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Abstract

Background: Polysomnography (PSG) is considered the only reliable way to distinguish between different sleep stages. Wearable
devices provide objective markers of sleep; however, these devices often rely only on accelerometer data, which do not enable
reliable sleep stage detection. The alteration between sleep stages correlates with changes in physiological measures such as heart
rate variability (HRV). Utilizing HRV measures may thus increase accuracy in wearable algorithms.

Objective: We examined the validity of the Firstbeat sleep analysis method, which is based on HRV and accelerometer
measurements. The Firstbeat method was compared against PSG in a sample of healthy adults. Our aim was to evaluate how well
Firstbeat distinguishes sleep stages, and which stages are most accurately detected with this method.

Methods: Twenty healthy adults (mean age 24.5 years, SD 3.5, range 20-37 years; 50% women) wore a Firstbeat Bodyguard
2 measurement device and a Geneactiv actigraph, along with taking ambulatory SomnoMedics PSG measurements for two
consecutive nights, resulting in 40 nights of sleep comparisons. We compared the measures of sleep onset, wake, combined stage
1 and stage 2 (light sleep), stage 3 (slow wave sleep), and rapid eye movement (REM) sleep between Firstbeat and PSG. We
calculated the sensitivity, specificity, and accuracy from the 30-second epoch-by-epoch data.

Results: In detecting wake, Firstbeat yielded good specificity (0.77), and excellent sensitivity (0.95) and accuracy (0.93) against
PSG. Light sleep was detected with 0.69 specificity, 0.67 sensitivity, and 0.69 accuracy. Slow wave sleep was detected with 0.91
specificity, 0.72 sensitivity, and 0.87 accuracy. REM sleep was detected with 0.92 specificity, 0.60 sensitivity, and 0.84 accuracy.
There were two measures that differed significantly between Firstbeat and PSG: Firstbeat underestimated REM sleep (mean 18
minutes, P=.03) and overestimated wake time (mean 14 minutes, P<.001).

Conclusions: This study supports utilizing HRV alongside an accelerometer as a means for distinguishing sleep from wake and
for identifying sleep stages. The Firstbeat method was able to detect light sleep and slow wave sleep with no statistically significant
difference to PSG. Firstbeat underestimated REM sleep and overestimated wake time. This study suggests that Firstbeat is a
feasible method with sufficient validity to measure nocturnal sleep stage variation.

(JMIR Mhealth Uhealth 2021;9(2):e24704) doi: 10.2196/24704
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Introduction

Sleep stages alternate throughout the typical nighttime sleep
period. After the initial sleep onset, nonrapid eye movement
(NREM) sleep stages 1 (N1), 2 (N2), and 3 (N3) emerge
alongside rapid eye movement (REM) sleep [1]. Together, both

NREM and REM sleep stages form sleep cycles, which, in
healthy adults, rotate approximately four or five times over the
course of a single night [2]. This alteration between stages
correlates with changes in physiological measures such as
muscle tonus [3,4], blood pressure [5-7], temperature regulation
[8,9], as well as heart rate and heart rate variability (HRV)
[10,11].
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More specifically, NREM sleep stages are related to stability
in the cardiovascular system and stronger parasympathetic
cardiac modulation. This, in turn, is reflected in REM sleep so
that the heart rate increases and becomes less stable [5,7]. Within
NREM sleep stages, the differences between deep sleep (N3,
or slow wave sleep [SWS]) and lighter sleep stages (N1 and
N2) also have some physiological differences, but these are less
pronounced than those between REM and NREM [12].
Specifically, the deeper the sleep, the stronger the
parasympathetic cardiac modulation (ie, SWS is associated with
a lower heart rate compared to N2 and N1) [13,14].

Polysomnography (PSG) is considered the gold-standard means
for measuring sleep stages, as the combination of
electromyography (EMG) and electroencephalograph (EEG)
is, by definition, the only way to distinguish between the
different sleep stages [1]. Although PSG provides reliable data
on sleep, other less laborious methods are needed as the
increasing prevalence of sleep disorder diagnoses [15] has
highlighted an urgent gap to be filled in the development of
reliable, cost-efficient sleep study tools for both clinical and
consumer use [16].

Some recent studies suggest that HRV might provide a
noninvasive marker for detecting sleep behavior such as
differentiating between sleep stages [10,11]. HRV has also been
widely utilized for assessing phenomena such as stress and
recovery [17], physical activity [18], and oxygen consumption
[19]. Recently, a sleep analysis method was developed based
on HRV and acceleration data (Firstbeat Technologies Oy,
Jyväskylä, Finland) for providing personalized feedback and
guidance regarding the quantity and quality of sleep. HRV as
measured by a single-lead ECG device (Firstbeat Bodyguard
2, Firstbeat Technologies Oy) can estimate atrial fibrillation
accurately [20], making it a reliable measurement device
regarding HRV-related phenomena.

Based on the need to evaluate the validity of commonly
available and easy-to-administer sleep measurement solutions,
we investigated how PSG and the Firstbeat sleep analysis
algorithm correlate in detecting sleep stages. From analog
measurements, we estimated the sensitivity, specificity, and
accuracy of the Firstbeat method in relation to PSG measurement
over two nights.

Methods

Participants
The study protocol has been described in detail in a previous
publication [21]. We recruited 20 voluntary participants (mean
age 24.5 years, SD 3.5, range 20-37 years; 10 [50%] women)
by word of mouth in Helsinki, Finland. Participants were
recruited from the research team’s circle of acquaintances: if
the acquaintance showed initial interest in participating, they
received a detailed description of the procedure via email. After
reading the description, if the potential participant was still
interested in taking part in the sleep study, they were screened
for suitability. Their sleep was then measured for two
consecutive nights using PSG, chest-worn Firstbeat Bodyguard
2, and a wrist-worn Geneactiv actigraph (Activinsights Ltd,

Kimbolton, United Kingdom). The inclusion criteria were as
follows: aged between 20 and 45 years, and a relatively stable
sleep schedule (eg, no shift work or jet lag). Exclusion criteria
were any diagnosed sleep disorder, the use of any medication
that could affect sleep, acute sickness (eg, the flu), and gold
allergy (as the electrodes used for the PSG recording were
gold-plated). Each participant received a compensation of 100
euros (US $115) and structured feedback on their sleep stages.
Written informed consent was obtained from all participants.
The study was approved by the Ethical Committee of the
Helsinki University Central Hospital. All procedures followed
were in accordance with the Helsinki Declaration and its later
amendments.

In our previous study, we investigated two different intervention
groups within this setting, and demonstrated that these groups
did not differ significantly from each other [21]. The Pittsburgh
Sleep Quality Index (PSQI) scores of the participants, ranging
from 2 to 12 points, indicate some variation in sleep quality.
For the purpose of this study, all nights from all participants
were pooled together for comparisons of PSG and Firstbeat
sleep metrics.

Procedure
A research assistant visited participants at their homes on two
consecutive nights. Participants had been asked not to consume
alcohol or caffeine after 4 PM on the measurement nights. The
evening visit started between 6 and 10 PM, depending on the
participant’s current sleeping schedule. The research assistant
attached the measurement electrodes to the participant during
the house call and began the recording. Before the research
assistant left, participants were given instructions for the night;
the participants were instructed to spend the evening as usual
but to refrain from vigorous activities. They were also asked to
keep their phones and any other electrical devices with
transmitters at least 2 meters away from the bed so they would
not interfere with the PSG recording. Participants were
instructed to sleep normally, and the visit for the following
morning was scheduled according to the participant’s expected
wake-up time. The research assistant arrived the following
morning approximately 0 to 30 minutes after the wake-up time.

Physical Measurements
We measured HRV with Firstbeat Bodyguard 2, including two
chest electrodes and 3-axis acceleration data obtained from the
wrist with a Geneactiv actigraph. The Firstbeat sleep analysis
method evaluates the physiological state of the person as being
awake or asleep based on HRV and acceleration data, and scores
sleep as N1+N2 (light), N3, or REM. The method uses a neural
network–based algorithm with HRV, HRV-derived respiration
rate, movement, and time of day data for sleep and wake
detection and for sleep classification. To align the measurement
modes, we combined PSG-measured sleep stages N1 and N2
to correspond to “light” sleep of the Firstbeat method.

We used overnight PSG to measure sleep at home
(SOMNOscreen plus, SOMNOmedics GmbH, Germany) with
the following recorded parameters: EEG (left and right for F,
C, O), left and right electrooculogram (EOG), left and right
EMG, and ECG. The setup for the PSG and the removal in the
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morning were carried out by a trained research assistant. EEG
measurements were recorded with gold cup electrodes at 6 EEG
locations (F3, F4, C3, C4, O1, and O2) and 2 channels for the
mastoids (A1, A2) according to the standardized 10/20 system.
The ECG, EOG, and EMG were measured using disposable
adhesive electrodes (Ambu Cardiology Blue Sensor M; Ambu
Neuroline 715, Ambu A/S, Denmark) with two locations for
ECG and EOG, and three locations for EMG. In addition, an
online reference Cz and a ground electrode in the middle of the
forehead were used. The sampling rate was 256 Hz. All signals
were filtered with a pass band of 0.5-40 Hz (Hamming
windowed sinc zero-phase FIR filter, cutoff [−6 dB] 0.25 Hz
and 44.3 Hz, respectively) and rereferenced to the average signal
of A1 and A2 electrodes. Sleep stages from PSG data were
scored manually with the DOMINO program version 2.7
(SOMNOmedics GmbH, Germany) by two experienced
researchers in 30-second epochs. The scoring was completed
with both researchers visually inspecting the data together and
agreeing over each epoch. The scoring was paused if any
disagreement emerged and continued after agreement was found
based on careful inspection of all channels, in accordance with
the rules published by the American Academy of Sleep Medicine
(AASM) [1].

Statistical Analyses
Following standard sleep score practices in the AASM manual
[1], we used 30-second epochs for sleep stage comparisons. The
entire data were compared side by side after lights off; following
AASM scoring rules, sleep onset was defined as the first epoch
of any sleep stage as detected by the PSG measurement. We
compared how Firstbeat was able to detect the actual sleep onset
by calculating the difference between the two time points, which
were statistically evaluated using a paired t test. All comparisons
of sleep staging between PSG and Firstbeat were performed
from the PSG-measured actual sleep onset onward.

First, we used paired-sample t tests to compare sleep metrics
for evaluating differences between PSG and Firstbeat in sleep
onset, and minutes spent in wake, light sleep, SWS, and REM
sleep. Second, we conducted epoch-by-epoch comparisons
between Firstbeat and PSG to calculate the sensitivity (ability
of Firstbeat to detect true sleep), specificity (ability of Firstbeat
to detect true wake), and accuracy (ability of Firstbeat to detect
both sleep and wake). This comparison was performed across
all sleep stages, as well as for overall sleep-wake comparisons
between PSG and Firstbeat.

Third, we used a confusion matrix to compare epoch-by-epoch
measures of true positives, true negatives, false positives, and
false negatives between Firstbeat and PSG across all measured
nights for sleep versus wake as well as for light sleep, SWS,
and REM sleep stages. True positives arise when both the PSG
and Firstbeat score the 30-second epoch as sleep. True negatives
arise when both the PSG and Firstbeat score the epoch as awake.
False positives arise when the PSG scores the epoch as sleep
but Firstbeat scores it as wake. False negatives arise when the
PSG scores the epoch as wake but Firstbeat scores it as sleep.

Fourth, we evaluated the differences between the amount of
sleep scored as wake, light sleep, SWS, or REM sleep when
comparing Firstbeat and PSG using minute-based Bland-Altman
plots, and visually demonstrate how many observations
remained within a 30-minute window of the PSG measure.

Finally, we used t tests to compare whether specificity,
sensitivity, and accuracy differed based on sex, measurement
night, or the intervention we reported previously [21].

Results

The 40 nights from 20 participants measured with both PSG
and Firstbeat were included in all analyses with no exclusions.
Table 1 shows the participants’ characteristics as well as their
mean sleep measures.
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Table 1. Characteristics of the sample (N=20).

ValueCharacteristic

24.50 (3.50)Age (years), mean (SD)

10 (50)Sex (female), n (%)

23.64 (3.10)BMI (kg/m2), mean (SD)

5.40 (2.35)PSQIa score, mean (SD)

5 (25)Poor sleep quality (PSQI score>5), n (%)

Polysomnography-measured sleep, mean (SD)

23:44 (1:05)Sleep onset (hour:minute)

7:28 (0:49)TSTb (hour:minute)

91.55 (5.82)Sleep efficiency (%)

4.68 (2.71)N1c of TST (%)

47.46 (6.14)N2d of TST (%)

22.18 (7.11)N3e of TST (%)

25.68 (5.48)REMf of TST (%)

aPSQI: Pittsburgh Sleep Quality Index.
bTST: total sleep time.
cN1: sleep stage 1 (light sleep).
dN2: sleep stage 2 (light sleep).
eN3: sleep stage 3 (slow wave sleep).
fREM: rapid eye movement.

Table 2 shows paired t test comparisons and the mean
differences between Firstbeat and PSG sleep stage scores. Sleep
onset did not differ significantly between Firstbeat and PSG
(mean difference 0, SD 9 minutes, SE 1 minute; t39=0.578,
P=.57). Three nights’ sleep onset was detected accurately,

whereas for 12 nights, the Firstbeat method assumed earlier
sleep onset than PSG. To detect the true difference in detecting
sleep onset, we calculated the absolute difference between
Firstbeat onset to PSG onset, and found a mean difference of
7.06 minutes (SD 6.64 minutes).

Table 2. Paired comparisons and mean differences of sleep parameters recorded by Firstbeat and polysomnography.

P valuet (df=39)95% CISEMean differencea (SD)Parameter (minutes)

<.0015.3278.70 to 19.352.6314.03 (16.65)Wake

.91–0.120–14.31 to 12.726.68–0.80 (42.25)Light sleep

.530.632–10.29 to 19.647.404.68 (46.79)Slow wave sleep

.03–2.244–34.03 to –1.777.98–17.90 (50.44)REMb sleep

aMean differences calculated as Firstbeat – polysomnography.
bREM: rapid eye movement.

When comparing Firstbeat and PSG, there were some
differences in how well the Firstbeat method was able to detect
different sleep stages. The mean specificity, sensitivity, and
accuracy in detecting wake was 0.77 (SD 0.16), 0.95 (SD 0.03),
and 0.93 (SD 0.03), respectively. The specificity, sensitivity,
and accuracy in detecting light sleep was 0.69 (SD 0.15), 0.66
(SD 0.10), and 0.69 (SD 0.06), respectively. The specificity,

sensitivity, and accuracy in detecting SWS was 0.91 (SD 0.06),
0.72 (SD 0.17), and 0.87 (SD 0.04), respectively. REM sleep
was detected with 0.92 (SD 0.7) specificity, 0.60 (SD 0.24)
sensitivity, and 0.84 (SD 0.06) accuracy.

Table 3 shows the confusion matrix [22] regarding the two
measurement devices and their differences.
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Table 3. Confusion matrix of the Firstbeat method and polysomnography sleep stage epoch comparisons.

Polysomnography (N)Firstbeat (N)

TotalWakeREMbSWSaLight

18,8634923445218912,737cLight

868696405867c2683SWS

79842055576c1312072REM

45132598c3551251435Wake

40,046c33919416831218,927Total

N/Ad76.659.270.667.3Correct stage classification (%)

aSWS: slow wave sleep.
bREM: rapid eye movement.
cDiagonals indicate the number of correctly categorized epochs in the respective sleep stage.
dN/A: not applicable.

Figure 1 shows the Bland-Altman mean difference plots, which
illustrate the share of observations that were within 30 minutes

from each other in wake state, or in different sleep stages as
measured with different devices.

Figure 1. Bland-Altman plots comparing differences in Firstbeat (FB) and polysomnography (PSG) in wake state (a), light sleep stages N1+N2 (b),
slow wave sleep (SWS) (c), and rapid eye movement (REM) sleep (d).

As a further sensitivity check, we compared the means of
specificity, sensitivity, and accuracy to detect possible
differences based on sex, measurement night, or the intervention
reported previously [21]. Compared to females, there was a
better specificity in REM sleep in male participants (0.95 vs
0.89, P=.004), but there were no other differences between sexes
(P>.06). There was no first- or second-night effect in the
specificity, sensitivity, and accuracy (all P>.38), nor regarding
the presence of the previously reported music or slow-breathing
intervention (all P>.13).

Discussion

Principal Findings
Wearable devices have gained a significant share of the health
and well-being consumer market, and new wearable devices
and algorithms emerge frequently. Although a great majority
of this research aims to detect sleep quality and duration based
on data derived from accelerometer sensors [23], other measures
such as respiratory signals have also been utilized [24]. Several
reviews have evaluated the accuracy of accelerometer-based
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sleep wearables [23,25,26], and a recent review summarized an
overall evaluation of wearables utilizing other sensors [27].
They concluded that detecting sleep from wake is relatively
successful in many devices, but when wearables aim to classify
sleep stages as opposed to simply distinguish between sleep
and wake, there is a challenge in distinguishing four choices
(wake, light, deep, and REM sleep) [27], which makes the result
more inaccurate.

Commercial accelerometers typically yield accuracy between
0.81 and 0.91, sensitivity values between 0.87 and 0.99, and
specificity values between 0.10 and 0.52 in distinguishing sleep
from wake [26]. However, when attempting to detect sleep
stages, the results are less consistent. A recent review focusing
on commercial accelerometers identifying sleep stages found
great variation in accuracy depending on the study [26]. For
instance, accuracy in detecting light sleep varied between 69%
and 81%, accuracy in detecting SWS was between 36% and
89%, and that for REM sleep ranged between 62% and 89%.
Such variation suggests that acceleration itself may not be
sufficient in reliably identifying sleep stages.

Previous studies have implied that HRV may be a useful marker
for detecting sleep stages [10,11]. One study reported an
accuracy of up to 89% in detecting SWS, but their method
included respiratory signals alongside HRV [28]. When
detecting sleep stages by utilizing both HRV and accelerometer
data, one study managed to identify 75% of SWS correctly [29].
In that study, REM sleep was identified correctly in over 70%
of epochs, whereas light sleep detection was the weakest with
correct identification varying between 42% and 52%. Our
findings are of similar accuracy, which further supports the
notion of combining accelerometer and HRV-based measures
for reproducible sleep staging.

This study was performed to evaluate the ability of HRV- and
acceleration-based Firstbeat sleep analysis methods to detect
sleep and different sleep stages. In pairwise comparisons, the
Firstbeat method detected light sleep and SWS with no
statistically significant difference to the gold-standard PSG
method. There were two measures that differed significantly
between the Firstbeat method and PSG: Firstbeat underestimated
REM sleep (mean 18 minutes) and overestimated wake (mean
14 minutes). Considering the number of minutes in the context
of a typical night’s sleep, the differences are not alarmingly
high in practice, especially when measuring sleep over repeated
nights. Sleep onset detection was very accurate, which is in
accordance with a review published earlier this year [30].

Sleep stages can only be detected using PSG, as the stages are,
by definition, separated by different patterns in ECG, EOG, and

ECM. REM sleep is particularly difficult to detect without
measuring activity from EOG and EMG channels. Thus, relying
on other physiological measures as a means for separating sleep
stages is always based on secondhand information. Although
HRV has both previously [10,11] and in this study reflected
sleep stages relatively well, it cannot detect the immediate
changes in EEG, EOG, and EMG. However, this study suggests
that HRV-assisted sleep stage detection can serve as a good
estimate of sleep architecture despite being less accurate in
detecting specific sleep stages.

When observing the comparisons in more analytical detail, we
found that comparing the Firstbeat method against PSG yielded
good specificity, and excellent sensitivity and accuracy in
detecting wake. Regarding light sleep, the measures of
specificity, sensitivity, and accuracy were less convincing. SWS
detection had excellent specificity, adequate sensitivity, and
good accuracy, while REM sleep was detected with similarly
excellent specificity, adequate sensitivity, and good accuracy.
These results suggest that the Firstbeat method is best at
detecting sleep stages that have strong parasympathetic cardiac
markers; however, light sleep is typically not significantly
differentiated based its physiological fingerprint [12,14].

Strengths and Limitations
Our study was fully balanced in sex distribution and we were
able to evaluate the Firstbeat method across two different nights
in two different settings in the participants’ own homes. Thus,
the ecological validity in this study can be considered excellent.

As a limitation, even though our sample had some variation in
PSQI-measured sleep quality, this study did not include any
participants with diagnosed sleep disorders. Our study included
only healthy participants, and the results are likely to be different
if any health issues, particularly cardiovascular, or any sleep
disorders are present. This is a question to solve before utilizing
the Firstbeat method in clinical contexts.

Conclusion
Combining HRV with accelerometer measurements can be
considered a feasible method with sufficient validity to measure
nocturnal sleep stage variation. We found that the specificity,
sensitivity, and accuracy were the weakest in detecting light
sleep. Nevertheless, considering its availability, affordability,
and ease of administration, Firstbeat may be a useful tool in
various contexts, particularly in consumer-based
sleep-measuring environments to produce an overview of sleep
structures.
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