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Abstract

Background: Smartphone location data can be used for observational health studies (to determine participant exposure or
behavior) or to deliver a location-based health intervention. However, missing location data are more common when using
smartphones compared to when using research-grade location trackers. Missing location data can affect study validity and
intervention safety.

Objective: The objective of this study was to investigate the distribution of missing location data and its predictors to inform
design, analysis, and interpretation of future smartphone (observational and interventional) studies.

Methods: We analyzed hourly smartphone location data collected from 9665 research participants on 488,400 participant days
in a national smartphone study investigating the association between weather conditions and chronic pain in the United Kingdom.
We used a generalized mixed-effects linear model with logistic regression to identify whether a successfully recorded geolocation
was associated with the time of day, participants’ time in study, operating system, time since previous survey completion,
participant age, sex, and weather sensitivity.

Results: For most participants, the app collected a median of 2 out of a maximum of 24 locations (1760/9665, 18.2% of
participants), no location data (1664/9665, 17.2%), or complete location data (1575/9665, 16.3%). The median locations per day
differed by the operating system: participants with an Android phone most often had complete data (a median of 24/24 locations)
whereas iPhone users most often had a median of 2 out of 24 locations. The odds of a successfully recorded location for Android
phones were 22.91 times higher than those for iPhones (95% CI 19.53-26.87). The odds of a successfully recorded location were
lower during weekends (odds ratio [OR] 0.94, 95% CI 0.94-0.95) and nights (OR 0.37, 95% CI 0.37-0.38), if time in study was
longer (OR 0.99 per additional day in study, 95% CI 0.99-1.00), and if a participant had not used the app recently (OR 0.96 per
additional day since last survey entry, 95% CI 0.96-0.96). Participant age and sex did not predict missing location data.

Conclusions: The predictors of missing location data reported in our study could inform app settings and user instructions for
future smartphone (observational and interventional) studies. These predictors have implications for analysis methods to deal
with missing location data, such as imputation of missing values or case-only analysis. Health studies using smartphones for data
collection should assess context-specific consequences of high missing data, especially among iPhone users, during the night and
for disengaged participants.
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Introduction

Smartphones offer opportunities to collect sensor data frequently
from people’s daily lives and to determine their exposures or
behaviors. Smartphone location data can be collected frequently
(eg, daily, hourly, continuously) over sustained periods of time
[1]. Studies have used these data to quantify exposure to weather
[2,3], air pollution [4], vicinity to tobacco outlets [5], or to
deliver context-aware messages when participants visited health
facilities [6,7]. Smartphones can provide complete and accurate
location data, especially when participants are provided with
study smartphones, studies are short, and data are collected
nearly continuously [8,9]. However, in large-scale
epidemiological studies, location data are often collected for
longer periods, less frequently, and from participants’ own
smartphones. In these cases, missing data are more common
than when using research-grade location trackers [4,10,11]. In
observational research studies, missing data can result in the
loss of power, selection bias, and misclassification of
participants’exposure or behavior [12]. In trials, it could hamper
safe and effective delivery of context-aware interventions that
rely on location data [13].

To anticipate the potential impact of missing location data on
study findings, we need to better understand how often, when,
and why location data are missing. Previous smartphone studies
have reported the amount of missing location data [4,10,14,15].
However, they typically did not investigate differences in
missing data over time [4,10,14,15], between participants
[4,10,14,15], or between operating systems [4,14]. In addition,
they have limitations of small sample sizes.

We therefore investigated the distribution of missing location
data over time, predictors of missing location data, and
between-participant differences. We used data from a
longitudinal smartphone study with 9665 participants using
Android phones or iPhones. We anticipate that understanding
the predictors of missing location data could inform researchers
who want to improve data completeness during study design
and data collection.

Methods

Ethics Approval and Consent to Participate
The University of Manchester Research Ethics Committee
(reference, ethics/15522) and the National Health Service
Integrated Research Application System (reference
23/NW/0716) approved this study. Participants were required
to provide electronic consent for study inclusion. Further details
are available elsewhere [2,3].

Study Design
We performed a secondary analysis of the data from an
observational smartphone study that analyzed the association

between weather conditions and chronic pain in the United
Kingdom (study name: Cloudy with a Chance of Pain) [3]. In
this study, we collected self-reported pain levels from a large
group of people with chronic pain such as osteoarthritis,
rheumatoid arthritis, or migraine. The exposure of interest was
daily average weather conditions (ie, temperature, relative
humidity, wind speed, and air pressure). To determine what
daily average weather conditions participants were exposed to,
the app recorded participants’geolocation, which we could link
to weather reports from local weather stations. The analysis of
the weather and pain association and the details of data
collection are described elsewhere [2,3].

Data Collection
People with chronic pain downloaded the app onto their Android
phones or iPhones, provided informed consent, and reported
baseline participant characteristics (eg, sex, year of birth,
self-reported weather sensitivity). At local time of 6:24 PM
each day, participants received a push notification to complete
a survey, rating 10 aspects of symptoms, behavior, and
well-being. To obtain weather data from the closest weather
station, geolocation was required. The app was programmed to
record geolocation each hour on the hour; thus, the app would
ideally obtain 24 geolocations each day. The app used GPS
(outdoors) and network signals (inside buildings) to determine
the latitude and longitude. The app’s ability to record
geolocations depended on (1) the participant granting the app
access to their geolocation and (2) the participant switching on
the location services on their phone. Upon downloading the
study app, the participants were requested access to their
geolocation. Access to geolocation was voluntary; participants
who provided the app with access to their geolocation could
retract access at any time or switch off location services
temporarily or permanently, in which case the app would not
be able to record the participant’s location. The app recorded
the operating system of the smartphone, but this feature was
introduced 1 week after the recruitment launch and was not
collected for early enrollers.

Data Preparation and Eligible Participants
We investigated location-data completeness on calendar days
that a participant completed the survey. Participants were
eligible if they completed the survey at least once, excluding
the day of enrollment. This exclusion ensured comparability of
participant days, as recording 24 geolocations would be unlikely
on the day of download. For each participant, we selected all
days with survey data. For each full clock hour, we added
indicators for (1) location data (1 if observed, 0 if missing), (2)
number of days since the most recent survey completion (0 if
less than 24 hours ago, 1 if 24-47 hours ago, etc), (3) time in
study (days since first survey submission), and (4) time
(weekday or weekend, part of the day where night was
considered as midnight to 5:59 AM, morning as 6 AM to 11:59
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AM, afternoon as noon to 5:59 PM, evening as 6 PM to 23:59
PM, and hour of the day). In addition, we added indicators for
variables that did not change over time: (1) participant
characteristics (eg, sex, age, self-reported weather sensitivity)
and (2) operating system (eg, iPhone operating system, Android,
or unknown).

Data Analysis
We reported the number of eligible participants and their
characteristics. We reported location-data completeness (1) per
day (number of recorded locations during a day), (2) per hour
for each clock hour (percentage of participant days with a
recorded location data at that hour), (3) per hour for the 4 hours
before and after survey completion, and (4) averages per
participant (median number of recorded locations) for all
participants and stratified by operating system. We investigated
predictors of the outcome “presence of a location data point”
(0 if missing, 1 if observed for a given full clock hour) with a
logistic regression model with a participant-specific random
intercept for within-participant correlation between repeated
measurements [16-18]. A multivariable model identified whether
the likelihood of the missing location data were associated with
time indicators (ie, weekdays vs weekend days, part of the day),
participant characteristics (ie, age, sex, self-reported weather
sensitivity dichotomized around the median), operating system
on their phone, survey compliance (ie, days since previous
survey entry), or time in study (ie, days since first survey entry).
Only participants with complete data for all covariates
contributed information to the model. We estimated 95% CIs
with 1000 simulations as recommended in [19]. Models were
fitted in R (R Core Team) version 3.6 with the package lme4

[18]; odds ratios (ORs) and CIs were estimated using the
merTools package [20].

Results

The app was downloaded by 13,207 participants, of which 9665
were eligible for inclusion (mean age 49 [SD 13] years; females,
7211/9665, 74.6%). These participants contributed to 488,400
participant days (median 14 eligible days/participant; IQR 4-60
days/participant). Of 9665 participants, 3109 (32.2%) used an
Android phone, 1930 (19.9%) an iPhone, and the operating
system was unknown for the remaining 4626 (47.6%)
participants. We expected 11.72 million location data points or
clock hours: 24 for each hour in the 488,400 participant days.
Of 11.72 million hours, the app collected only 4.36 million
clock hours (37.2%), resulting in missing data for the remaining
7.36 million clock hours. Data completeness per participant day
varied from no location data (0/24) to fully complete data (24/24,
Figure 1A, median 3, IQR 1-19). Location data were complete
(24/24) for 17.5% (85,606/488,400) of participant days.
Participant days with no location (93,255/488,400, 19.1%), 1
location (67,963/488,400, 13.9%), or 2 locations
(64,207/488,400, 13.1%) were also common. Location was
most often recorded at 7 PM (232,295/488,400, 47.5% of
participant days; Figure 1B) just after the default notification
of 6:24 PM. Locations were least often recorded between
midnight and 6 AM. Location data were often recorded for the
hour before survey completion (281,767/487,391, 57.8%) and
the hour after survey completion (257,743/436,263, 59.1%;
Figure 1C).
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Figure 1. Data completeness. A: Distribution of participant days with a recorded location, stratified per hour of the day (N=488,400). B: Data completeness
per hour of the day (N=24 x 488,400). C: Data completeness around the moment of survey completion (N=24 x 488,400). The red X marks app usage,
and 1st is the first full clock hour after data entry.

For most participants, the app collected a median of 2 out of a
maximum of 24 locations (1760/9665, 18.2% of participants),
no location data (1664/9665, 17.2%), or complete location data
(1575/9665, 16.3%; Figure 2A). Stratification by phone
operating system and participant characteristics showed that
31.0% (965/3109) of Android users had 24 recorded locations

on average versus less than 1% (6/1930) of iPhone users (Figure
2B). Android users usually had averages of 24 (out of 24)
(965/3109, 31.0%) or 0 (out of 24) locations (640/3109, 20.6%).
iPhone users usually had averages of 2 (out of 24) (859/1930,
44.5%) or 1 (out of 24) (362/1930, 18.8%) location, while only
0.03% (6/1930) had averages of 24 (out of 24) locations.
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Figure 2. Median locations per day per participant. A: All participants (N=9665). B: Stratified by operating system for 3109 Android users and 1930
iPhone users. iOS: iPhone operating system.

The generalized linear mixed-effects model estimated whether
time indicators, operating system, time since previous survey
completion, or participant characteristics predicted the presence
of a location data point (N=4435). The presence of a location
data point was strongly predicted by the operating system and
the part of the day (Table 1). The odds of a recorded location
were the highest for Android phones (OR 21.91, 95% CI
19.53-26.87, referent: iPhone operating system) and during the

afternoon (OR 1.18, 95% CI 1.18-1.20, referent: morning). The
odds of a recorded location were lower in the weekends (OR
0.94, 95% CI 0.94-0.95, referent: weekdays) and if previous
survey completion was longer ago (OR 0.95 per additional day,
95% CI 0.95-0.95) and marginally lower if a participant’s time
in study was longer (OR 0.998, 95% CI 0.9984-0.9985).
Participant characteristics (eg, age, sex, self-reported weather
sensitivity) did not predict the probability of location data.
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Table 1. Results of the generalized linear mixed-effects model estimating the odds of having a recorded location (N=4435).

Odds ratio (95% CI)categoryVariable

Day of the week

ReferentWeekdays

0.94 (0.94-0.95)Weekend

Part of the day

ReferentMorning

1.19 (1.18-1.20)Afternoon

1.11 (1.10-1.11)Evening

0.37 (0.37-0.38)Night

0.99 (0.99-1.00)Per dayTime in study

Operating system

ReferentiPhone operating system

22.91 (19.53-26.87)Android

0.96 (0.96-0.96)Per dayTime since previous
survey completion

1.00 (1.00-1.01)Per 10 yearsAge

Sex

ReferentFemale

0.99 (0.80-1.22)Male

Weather sensitivity

ReferentWeak

0.98 (0.84-1.15)Strong

Discussion

Principal Findings
In our study, location data collected from participants’
smartphones were missing for 63% of the intended hours (7.36
million/11.72 million). This percentage is higher than that
reported in 5 other studies, reporting 26% [4], 28% [14], and
50% [10,15,21] of missing data. This difference may be due to
the choices during the analysis: 3 studies excluded participants
with the highest amounts of missing data and only investigated
Android users, possibly resulting in an underestimation of the
overall percentage of missing location data [4,14,21]. The other
2 studies sampled location continuously multiple times per hour
for a few minutes, suggesting that our findings may not
generalize to higher frequencies of location data collection
[10,15].

Why Do Time Indicators and Operating System
Predict Location-Data Completeness?
Missing data were predicted by part of the day, time since
previous survey completion, and participants’operating system.
Missing data at night might be caused by people being indoors
where GPS signals are unavailable [11] or by their phones being
switched off in airplane mode or out of battery [11,22]. Location
data were most complete in the hour before and after survey
completion, showing that apps are more likely to record the last
known location upon restarting the app and the location on the
clock hour after. In addition, we found a small but significant

reduction in odds of a recorded location over time. Lower
location-data completeness when people stay longer in a study
is in line with the findings reported previously [22]. Less than
1% of iPhone users had complete location data. Other studies
of smartphone data corroborate our finding of higher missing
sensor data in iPhone users compared to Android users. iPhone’s
operating system refuses geolocation requests by apps more
often compared to Android. Reasons for refusing geolocation
requests are, for example, to reduce the phone’s power
consumption or to prioritize sensor data collection by other apps
[10,15,23,24]. Of note, some studies have succeeded in obtaining
higher coverage location data from iPhones compared to
Android phones in spite of these operating system–specific
differences [22,25]. This finding suggests that the research app
used to collect data and the way this app interacts with the
operating system may influence the amount of missing data.
Experimental studies could further investigate this, as we cannot
exclude the role of other differences between this study and our
own study, such as the investigated population (eg, mean age
48 years in our study, but mean age 25 years in [22]) and
sampling frequency (once an hour in our study; continuously
for 1 minute every 10 minutes in [15,22]).

Implications: Consequences of Missing Data Are
Context-Specific
Although missing location data reduce precision, they do not
necessarily reduce a study’s validity. For example, missing data
during the night may not be a problem for a study interested in
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identifying daytime behaviors from location data. In our study,
we calculated daily average exposure to the weather based on
the 24-hourly weather reports from participants’ location [3].
For days with missing data, we imputed participant location.
As UK weather stations are approximately 40 km apart, missing
information on small relocations would not result in assigning
participants to the wrong weather station. Furthermore,
misclassification would only occur if the weather conditions at
the “wrong” weather station were sufficiently different to change
a participant’s daily average exposure. Most previous studies
investigating weather and pain measured participants’ location
only once and used daily weather reports, rather than hourly
[26]. Compared to those studies, weather exposure in our study
is less likely to be misclassified, even for participants with only
1 or 2 observed locations per day.

Participant age and sex did not predict missing location data,
suggesting that data completeness is not associated with those
2 demographic factors. However, the difference in location-data
completeness between iPhone and Android users could be a
source of bias. Just-in-time interventions that depend on location
data could be less safe and effective for iPhone users compared
to Android users. On average, Android users have a lower
socioeconomic status than iPhone users—a factor that is related
to many health outcomes and may be associated with health
disparities in underprivileged groups [27-29]. In observational
studies, this difference could introduce selection bias. For
example, exclusion of participants with incomplete data
(complete case analysis) could lead to results that do not
generalize to wealthier iPhone users.

Observational studies could impute missing location data based
on participants’ past behavior [30,31]. In that case, it is
important to assess whether the imputation algorithm is also
valid for iPhone users who may have fewer past data points
available. If imputation is not feasible, researchers may want
to consider using different devices to collect location data, such

as a GPS tracker, which may be more suitable to answer certain
research questions requiring complete location data for short
periods of time [4,9]. Of note, although the imputation would
mitigate some threats to internal validity due to selection bias,
they do not address external validity. Study results may still not
be generalizable to the wider population, especially not to
underserved communities that tend to use health technologies
less and may have fewer financial resources to purchase
smartphones and pay for connection maintenance [29].

Improving Location-Data Completeness
At study design, researchers should optimize app settings and
user instructions to improve location-data completeness. Our
study showed that location was more often recorded around
survey completion and around push notifications. Thus,
encouraging participants to complete surveys and sending push
notifications may improve location-data completeness as well
as survey responses. As Android phone users have higher
location-data completeness than iPhone users, restricting
participation to Android users could improve location-data
completeness. However, it could introduce important limitations
to generalizability, given that many people have iPhones (market
share 27% worldwide [32] and 54% in the United States [33]).

Conclusion
Missing hourly smartphone location data is common: in our
study, 63% of hourly data points were missing. Missing data
were more likely for iPhone users, during the night, on weekend
days, and if participants had not recently used the app to
complete a survey. Participant age and sex did not predict
missing location data. Differences in location-data completeness
between iPhone and Android users may impact the validity of
observational or interventional studies. The predictors of missing
data can help researchers at study design to optimize app settings
and user instructions for higher location-data completeness. In
addition, it may inform their assessment of context-specific
consequences of missing location data.
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