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Abstract

Background: Video electroencephalography recordings, routinely used in epilepsy monitoring units, are the gold standard for
monitoring epileptic seizures. However, monitoring is also needed in the day-to-day lives of people with epilepsy, where video
electroencephalography is not feasible. Wearables could fill this gap by providing patients with an accurate log of their seizures.

Objective: Although there are already systems available that provide promising results for the detection of tonic-clonic seizures
(TCSs), research in this area is often limited to detection from 1 biosignal modality or only during the night when the patient is
in bed. The aim of this study is to provide evidence that supervised machine learning can detect TCSs from multimodal data in
a new data set during daytime and nighttime.

Methods: An extensive data set of biosignals from a multimodal watch worn by people with epilepsy was recorded during their
stay in the epilepsy monitoring unit at 2 European clinical sites. From a larger data set of 243 enrolled participants, those who
had data recorded during TCSs were selected, amounting to 10 participants with 21 TCSs. Accelerometry and electrodermal
activity recorded by the wearable device were used for analysis, and seizure manifestation was annotated in detail by clinical
experts. Ten accelerometry and 3 electrodermal activity features were calculated for sliding windows of variable size across the
data. A gradient tree boosting algorithm was used for seizure detection, and the optimal parameter combination was determined
in a leave-one-participant-out cross-validation on a training set of 10 seizures from 8 participants. The model was then evaluated
on an out-of-sample test set of 11 seizures from the remaining 2 participants. To assess specificity, we additionally analyzed data
from up to 29 participants without TCSs during the model evaluation.

Results: In the leave-one-participant-out cross-validation, the model optimized for sensitivity could detect all 10 seizures with
a false alarm rate of 0.46 per day in 17.3 days of data. In a test set of 11 out-of-sample TCSs, amounting to 8.3 days of data, the
model could detect 10 seizures and produced no false positives. Increasing the test set to include data from 28 more participants
without additional TCSs resulted in a false alarm rate of 0.19 per day in 78 days of wearable data.
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Conclusions: We show that a gradient tree boosting machine can robustly detect TCSs from multimodal wearable data in an
original data set and that even with very limited training data, supervised machine learning can achieve a high sensitivity and
low false-positive rate. This methodology may offer a promising way to approach wearable-based nonconvulsive seizure detection.

(JMIR Mhealth Uhealth 2021;9(11):e27674) doi: 10.2196/27674
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Introduction

Background
Epilepsy is one of the most common chronic neurological
diseases, with a reported yearly worldwide incidence of more
than 60 per 100,000 individuals [1]. Epilepsy also has a
remarkably diverse set of indications, with several different
types of symptoms and characteristic seizures of varying
severity. Seizures are usually distinguished by their onset in the
brain, focal or generalized. They can involve a variety of
different combinations of symptoms, including impaired
awareness or loss of consciousness; cognitive, emotional, or
sensory abnormalities; sudden changes in the autonomic nervous
system; or motor manifestations such as spasms, automatisms,
or tonic and clonic movements of the limbs [2]. These
convulsive seizures, particularly focal to bilateral or generalized
tonic-clonic seizures (TCSs), are the most dangerous type of
epileptic seizures. They imply loss of consciousness and loss
of motor control with considerable risk for physical harm and
can transition to life-threatening status epilepticus or sudden
unexpected death in epilepsy [3]. For the diagnosis and treatment
of epilepsy, clinicians rely on patient self-reporting and
structured diaries, counting the number of seizures a patient had
in a certain time frame. However, personal diaries filled out by
the patients themselves have been proven to be very unreliable,
with frequent undercounting because of a lack of awareness of
seizures [4,5]. An objective seizure diary is therefore needed to
obtain valid data on seizure occurrence, contributing to improved
guidance for the treatment of people with epilepsy. Wearable
nonelectroencephalography (non-EEG) devices (wearables)
could provide data for such a diary. They are discreet and
unobtrusive, contrary to many wearable EEG devices that are
often cumbersome and stigmatizing [6], although some less
obtrusive wearable EEG systems are in development [7,8].
Moreover, a robust detection of convulsive seizures with
wearables, paired with identification of seizure-related risk
factors [9], could be of great clinical importance and provide
essential information for the identification of seizure-related
sudden unexpected death in epilepsy risk factors.

Although seizure detection with non-EEG wearables is a
relatively new field in epilepsy research, there have already
been some studies that have demonstrated the viability of this
kind of system. To date, most studies have concentrated on a
single biosignal modality for training a seizure detection model,
with a minority using a multimodal approach [10,11]. In essence,
there are 4 main biosignal modalities that are recorded from
non-EEG wearables used in epilepsy research: (1) accelerometry
(ACC)—motion-based activity, (2) electrodermal activity
(EDA)—changes in electrical properties of the skin, (3)

electrocardiography (ECG) or photoplethysmography
(PPG)—heart rate and heart rate variability estimation; and (4)
electromyography electrical muscle activity. ACC is perhaps
the most commonly used in related work because it is easy to
integrate into wearable hardware and can provide relevant
information, especially on movements during motor seizures.
ACC signals have been used in both unimodal [12-14] and
multimodal [15-17] seizure detection systems. EDA, also called
galvanic skin response, has been used in some studies for seizure
detection [16,18], as a large EDA change can occur especially
in the postictal phase following TCSs [19]. Another modality
that has been used is ECG, and its optical counterpart PPG,
which uses light reflection to calculate the heart rate from blood
volume changes in an unobtrusive manner. Although there have
been some studies using ECG [20-23] or PPG [17,18,23,24]
signals for epileptic seizure detection, the considerable
movements during convulsive seizures frequently render this
signal too noisy for accurate ictal heart rate determination.
Finally, electromyography is a self-evident modality for
detecting seizures with motor components, identifying ictal
muscle contraction, and thus has been used for convulsive
seizure detection as well [25-28].

Objective
In this study, we present an automatic seizure detection system
for TCSs using supervised machine learning that is
straightforward to implement and reproduce. We evaluated the
detection model on a newly recorded data set from a multicenter
clinical study with wearable non-EEG devices. Finally, we
discuss the detection system, its performance, and its limitations
and conclude with an outlook of possible further applications
for this detection approach.

Methods

Data Set
During the course of the study, between July 2017 and February
2020, we collected wearable device data from 243 patients
diagnosed with epilepsy: 70.7% (172/243) of patients were
recruited at the epilepsy monitoring unit (EMU) in the Epilepsy
Center, Medical Center, University of Freiburg, and 29.2%
(71/243) of patients were recruited at the EMU in the
neurophysiological department of King’s College Hospital,
London. Patients with a diagnosis of epilepsy in the age range
of 7 to 80 years were recruited, unless they had vigorous
involuntary nonepileptic movements. Consecutive patients were
admitted to their respective EMU as part of their standard
epilepsy clinical care, for differential diagnosis or for presurgical
evaluation, and may have had their antiepileptic medication
reduced during the recording. All patients were continuously
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monitored via a video EEG system during their stay in the EMU.
Clinical experts (EB and NE) manually reviewed the video and
EEG data for all participants and labeled type, onset, and offset
for all seizures. Specifically, they also labeled the onset and
termination of every motor manifestation, including the tonic
and clonic phases of each seizure. These labels were then used
as the ground truth in the training and testing phases of the
evaluation. Participants wore a variety of different wearable
devices across the 2 sites; however, the only device worn by
participants from both sites was a wrist-worn device (Empatica
E4, Empatica Inc). The study and recording procedures were
further described and discussed in the review by Bruno et al
[29]. All recruited patients provided written informed consent,
and the study procedures were approved by local ethics
committees, the ethics committee at the University of Freiburg
(538/16), and the London Fulham Research Ethics Committee
(16/LO/2209; Integrated Research Application System project
ID216316).

All data recorded at the 2 sites were live streamed from each
wearable device to 1 base device per participant, running an
Android operating system and a custom-developed app. The
data were then transmitted from all base devices to a central
server and stored for later analysis. The system was developed
by the Remote Assessment of Disease and Relapse-Central
Nervous System consortium and is available as an open-source
project on GitHub [30].

Owing to battery limitations, each participant was assigned 2
devices, between which they changed twice daily to ensure
continuous recordings. The wearable device recorded 3-axis
ACC at a sample rate of 32 Hz, EDA at 4 Hz, and PPG at 64
Hz, which was processed on the device to a blood volume pulse
signal. Participants generally wore the device on the arm that
was most involved in motor semiology during seizures, that is,
the arm that presented the most significant movements. In the
set of 10 participants with TCSs included here, each wore the
device on their nondominant hand, except for 2 participants
who specified that they were ambidextrous.

Features
An extensive feature set was created from the ACC and EDA
signals, encompassing 141 ACC and 10 EDA features, at sliding
window sizes of 2, 10, and 20 seconds for the ACC features,
and 5, 10, and 20 minutes for the EDA features. PPG signals
were not analyzed because of major ictal movement artifacts.
Although artifacts in PPG data can still convey information, in
that the presence of noise itself can be information, we chose
to omit it here in favor of focusing on the other 2 biosignals,
because the information of PPG motion artifacts is naturally
included in the ACC signal as well. The ACC features included
a variety of different time and frequency domain features. The
EDA features represented the skin conductance level (SCL),
that is, tonic low-frequency EDA changes, and skin conductance
response rate (SCRR), that is, phasic or higher-frequency EDA
changes, calculated against a baseline.

As detection models usually perform most effectively with
smaller feature sets, both in terms of computational cost and
prediction performance [31], we aimed to reduce the number
of used features significantly. For this feature selection, we first

looked at related literature in the field of wearable seizure
detection to narrow down window sizes that effectively capture
relevant signal changes in time and identify feature types that
were successfully used previously. Therefore, we selected a
window of 10 seconds for the ACC features [13,14,16] and a
longer window of 5 minutes for the EDA features to capture
the tonic changes in the EDA signal that evolve over longer
periods [19]. We then visualized the feature data in a period
around the seizure, overlaid over each other, and for all features
separately. In addition, we plotted the mean and SD for each
data series. The data that were used for these graphs were taken
only from the seizures of participants that were not included in
the test set to be used in the out-of-sample performance
evaluation (see Results section). Features showing recurrent
typical ictal changes were then visually selected for further
analysis (Figure 1). Variable seizure durations were handled by
upsampling shorter seizures by linear interpolation to the length
of the longest seizure among those plotted.

The resulting feature subset for the ACC modality consisted of
the magnitude, zero crossing rate, and recurrence plot features
(Figure 1) [32]. For the EDA features, the area under the curve
and the maximum of the SCL within the window, and the SCRR
were chosen, all corrected against a baseline, which is an interval
of the same duration as the feature window, ending immediately
before the beginning of the feature window. Thus, the resulting
feature set can be divided into 4 main feature groups:

1.
Magnitude of the ACC signal 
a. Raw ACC signal, over a 10-second window.
b. Zero-phase band pass filtered ACC signal over a

10-second window. The band pass filter had a
frequency band of 0.1 Hz to 10 Hz, representing the
linear component of the ACC signal, and was applied
before segmentation into windows.

c. Zero-phase low-pass filtered ACC signal over a
10-second window. The low-pass filter had a cutoff
frequency of 1 Hz, thus preserving only the
gravitational component of the ACC signal, and was
applied before segmentation into windows.

2. Zero crossing rate of the ACC signal over a 10-second
window, for each of the 3 axes, respectively. The zero
crossing rate is the number of times in a certain period the
signal crosses the value 0 over the same period.

3. Four features calculated from the recurrence plot of the
ACC signal:
a. Determinism, that is, the percentage of points that form

diagonal lines of a minimal length.
b. The Shannon entropy of the probability that a line has

a certain length.
c. The average diagonal line length.
d. Recurrence rate, that is, the density of recurrence points.

4. EDA-based features over a 5-minute window, minus the
same value in the 5 minutes before the feature window
a. The area under the curve of the SCL was calculated as

the moving mean of the raw EDA signal over a
1-minute window.

b. The maximum value of the SCL calculated as above.
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c. The SCRR was calculated as the number of threshold
crossings of the first derivative of the smoothed EDA
signal within the window.

To accommodate the different window sizes over which the
ACC and EDA features are calculated, a fixed interval between
feature window applications was applied. This means that all

features are calculated at fixed time points, with their respective
windows centered on each consecutive point, creating the same
number of feature vectors for both the ACC and EDA features
over a segment of data. This enables the use of the complete,
merged feature space as the single input into a detection model
for training [11]. We chose this interval between the fixed time
points for feature calculation as 2 seconds.

Figure 1. The overlaid feature value graphs for the recurrence plot features calculated from 10-second windows of the accelerometry data. Graphs
representing feature values for each individual seizure (gray, background) are overlaid by the mean (blue) and SD (red). The green and red vertical bars
represent the seizure onset and offset, respectively. The horizontal axis shows time in seconds related to seizure onset. All features are normalized
between −1 and 1, independent from each other. RP: recurrence plot.

Seizure Detection
We used a gradient tree boosting machine (GTBM) [33] as the
detection model for TCSs. Although similar to the well-known
random forest (RF) method in being a set of trees that are grown
with training data, a GTBM builds trees as weak learners in an
additive manner. The model is improved with each new weak
learner that is added to the ensemble, whereas the RF model
trains all trees in parallel and independent of each other. Weak
learners in this case are trees with a very low number of splits,
down to decision stumps with just 1 split. This results in an
overall lower bias and similar variance for GTBM models
compared with RF models at the cost of higher parameter tuning
effort. Therefore, gradient tree boosting models generally
perform better than RF models if tuned sufficiently, and they
have been successfully used in many machine learning problems
[34]. To tackle this tuning effort, we performed hyperparameter
optimization over several of the model parameters in a
leave-one-participant-out (LOPO) manner. To this end, the data

set was split into a training set and a test set. The training set
consisted of the 10-minute peri-ictal data of 10 TCS from 8
patients with epilepsy recruited at the Freiburg site. The basic
test set consisted of the complete data from 2 patients, 1 from
the Freiburg site and 1 from the London site with 11 TCSs (see
Results section). The hyperparameter optimization only used
the training set to keep the test set unknown to the model before
testing. All feature data were normalized between −1 and 1
before training and testing. For training, the combined feature
input for the model, that is, the peri-ictal feature data of 10 TCS,
were normalized, and for testing the complete feature data from
the recordings for a participant were normalized independent
from the feature data of the other participants in the test set.

The hyperparameter optimization was performed in a LOPO
nested cross-validation manner on the training set. The data for
1 of the 8 participants in the training set were kept back as a
validation set, and the model was trained on the seizures from
the other 7 participants, using only 10-minute peri-ictal data for
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each seizure. This reduction of the training data to only a small
period around seizures helps with the large imbalance in the
data set when comparing ictal and nonictal epochs. Once the
model was trained, it was then tested on the complete data of
the validation participant in the respective round, and the process
was repeated 7 more times, cycling through the participants for
validation. The mean score of the 8 validation runs was then
saved as the performance of the current parameter combination,
and the entire validation process was repeated for the next
parameter combination. The parameters that were tuned in the
optimization and their divisions are listed in Table 1, with the
resulting optimal parameter combination highlighted. In total,
720 parameter combinations were evaluated in the
hyperparameter optimization process.

Furthermore, the GTBM model also had some fixed parameters
that were the same for all optimization runs. The boosting
method used in the model was adaptive boosting for binary
classification [35], and the misclassification cost for false
negatives was always 1. The hyperparameter optimization
resulted in an optimal set of parameters that were subsequently
used in all the testing steps. The optimal parameter combination
was chosen as the combination that achieved the highest
sensitivity and lowest false alarm rate (FAR) during the LOPO
validation run of the parameter combination, prioritizing
sensitivity. Model parameters not specified here were left at
their default values.

Table 1. Parameters optimized in the gradient tree boosting machine hyperparameter optimization and their optimization ranges.

DescriptionValue rangeParameter

The step size in the iterative learning process, also called shrinkage1, 0.1a, 0.01, 0.001Learning rate

The maximum number of trees to produce in the model25, 50, 100, 250, 500, 750Number of trees

Specific misclassification cost for false positives when weighting during the learning process1, 10, 20, 30, 40, 50False positive cost

The maximum number of splits in the decision tree, where −1 denotes one less than the
number of samples in the training set, that is, the maximum possible value

1, 2, 4, 8, −1Tree depth

aThe chosen optimal parameter combination are italicized.

Evaluation
To process the model output and score its performance when
compared with the ground truth, the same method was used
both in the validation during hyperparameter optimization and
later during the testing phase (see Results section). Owing to
the method of feature extraction at fixed time intervals of 2
seconds described in the Features section, the output of the
GTBM model is a prediction vector containing the predicted
label every 2 seconds. The input labels, that is, the ground truth,
and the predicted labels were binary, denoting the classification
of each 2-second interval to either belong to a seizure or not.
Comparing the ground truth and the prediction labels for
evaluation can be done sample-wise by comparing each
2-second interval, or event-wise, by combining consecutive
intervals of the positive class to distinct events. In our analysis,
we chose the latter method, which requires postprocessing of
the model output.

First, the prediction output of the model was smoothed with a
hysteresis-like filter to avoid single-sample positives or gaps in
consecutive positive predictions. To this end, all gaps between
consecutive positive predictions smaller than 20 seconds in
duration were filled out as positive, thus creating continuous,
longer events from short neighboring positive predictions.
Thereafter, all consecutive positive predictions of a certain
length were discarded. We chose this value as 4 seconds, as it
provides a good balance between discarding short, single-sample
predictions and still keeping possible significant events. Thus,
the prediction output of the model can be matched to the ground
truth per participant by counting overlaps of predicted positive
events with a positive ground truth event as true positives (TPs)
and predicted positive events with no overlaps in the ground
truth as false positives (FPs). The number of false negatives is

then the difference between TPs and the number of seizures a
participant recorded. The number of true negatives was not

considered for this evaluation, as the sensitivity and

are sufficient to evaluate a methodology for seizure
detection. Unless otherwise stated, we report the sensitivity and
FAR calculated across all relevant participants as a whole, not
the mean over single participants.

All calculations for signal processing, feature extraction, and
model development and evaluation were performed using
MATLAB 2020a (MathWorks).

Results

Overview
For the study presented here, only study participants with focal
to bilateral or generalized TCSs were included. This resulted
in a data set of 21 TCSs from 10 participants, 9 from the
Freiburg site with 19 seizures captured, and 1 from the London
site with 2 seizures captured. The mean length of convulsive
motor phenomena was 64 (SD 23) seconds. Table 2 lists the
clinical and demographic information of the participants. They
were 40% (4/10) female and on average 32.7 (SD 11.2) years
old. The etiology of epilepsy for 2 participants was unknown
at the time of recruitment. A total of 1 participant was diagnosed
with generalized epilepsy, and the other 9 were diagnosed with
focal epilepsy. For all captured seizures, wearable device data
for at least 30 minutes before and after the ictal period were
recorded in good quality; that is, the recorded data showed no
major artifacts or intervals with constant 0 amplitude on visual
inspection. A total of 612.6 hours of data were recorded for the
included participants with seizures.
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Table 2. Participants with recorded tonic-clonic seizure that were included in this study. Wearable data recorded from these participants were used in
the evaluation of our seizure detection model. The recording duration is the duration that participants were wearing the device, without accounting for
data loss.

Epilepsy typeEpilepsy originRecording duration (days)Age (years)GenderParticipant ID

Focal (TLEa)Unknown535FemaleFR1

Focal (TLE)Structural626FemaleFR2

Generalized (IGEb)Genetic422MaleFR3

Focal (FLEc)Unknown434FemaleFR4

Focal (TLE)Structural856MaleFR5

Focal (TLE)Structural738MaleFR6

Focal (xTLEd)Structural425MaleFR7

Focal (FLE)Structural716MaleFR8

Focal (xTLE)Structural1237MaleFR9

Focal (TLE)Structural638FemaleLO1

aTLE: temporal lobe epilepsy.
bIGE: idiopathic generalized epilepsy.
cFLE: frontal lobe epilepsy.
dxTLE: extratemporal lobe epilepsy.

Cross-validation Training
The training set used for hyperparameter optimization included
10 seizures from 8 participants and covered 414.7 hours of
wearable device data. With the best parameter combination, as
described above, the LOPO cross-validation could detect all 10
seizures (sensitivity=100%) with a total of 8 FPs (FAR 0.46 per
24 hours). The FP rate was calculated as the ratio of total FPs
across all participants to the number of hours of recordings
multiplied by 24, and not the mean FAR across participants. In
the training set LOPO cross-validation, 75% (6/8) of FPs were
produced from the data of 1 participant and 2 by another. Thus,
the other 6 participants were free of FPs. All 8 FPs detected by
the model during the LOPO cross-validation occurred when the
patient was off camera, for example, in the morning or evening
when they were in the bathroom for their daily washing routine.

Out-of-Sample Testing
We also tested the model using a previously unseen test set from
our overall data set. This test set included 11 seizures from 2
participants, 1 from the London site with 2 seizures recorded,
and the other from the Freiburg site with 9 seizures recorded,
for a total of 197.9 hours of test data. The choice of training
and test set was deliberate: With the relatively low number of
seizures and their distribution among participants in this data
set, the goal was to train as many participants as possible but
also having approximately the same number of seizures in the
test set. This allocation ensures a model that is not patient
specific while keeping the training and test sets balanced in
terms of the number of seizures.

The GTBM model with the optimal parameters and trained with
all 10 seizures from the training set could detect 10 of the 11
seizures in this test set (sensitivity=91%), without any FPs.
However, this test set was rather limited as it was biased toward
participants who had convulsive seizures; therefore, we
expanded the test set to also include data from all 30 patients
with epilepsy recruited at the London site that had data recorded
with the wearable device. Although this does not add more
seizures for the model to detect, it does add a considerable
amount of data to assess the FP rate. The expanded test set thus
encompasses 1935.9 hours of wearable device data from 31
participants, including the same 11 seizures as before. In this
data set, the same model produces 30 FPs (0.37 per 24 hours).
Further investigation of the FP distribution among the
participants showed that 15 false detections resulted from a
single participant who used a stepper during monitoring as
physical activity to trigger her seizures. All FPs for that
participant were related to this activity. Removing this
participant performing unnatural repetitive movements from
the expanded test set lowers the FP rate to 0.19 per 24 hours.
Of the other participants in this expanded test set, the data of 2
participants produced 3 FPs, respectively, whereas 9 other
participants each produced 1 FP, with the remaining 19
participants being free of FPs. Thus, the FAR, when calculated
as the mean across all the included participants’ individual
FARs, was 0.45 (SD 1.1) per 24 hours, and 0.29 (SD 0.53) per
24 hours when excluding the participant with 15 FP. Table 3
provides a detailed overview of the results among the
participants with recorded seizures.
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Table 3. Per participant evaluation results, for participants with seizures recorded. The 3 totals given for the test set are (1) the total across the test set
participants with seizures recorded (N=2), (2) the total when including all patients with epilepsy recruited at the London site with data recorded (not
listed, N=31), and (3) the total when excluding 1 participant with an artificially disproportionate number of false positives (N=30).

Seizure typeRecording length (hours), nPPVc (%)FARb (per 24 hours)FPa, nSensitivity, n (%)Participant ID

Training set

sGTCSd59.6100001 (100)FR1

sGTCS92141.5661 (100)FR2

GTCSe35.5100002 (100)FR3

sGTCS35.8331.3421 (100)FR4

sGTCS36.3100001 (100)FR5

sGTCS88.5100001 (100)FR6

sGTCS40.7100001 (100)FR7

sGTCS26.2100002 (100)FR8

N/Af414.7560.46810 (100)Total

Test set

sGTCS112.2100009 (100)FR9

sGTCS85.7100001 (50)LO1

N/A197.91000010 (91)Total (1)

N/A1935.9250.373010 (91)Total (2)

N/A1870.3400.191510 (91)Total (3)

aFP: false positive.
bFAR: false alarm rate.
cPPV: positive predictive value.
dsGTCS: focal to bilateral tonic-clonic seizure.
eGTCS: generalized tonic-clonic seizure.
fN/A: not applicable.

Seizure Duration
The duration of detected seizures was significantly correlated
with the video EEG–based seizure duration, as labeled by
clinical experts (Figure 2). The true seizure duration here is
based on its clinical manifestation, that is, onset until offset of
ictal motor phenomena related to TCS. In a Pearson correlation

test, the correlation coefficient was r=.55, with P=.01. In
general, the seizure duration was underestimated by the model
as approximately half of the true duration, with a mean identified
duration of 29 (SD 15) seconds versus the mean seizure duration
of 64 (SD 23) seconds. This may reflect minor movement
amplitudes during the tonic phase of the TCSs.
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Figure 2. Correlation of the true seizure durations as labeled by clinical experts and the ictal durations detected by the gradient tree boosting machine
model based on accelerometry and electrodermal activity. The dotted line shows the linear regression fit across the data points. The Pearson correlation
coefficient was r=0.55, with P=.01. The identity line shows that the seizure duration is generally underestimated by the model.

Feature Importance
Furthermore, we analyzed the feature importance for our feature
set, calculated as the mean feature importance over all trained
GTBM models in the LOPO cross-validation (Figure 3), as a
metric for the contribution of a specific feature to the
performance of the model. The feature importance was based
on the Gini impurity, calculated such that the smallest possible
value was 0 [36]. Overall, all 4 feature groups, as described in

the Features section, are represented in the resulting GTBM
model to varying degrees of importance. The top 3 features
among the feature set were that the Shannon entropy of the
probability that a line in the recurrence plot had a certain length
calculated over a 10-second window of the ACC signal, the
magnitude of the band pass filtered ACC signal in a 10-second
window, and the maximum of the SCL in a 5-minute window
of the EDA signal, corrected for a baseline.

Figure 3. Feature importance, calculated as the mean feature importance of all models during a leave-one-participant-out cross-validation, with the
optimal parameters of the gradient tree boosting machine as reported in the Seizure Detection section. All the features are shown as listed in the Features
section (1: magnitude of accelerometry, 2: zero crossing rate of accelerometry, 3: recurrence plot features of accelerometry, and 4: electrodermal activity
features). The feature importance is shown in logarithmic scale to better visualize smaller differences.
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Discussion

Principal Findings
The results show that the GTBM model can robustly detect
TCSs from non–EEG wearable device data. A sensitivity of
100% (10/10) on the training set during a LOPO
cross-validation, a sensitivity of 91% (10/11) on the
out-of-sample test set, and an FAR of less than 1 per 5 days in
more than 1800 hours of data indicates a sufficient robustness
of this methodology to consider it in designing an automated
seizure diary. A large percentage of FPs occurred in a small
percentage of participants, with most other participants showing
between 0 and 0.5 FP per day. Furthermore, in participants who
had TCS in our test set, no FPs were reported by the model. In
addition, all true detections of our model occurred within the
ictal period of the respective seizure, showing that the system
has high accuracy. By evaluating a test set that includes data
largely from 1 site (London), while the model was trained
exclusively with data from the other site (Freiburg), we also
showed the generalizability of our model.

Although our data set contains continuous circadian data, most
TCSs occurred during nighttime sleep. In the training set, 50%
(5/10) of seizures occurred while the patient was awake, and in
the test set, only 9% (1/11) occurred during wakefulness. Of
these 6 awake seizures, 2 seizures occurred when the patient
was outside the bed. All TP detections, both in the training set
LOPO cross-validation and in the test set evaluation, occurred
within the ictal phase of the respective seizure. Conversely, all
FP detections occurred when the patient was awake and active,
and most of them occurred during daytime. Patients were
generally not confined to their beds but rather to their hospital
rooms. They could freely perform a variety of activities of daily
living, such as strolling across the room, going to the bathroom,
brushing their teeth, eating and drinking, and washing

themselves. Movement patterns during these activities,
particularly if repetitive, could resemble those during convulsive
seizures and may be a common source of FP detections.
However, false alarms during these activities when the patient
is awake could be ignored easily by way of patient validation
and feedback to avoid inappropriate interventions.

Feature Importance
The distribution of feature contribution to the performance of
the model shows that all selected features are used by the model
to predict a seizure event, except for one, the recurrence rate in
the recurrence plot of the ACC signal. The least amount of
importance is assigned to the magnitude of the low-pass filtered
ACC signal. This is an expected outcome, as this feature
represents the gravitational component of the movement, which
is minimal during convulsive seizures. During these seizures,
almost all movements are part of the linear component,
represented by the band pass filtered signal, which is also
confirmed by this feature being one of the most important in
the model.

Among the EDA-derived features, the highest importance was
consistently assigned to the difference between the highest value
in the feature and the baseline windows of the SCL. A typical
EDA signal progression in the peri-ictal period is a steep
increase from a low preictal baseline during the ictal phase,
followed by a shallow decrease in the postictal phase, spanning
multiple minutes. Thus, the feature based on the difference of
the highest value between preictal, ictal, and postictal phases
can sufficiently represent this trend, as evidenced by its high
importance. Figure 4 shows the EDA signal progression and
the respective maximum SCL feature during a seizure. The
feature values are at their highest during the ictal phase, whereas
the raw EDA signal shows the typical progression described
above.

Figure 4. The seizure of participant LO1 that was detected by the model. The raw accelerometry signal is shown at the top, and the raw electrodermal
activity signal as well as the best electrodermal activity feature (Section Features, Feature 4b) at the bottom; all are normalized between −1 and 1,
independent from each other. The ictal tonic-clonic phase is overlaid in red, the true positive detection is overlaid in green. ACC: accelerometry; EDA:
electrodermal activity.

False Negatives
There was 1 seizure the model did not detect among the training
and testing data sets (Figure 5). This false negative was produced

by one of the participants recruited at the London site, and the
seizure occurred during the night when the patient was asleep.
The other seizure recorded for this participant was successfully
detected by the model. To explain why the seizure was rejected
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by the model, we examined the raw data before and after the
seizure, specifically looking at the ACC response during the
seizure, and the EDA trend going from the pre- to postictal
phase. The motion response in the ictal phase of the rejected
seizure was a typical progression from a short tonic phase at
the beginning of the seizure to a longer, very pronounced, and
violent clonic phase, stopping promptly with the seizure offset,
followed by a short phase of postictal ACC silence. The raw
EDA signal, however, follows a progression directly opposite
to the signals from all other TCSs in the data set. The signal
shows a steep decrease from a high baseline during the ictal
phase and remains at a lower level in the postictal phase
compared with the baseline in the preictal phase. Figures 4 and
5 show the comparison of data from the 2 recorded seizures
from participant LO1, with the detected seizure being
representative of all other TCS in the data set, especially those

in the training set that created the model. Both seizures showed
similar ACC data and a similar change in the ACC-based feature
values. However, the EDA data and feature values were visibly
opposite. This confirms that the model was trained properly on
both the ACC and EDA features and that both modalities
contributed to the model’s classification of seizure occurrence.
Thus, the misclassification of 1 event was due to atypical raw
data and confirmed that the model included EDA features in its
classification.

A possible explanation for the unusual EDA signal during this
seizure could be that the EDA electrodes lost adequate contact
with the skin, which was not fully re-established after the
seizure. This could be caused by an improperly worn wearable
device, or a loss of contact owing to the wearable device coming
into contact with an external obstacle such as being pressed into
the bed, slightly raising the EDA electrodes off the skin.

Figure 5. The seizure of participant LO1 that was not detected by the model and the single false negative that was produced during the evaluation.
Note the differences in the electrodermal activity signal progression in comparison to Figure 4, which shows a typical response. The raw accelerometry
signal is shown at the top, and the raw electrodermal activity signal and the best electrodermal activity feature (Section Features, Feature 4b) at the
bottom; all are normalized between −1 and 1, independent from each other. The ictal tonic-clonic phase is overlaid in red. ACC: accelerometry; EDA:
electrodermal activity.

Related Work
The research that is most closely related to our premise is
certainly that of Onorati et al [16]. In their work, the Empatica
research group developed a seizure detection model based on
wearable data from the same device used in this study, Empatica
E4. They used a support vector machine trained with 25 ACC
as well as EDA features that were not further specified to detect
convulsive seizures and achieve a very good performance, with
their best classifier reaching a sensitivity of 94.5% and an FAR
of 0.2 per day on 55 seizures from 22 patients. Our approach is
on par with their results, and a contribution of the work
presented here is to reinforce their findings. We show that the
results of this quality can be achieved with a relatively basic
methodology, and we describe this methodology in greater
detail, making it fully accessible and reproducible. The
methodology may even be transferrable to other diseases with
convulsive attacks, such as paroxysmal dystonia or dissociative
seizures. Thus, the study described here could be used as a
stepping-stone for further work not only in epilepsy research
but also in other medical fields.

In a further study, Kusmakar et al [13] used a monomodal
support vector data description model on wearable ACC data
to detect 21 generalized TCS from 12 patients, with a total
recording length of 966 hours. The outlier classification model
could achieve a sensitivity of 95% in a LOPO cross-validation,
with a mean FAR of 0.72 per day. However, their model
generated FP detections across almost all of the 12 included
patients, showing a general trend toward FP detections
independent of patient selection, whereas our model could
achieve a generally lower FP rate on both the training and test
sets, also revealing certain patients with a disproportionate FAR.

Arends et al [17] used the LivAssured NightWatch wearable
device in a large ambulatory long-term monitoring study,
collecting 908 convulsive seizures from 28 patients over more
than 1800 nights. The device collects ACC and PPG signals
from the patients’upper arm, specifically during the night. Their
thresholding algorithm could detect 86% of the recorded
seizures, with a positive predictive value of 49%, indicating
that roughly half of all predictions were FPs. Although our
methodology produces slightly worse results with respect to the
overall FAR, studies differ in that the NightWatch study only
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assessed nocturnal data with patients at rest, whereas our
assessment, based on continuous data comprising wakefulness
and sleep, showed the model’s ability to correctly detect daytime
seizures; notably, all our FPs were generated while the
respective patient was awake and active.

In a more recent study, Johansson et al [14] used wrist-worn
ACC sensors to detect 37 TCS from 11 patients with 666 hours
of data. They evaluated 3 different types of models on a test set
of 10 seizures and obtained the best result using an RF
algorithm, detecting 9 of 10 seizures with an FAR of 0.24 per
day. However, the evaluation of FPs is constrained in patients
with TCS, introducing a certain bias in patient selection. In our
evaluation, we added a control group of up to 29 participants
without TCS recorded, with our model achieving a similar FAR,
while also only producing FPs on these participants without
seizures, whereas the participants with TCSs had no false alarms.

Limitations
The methodology for TCS detection described here also
introduces some limitations, one of which is the long feature
window used for the EDA feature computation. To include tonic
changes in the EDA spanning over multiple minutes in the
postictal phase, we used a 5-minute-long window, which
automatically introduces an inherent detection delay, as a
real-time system would need to first collect these data before
being able to extract the EDA features and detect a potential
seizure. Thus, this methodology would not be suited as a
real-time warning system. Another limitation is the constraint
of the model to detect only TCSs. As the model training process

relies on data from the accelerometer sensor, nonmotor seizures
cannot be detected with this set of modalities and features.
Future work will be needed to assess the contribution of PPG
and EDA sensors in detecting nonmotor seizures. Furthermore,
the performance of the specific model trained here is likely not
sufficient to be deployed directly as an automatic seizure diary,
especially considering its constraint on TCS, which can be
infrequent in everyday life. Additional work and more training
data would be needed to create a system that is usable in clinical
practice, possibly even shifting to a semipersonalized model
that can be reinforced over time by patient feedback.

One of the most prevalent limitations in many studies in this
field is the controlled in-hospital setting in which wearable
device data are collected. Although patients in our study were
able to perform some activities of daily living in and around
their bed and were able to walk within their hospital room, the
likelihood of FP generation can be assumed to be higher in an
outpatient setting. False alarms during physical activity could
be addressed by actively involving the patient through validation
and feedback, for example, by giving them a chance to review
seizure diary entries. Nevertheless, transferring this methodology
to an ambulatory setting will require extensive modifications
and reevaluation with data recorded in everyday living situations
that include a gold standard for seizure labeling. In any case, a
robust classifier that has a likelihood of working in the field
must first be validated in an inpatient setting to progress to an
ambulatory study, and the research presented here takes a clear
step in that direction.
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EDA: electrodermal activity
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EMU: epilepsy monitoring unit
FAR: false alarm rate
FP: false positive
GTBM: gradient tree boosting machine
LOPO: leave-one-participant-out
Non-EEG: nonelectroencephalography
PPG: photoplethysmography
RF: random forest
SCL: skin conductance level
SCRR: skin conductance response rate
TCS: tonic-clonic seizure
TP: true positive
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