with Bonferroni correction was used to calculate the statistical significance.
dN/A: not applicable.
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Table 4. Example of domain-specific word correction with updated language model.

Updated language modelOriginal language model

air movement bilaterallyair movement by literallya

exit as a posteriorexit as a poster here

patient is tachypneicpatient is take kid nick

take norvasc for hypertensiontake nor vast for hypertension

with palpable radial pulseswith pebble radio balls

active arterial bleedingactive orchard real bleeding

tympanic membrane perforationten planting numbering preparation

micrograms of fentanylmichael grams offend a nil

pulse oximetry ninety eight percentfull toxins ninety eight percent

soldier triggered an I.E.D.soldier triggered naive do

aItalics indicate the change between models.

Discussion

Performance and Lessons Learned
The previous studies on the extraction of medical information
from the human-written clinical text have reported F1 scores
ranging from 0.757 to 0.872, depending on a target entity to be
recognized [53,54]. Our platform achieved the comparable F1
score of 0.81, despite the multiple challenges posed by errors
that are attributed to the machine transcription under
noise-intensive operational environments. Our experience
deploying the mobile platform has given us four lessons that
may be useful in the development of other similar platforms for
speech to patient record applications.

Lesson 1: Closed Domain Strategy
The observation made by the focus group identified considerable
similarity between all patient transportation processes regardless
of injury types. For example, all medical personnel described
a similar set of information that is expected to share as they
transition the patient from one setting to the next. The identified
similarity between the processes enabled the labor-intensive
closed domain solutions for the post natural language processing
without concern for resource constraints (eg, physician time).
In our experience, both language model and medical information
extraction could be further improved through rule-based or
manual tasks such as observation-driven lexicon updates and
preidentification of relevant CUIs for reducing false positives.
The qualitative study to identify the similarity may provide the
basis for cost-effect analysis to examine the feasibility of similar
closed domain strategies.

Lesson 2: User Training
The importance of user training was pointed out during the
focus group study. Accordingly, users were trained to turn on
and off the system whenever appropriate, which could prevent
the potential false positives incurred by nonclinic conversation.
Next, the users were also trained to repeat the information
whenever possible. It was observed that, if the same information
is repeatedly spoken by a user, the system has a higher chance
for complete documentation by properly capturing the

information at least once, resulting in the improved high F1
score despite a relatively high WER. We have learned that the
proper user training may result in performance improvement as
significant as state-of-the-art componentwise interventions.

Lesson 3: Impact of Speech Recognition
The performance of the ASR module had a direct impact on the
quality of the autogenerated documentation in our
speech-to-patient-record application. It was observed that
improvement in medical WER after each componentwise
intervention is likely to improve autogenerated documentation
quality evaluated by the F1 score. As expected, more medical
word errors in ASR-transcribed text interfered with the
post–natural language processing to extract medical information
for documentation. A preliminary observation on the
autogenerated documentation revealed that missing words in
ASR output and incorrect negation due to word errors were the
major causes of false negatives and positives, respectively.

Lesson 4: Context of Componentwise Intervention
To some extent, our mobile platform resembles a personal
artificial intelligence assistant platform on the commercial
market, as it listens to its user and executes desired actions (ie,
documentation). Although our platform could deploy the same
types of componentwise interventions known to be effective
for the commercial platforms, not all interventions were effective
in our application. In the context of everyday life, the personal
assistance platform can benefit from speech enhancement that
emphasizes the speech of the primary speaker (eg, owner of
device) while suppressing the speech of secondary speakers.
However, in the context of medicine, the same speech
enhancement module may cause a higher medical WER by
filtering out the patient’s response to doctors or speech from
other care providers attempting to deliver information to the
primary speaker. Our experience of the performance degradation
reveals a necessity for more context-sensitive training for speech
enhancement modules to enhance speech from both primary
and secondary speakers in the emergency care settings.

Our field mobile platform used only verbal communications
for the documentation. As documented in qualitative study
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findings, information extraction from nonverbal communication
along with the verbal communication is essential to reducing
the loss of information. Future research may incorporate the
existing computer vision solutions to examine if additional
information can be extracted from nonverbal communication
for more resilient documentation. In response to lesson 2, future
studies are warranted to perform a hypothesis-driven study to
assess the effect of user training on the resilience of
documentation. Lastly, our platform was designed for the closed
domain application exclusively for the three most common
injury types on the battlefield. Although our study demonstrated
that the closed domain strategy can be developed to significantly
improve speech recognition performance for the target medical
conditions, future speech-to-text and medical information

extraction modules may explore to expand the platform design
for more variety of medical conditions.

To the best of our knowledge, this was the first attempt to create
a fully functional platform for hands-free prehospitalization
documentation in operational medical environments. Our
application contributes to the body of existing knowledge for
the development and assessment of platforms to enable
hands-free clinical documentation in real-world noisy
environments. The development of our platform was strictly
guided by domain experts and a series of structured evaluations
to examine modular improvement at every process step of the
end-to-end solution. The lessons learned suggest potential
refinements in the future endeavors to develop other similar
platforms for speech-to-patient-record application.
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GPU: graphics processing unit
HCLG: hidden Markov model context-dependency lexicon grammar
SEGAN: Speech Enhancement Generative Adversarial Network
TCCC: Tactical Combat Casualty Care
TDNN: training time delay neural network
WER: word error rate
WPA2: Wi-Fi Protected Access II
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