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Abstract

Background: Parkinson disease (PD) is a common movement disorder. Patients with PD have multiple gait impairments that
result in an increased risk of falls and diminished quality of life. Therefore, gait measurement is important for the management
of PD.

Objective: We previously developed a smartphone-based dual-task gait assessment that was validated in healthy adults. The
aim of this study was to test the validity of this gait assessment in people with PD, and to examine the association between
app-derived gait metrics and the clinical and functional characteristics of PD.

Methods: Fifty-two participants with clinically diagnosed PD completed assessments of walking, Movement Disorder Society
Unified Parkinson Disease Rating Scale III (UPDRS III), Montreal Cognitive Assessment (MoCA), Hamilton Anxiety (HAM-A),
and Hamilton Depression (HAM-D) rating scale tests. Participants followed multimedia instructions provided by the app to
complete two 20-meter trials each of walking normally (single task) and walking while performing a serial subtraction dual task
(dual task). Gait data were simultaneously collected with the app and gold-standard wearable motion sensors. Stride times and
stride time variability were derived from the acceleration and angular velocity signal acquired from the internal motion sensor
of the phone and from the wearable sensor system.

Results: High correlations were observed between the stride time and stride time variability derived from the app and from the
gold-standard system (r=0.98-0.99, P<.001), revealing excellent validity of the app-based gait assessment in PD. Compared with
those from the single-task condition, the stride time (F1,103=14.1, P<.001) and stride time variability (F1,103=6.8, P=.008) in the
dual-task condition were significantly greater. Participants who walked with greater stride time variability exhibited a greater
UPDRS III total score (single task: β=.39, P<.001; dual task: β=.37, P=.01), HAM-A (single-task: β=.49, P=.007; dual-task:
β=.48, P=.009), and HAM-D (single task: β=.44, P=.01; dual task: β=.49, P=.009). Moreover, those with greater dual-task stride
time variability (β=.48, P=.001) or dual-task cost of stride time variability (β=.44, P=.004) exhibited lower MoCA scores.
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Conclusions: A smartphone-based gait assessment can be used to provide meaningful metrics of single- and dual-task gait that
are associated with disease severity and functional outcomes in individuals with PD.

(JMIR Mhealth Uhealth 2021;9(2):e25451) doi: 10.2196/25451
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Introduction

Parkinson disease (PD) is a common neurodegenerative disease
associated with numerous movement disorders and symptoms.
One of the most significant disorders of PD is abnormal gait
[1], which includes slowed walking speed, increased variability
in stride timing (ie, stride time variability), and festination.
These gait abnormalities have been linked to disease severity
[2], and are on the causal pathway to an increased risk of falls
[3], mortality, and morbidity [4]. As such, the functional status
of patients suffering from PD, including gait, needs to be
carefully assessed and considered for appropriate disease
management.

Considerable effort has focused on the measurement of gait and
mobility. Clinical rating scales [5,6] or stopwatch-based
measurements (eg, timed-up-and-go test [7]) have been widely
used to characterize gait in PD. However, these types of
assessments are limited by subjective bias from clinicians, often
have poor reliability, and are often insensitive to subtle
pathological changes in PD. Recently, more advanced
technologies have been developed to measure gait using
specialized equipment such as wearable sensor systems or
motion capture systems. This instrumented type of measurement
can provide sophisticated and objective gait analysis with
excellent reliability. For example, Mancini and colleagues [8]
showed that using six wearable motion sensors consisting of a
gyroscope, accelerometer, and digital compass attached on the
left and right wrists, chest, lumber, and left and right shanks
can accurately measure the temporal and spatial metrics of gait
in multiple cohorts. However, such assessments are typically
limited to clinical and laboratory settings, and require in-person
contact with trained study personnel to reliably administer
protocols and standardized instructions [9,10]. Moreover, such
instrumented techniques do not afford regular gait assessments
in large numbers of people due to the testing constraints,
especially for those who are unable to utilize personal or public
transportation and for those who live far from clinical centers
or hospitals. Therefore, novel, easy-to-use, cost-effective, and
scalable approaches for gait measurement in PD are needed.

With progress in smartphone technology, the inertial
measurement unit (IMU) of smartphones—which consists of a
3D accelerometer, 3D gyroscope, and digital compass—has
been utilized to capture movement associated with gait. Several
studies have shown that the IMU of smartphones can accurately
and reliably measure motion of the body in younger and older
adults, as well as in those with PD [11-16]. For example, Ellis
et al [15] showed that using the IMU of Apple iPod Touch
secured on the navel can reliably and accurately measure gait
in participants with and without PD. However, these approaches
require the phone to be tightly secured to one part of the body

and the studies were limited to assessments in laboratory
environments with the need of trained study personnel to
appropriately secure the phone using specialized equipment and
to verbally provide standardized instructions to the participants.

Our team recently created a smartphone-based app enabling
automatically guided assessment of gait when walking normally
(ie, single task) and while performing a serial-subtraction
cognitive task simultaneously (ie, dual task). The app was
designed to provide standardized multimedia instructions to the
user throughout the test to minimize the need for trained study
personnel to administer the tests. Moreover, the assessment is
completed with the phone placed in the user’s pants pocket,
thereby removing the need for additional equipment to secure
the phone to the body with a predetermined orientation. We
previously demonstrated the validity and reliability of this
app-based approach to measure gait characteristics in healthy
adults [17]. The aim of this study was to determine the validity
of using this app-based approach to gait assessment in people
with PD, and to establish the association between app-derived
gait metrics (eg, stride time, stride time variability) and the
performance of several clinical characteristics in patients
suffering from PD.

Methods

Participants
Fifty-two patients diagnosed with idiopathic PD by clinicians
of the Department of Movement Disorders at Beijing Tiantan
Hospital (Beijing, China) completed this study. All participants
provided written informed consent as approved by the Beijing
Tiantan Hospital Institutional Review Board. The inclusion
criteria were: (1) aged between 25 and 80 years, (2) clinically
diagnosed with PD using the 2015 Movement Disorder Society
diagnosis criteria [1], and (3) the ability to walk for 1 minute
without ambulatory or personal assistance. The exclusion criteria
were: (1) presence of other overt neurological diseases such as
dementia or stroke; (2) orthopedic impairments, history or
presence of ulceration, amputation, or other painful symptoms
in the lower extremities associated with impairment in gait; (3)
self-reported diabetes mellitus or cardiovascular disease that
may further alter gait; (4) drug or alcohol abuse; or (5) inability
to understand the study procedure.

Smartphone App
The app was designed for use on the iPhone iOS platform. The
goal of the app was to recreate standard laboratory-based
assessments of standing and walking for use in the laboratory,
clinics, and other nonlaboratory remote environments. Here,
we focused on the functionality of the app to measure gait in
participants with PD. The full description of the app, as well as
the validity and reliability of the gait assessment in healthy
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adults, has been previously reported [17]. The previous
validation study demonstrated that the app and
customized-designed analytic approach can effectively quantify
the stride time and stride time variability of gait during both
single- and dual-task walking conditions as accurately as
gold-standard laboratory instrumentation. The app-based
assessment starts with an animated movie that provides a general
overview of the assessment (developed by Wondros Inc, Los
Angeles, CA), followed by several on-screen text step-by-step
instructions. After watching the animation and reading the text
instructions, participants press “Begin” and are instructed to
place the phone into the pocket of their pants or shorts. The

phone speaker then provides voice instructions and cues, guiding
the participant through a 45-second trial of single-task walking
and dual-task walking at their preferred speed (Figure 1). The
dual-task walking involved asking the users to perform a
verbalized serial subtraction of threes from a randomly generated
3-digit starting number when walking at their preferred speed.
A 30-second rest between each trial was provided. Trial start
and end “beep” cues triggered acquisition of the accelerometer,
gyroscope, and compass data to the phone’s internal storage
capacity. These data were automatically uploaded via Wi-Fi or
a cellular service to a cloud-based data server immediately
following the test for offline analyses [17] (Figure 1).

Figure 1. Screenshots of the smartphone gait and balance assessment app. The app, consisting of automatic animated, text, and voice instructions to
users can measure the standing balance, 6-minute walking, and 45-second single- and dual-task walking performance (A). Before the walking test starts,
users must first watch a comprehensive animation to introduce the testing procedure (B). Then, users must read several screens of text instruction (C).
After reading the instruction, they press “begin” (D) and place the phone into the pocket of their pants to initiate the test. They then complete the walking
trials following voice cues (including the message shown in panel E and the random 3-digit number provided in the dual-task condition). After pressing
“Done” (F), the motion data of walking captured by the smartphone are automatically uploaded to a cloud-based server for storage and offline analysis.
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Study Procedures

Setting and Design
All assessments were completed in the neurological clinics of
Tiantan Hospital. All participants completed the tests in
“medication-off” state, as defined by withholding their levodopa
medication for at least 8 hours. The functional tests and clinical
rating scales were completed before the walking assessment for
all participants. Participants were given sufficient rest (at least
10 minutes) between each test to eliminate the effects of fatigue
on test performance.

Walking Assessment
The walking assessment was completed along a straight
10-meter hallway of the hospital. Participants were instructed
to wear comfortable shoes and pants or shorts with pockets.

Each participant completed the app assessment twice, with each
assessment entailing one trial of single-task walking and one
trial of dual-task walking at the participant’s preferred speed.
During each trial, participants were asked to walk down the
10-meter hallway, turn 180 degrees, and walk back to the start.
Therefore, the total length of straight walking in each trial was
20 meters. The trial order was randomized within each pair of
trials. Participants utilized the app instructions to initiate and
complete each trial. Study personnel oversaw the safety of
participants without providing specific instructions. To assess
the validity of gait metrics derived from the app, the Mobility
Lab system (APDM, Seattle, WA), a widely used gold-standard
and commercialized system of gait measurement, was also used
to assess gait kinematics of each trial (Figure 2) [8]. This system
consisted of three sensors: one secured over the lumbar back
and two others secured to the top of each foot with Velcro straps.

Figure 2. Example of raw (A) and filtered smartphone- (black) and Mobility Lab (red)–recorded acceleration signals (B) along the Earth coordinate
system vertical axis during straight walking for 5 seconds.

Unified Parkinson Disease Rating Scale Part III
The Unified Parkinson Disease Rating Scale III (UPDRS III)
was completed to assess PD severity. The UPDRS III assesses
multiple aspects of function, including mental and mood
function, motor control, activities of daily living, and
complications of therapy. The total score of UPDRS III, ranging
from 0 to 28, was used in the analysis, with greater scores
reflecting more severe PD.

Montreal Cognitive Assessment
The Montreal Cognitive Assessment (MoCA) was used to
examine global cognitive function, including visuospatial,
executive function, attention/working memory, episodic
memory, and language. The MoCA total score, which ranges
from 0 to 30, was used for analysis, with lower scores reflecting
worse cognitive function.

Hamilton Anxiety and Depression Rating Scales
Participants completed the Hamilton Anxiety (HAM-A) [18]
and Hamilton Depression (HAM-D) [19] scales to assess their
mood. HAM-A consists of 14 items assessing symptoms related
to anxiety and HAM-D consists of 21 items (17 of them used
in this study) assessing symptoms related to depression. Each
item of HAM-A was scored between 0 (ie, not present) and 4
(severe), with a total range of 0 to 56. Nine items in HAM-D
were scored between 0 and 4 and the other eight were scored
between 0 and 2, with a range between 0 and 52. The total scores
of HAM-A and HAM-D were used in the subsequent analysis,
with greater scores reflecting more severe anxiety or depression.

Analysis of Gait Metrics
The pipeline of signal processing and data analysis was
described in our previous paper [17]. Briefly, kinematic data
related to gait (ie, the acceleration and angular velocity time
series) were captured by the accelerometer and gyroscope within
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the IMU of the smartphone and from the IMUs within the
Mobility Lab sensors at a sampling frequency of 100 Hz. The
raw 3D acceleration and angular velocity time series captured
by the app were then each transformed from the device
coordinate to an Earth-based coordinate system using the
quaternion rotation matrix [20]. By doing so, the Z-axis was
thus approximately vertical to the ground, regardless of the
orientation of the phone placed in the pocket (Figure 2A). Each
rotated time series was then filtered using a low-pass
Butterworth filter with a cut-off frequency of 3 Hz. These
filtered time series, containing peaks that oscillated with
different amplitudes, aligned with the time series recorded by
the Mobility Lab system very well (Figure 2B). Turns of 180
degrees were automatically detected and removed from the
analysis as described previously [17], so that gait was only
analyzed during periods of straight-line walking. We then
identified each heel strike and toe-off of the phone-side leg,
which we previously determined to correspond with the trough
nadir following each relatively high peak and the trough nadir
following each relatively low peak [17].

Finally, stride time and stride time variability were calculated
for each trial. Stride time is typically defined as the time between
two consecutive heel strikes of one foot, and thus relates to one
complete gait cycle. Stride time variability is defined using the
ratio of the SD of the stride times to the mean stride time within
each walking trial. Longer stride time and greater stride time
variability within a given walking condition (ie, single or dual
task) have each been associated with aging [21], incidence of
movement disorders (including PD) [22], the development of
falls [3], and even the likelihood of future cognitive decline
[23]. We also calculated the dual-task “costs” to stride time and
stride time variability as the percent change of each metric from
the single- to dual-task walking condition. A greater dual-task
cost reflected a greater dual-task decrement in walking
performance. The averaged stride time, stride time variability,
and dual-task cost across two trials for each participant were
then used in the following analyses.

Similar gait metrics were derived from the Mobility Lab data
using the software platform provided with the system.

Statistical Analysis
Statistical analyses were performed using JMP Pro 14 software
(SAS Institute, Cary, NC). The significance level was set to
P<.05 for all analyses.

We examined the validity of app-derived stride time and stride
time variability by assessing the correlation between app-derived
metrics and the corresponding metrics derived from the Mobility
Lab system using Pearson correlation analysis. The validity in
single- and dual-task walking conditions was examined in
separate models. We also calculated the absolute difference
between the metrics measured by the app and by Mobility Lab.
In addition, we examined the effects of task condition on stride
time and stride time variability in separate two-way analysis of
variance (ANOVA) models. The model factor was the task
condition (ie, single and dual task), and the dependent variables
were the stride time and stride time variability in each model,
respectively. Each of these ANOVA models was adjusted for
age, sex, and years of formal education.

Linear regression models were then used to examine the
relationships between gait metrics measured by the app and
scores of the UPDRS III, MoCA, HAM-A, and HAM-D scales.
Age, sex, and years of formal education were included as
covariates in each model.

Results

Participant Characteristics
Participants ranged in age from 40 to 83 years. No adverse
events or safety issues were reported during the study. Each
participant successfully completed the walking trials following
the instructions provided by the app with no difficulty. Table 1
shows the demographic, clinical, and functional characteristics,
and app-measured gait metrics of participants. Compared to the
single-task condition, the stride time (F1,103=14.1, P<.001) and
stride time variability (F1,103=6.8, P=.008) of gait in the
dual-task condition were significantly larger, indicating
significant “interference” from the concurrent serial subtraction
task on locomotor control. Each of these results was independent
of covariance associated with age, sex, and education
(F1,103<1.3, P>.66).
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Table 1. Participants characteristics (N=52).

ValueDemographics and gait metrics

19 (37)Female, n (%)

63 (10)Age (years), mean (SD)

11 (3)Education (years), mean (SD)

1.7 (0.9)Height (m), mean (SD)

70 (21)Body mass (kg), mean (SD)

6.4 (3.8)Duration of Parkinson disease (years), mean (SD)

38.3 (15.1)UPDRS IIIa

22 (4)MoCAb, mean (SD)

11.8 (4)HAM-Ac, mean (SD)

11.1 (5.1)HAM-Dd, mean (SD)

Stride time, mean (SD)

1.09 (0.08)single task (s)

1.17 (0.12)dual task (s)

2.7 (6)DTCe (%)

Stride time variabilityf , mean (SD)

40 (22)single task (%)

63 (19)dual task (%)

5.1 (39.4)DTC (%)

aUPDRS III: Unified Parkinson Disease Rating Scale III.
bMoCA: Montreal Cognitive Assessment.
cHAM-A: Hamilton Anxiety Scale.
dHAM-D: Hamilton Depression Scale.
eDTC: dual task cost.
fRatio of the SD to the mean of stride time.

Validity and Variability of App-Derived Stride Time
The average number of identified strides during the 20-meter
straight-walking trials was 9.5 (SD 1.5). The absolute difference
between the app and Mobility Lab measures was quite small
(Table 2). Pearson correlation analysis revealed that app-derived
stride time was strongly correlated with that derived from
Mobility Lab under both the single-task (r=0.99, P<.001) and

dual-task (r=0.99, P<.001) conditions (Figure 3A). Moreover,
the app-derived stride time variability was strongly correlated
with that derived from Mobility Lab in both single-task (r=0.99,
P<.001) and dual-task (r=0.98, P<.001) conditions (Figure 3B).
Taken together, the stride time and stride time variability derived
from the app demonstrated excellent validity as compared with
those derived from Mobility Lab for gait assessment in people
with PD.
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Figure 3. Correlation between stride time (A) and stride time variability (B) as measured by the app (x-axis) and the Mobility Lab system (y-axis) for
each participant.

Table 2. Absolute difference between gait metrics derived from the app and Mobility Lab data.

Stride time variation (seconds), mean (SD)Stride time (seconds), mean (SD)Condition

0.003 (0.003)0.01 (0.008)Single task

0.002 (0.002)0.01 (0.009)Dual task

Relationship of App-Derived Gait Metrics With
Clinical and Functional Status

UPDRS-III
Linear regression models adjusted for age, sex, and duration of
formal education demonstrated that the stride time variability
of both single-task (β=.39, P<.001) and dual-task (β=.37, P=.01)

walking was significantly correlated with the UPDRS-III total
score (Figure 4). Participants with greater stride time variability
tended to exhibit more severe PD as measured by the UPDRS
III. No significant correlations were observed between other
gait metrics (stride time in either condition, dual-task cost to
stride time or stride time variability) and the UPDRS-III score
(β=.12 to.21, P=.18 to .34).

Figure 4. Association between single- (A) and dual-task (B) stride time variability and total score of Unified Parkinson Disease Rating Scale III (UPDRS
III).

MoCA
Linear regression models revealed that the stride time variability
of dual-task walking (β=.48, P=.001) and the dual-task cost to
stride time variability (β=.44, P=.004) were each correlated
with the MoCA score. Participants with greater stride time
variability in dual-task walking or greater dual-task cost had
lower MoCA scores (ie, worse cognitive function). No such

association was observed between other gait metrics and this
measure of global cognitive function (β=.06 to .12, P=.42 to
.53).

HAM-A and HAM-D
Stride time variability of both single- and dual-task walking
was significantly correlated with HAM-A (single task: β=.49,
P=.007; dual task: β=.48, P=.009) and HAM-D (single task:
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β=.44, P=.01; dual task: β=.49, P=.009). In each case,
participants with greater stride time variability reported worse

anxiety and more severe depressive symptoms (Figure 5).

Figure 5. Association between single- and dual- task stride time variability and the score of the Hamilton Anxiety (HAM-A) (A) and Hamilton
Depression (HAM-D) (B) scales. Greater scores reflect a worse mood status.

Discussion

This study provides a proof of concept that patients with PD
can use a smartphone app by themselves to accurately assess
gait during both single-task and cognitive dual-task walking
conditions, with the phone placed in the front pocket of the
pants or shorts. Moreover, gait metrics derived from app data,
particularly under the dual-task condition, were associated with
several important functional and clinical rating scales in PD.
Such information may thus be used to help assess PD severity,
its functional impact, and potentially the effectiveness of
medication or other clinical interventions within this vulnerable
population.

Typically, gait assessments are performed with low frequency
(ie, only during in-person clinical visits, or only before and after
a study intervention). However, recent studies have
demonstrated that even within an individual, the characteristics
of walking vary considerably within and between days. Such
variance in function has been associated with multiple important
outcomes [24-28]. For example, Leach et al [27] demonstrated
that older adults with greater day-to-day variance in standing
balance had lower cognitive function. Albrecht et al [28]
reported that a single measurement of walking performance
may cause misinterpretation of functional status in patients with
multiple sclerosis due to the high day-to-day variance in gait.
It is thus important to characterize gait with sufficiently high
frequency. In-person assessments that require specialized
equipment and trained personnel to administer tests do not lend
themselves well to high-frequency monitoring [29-32]. The
smartphone app-based gait measurement used in this study does
not require specialized equipment beyond a smartphone and
does not need trained personnel to administer the test. It also
automatically uploads and stores acquired data via Wi-Fi or a
cellular service, and is thus highly portable. Taken together, the
app may therefore serve as an easy-to-use, widely accessible,
and cost-effective tool for high-frequency assessment of gait
within both laboratory and nonlaboratory settings.

Walking in everyday life often requires simultaneous
performance of additional cognitive tasks such as speaking to
others, thinking of questions, or reading signs in the
environment. This dual tasking disrupts the performance of one
or both tasks. Consistent with previous studies [17,33], we
observed that in people with PD, gait is more unstable (ie,
greater stride time variability) when dual tasking as compared
to when walking quietly, revealing that the performance of the
concurrent cognitive serial-subtraction task alters locomotor
control. Mounting evidence has shown that walking performance
in the dual-task condition can be used to characterize an
individual’s capacity of cognitive-motor control, and can predict
both fall risk and the incidence of dementia in older adults
[34,35]. Consistent with these results, we observed that the
stride time variability of gait in the dual-task condition and the
dual-task cost to this metric were cross-sectionally associated
with the severity of PD as assessed by the total score of
UPDRS-III, the general cognitive function as measured by the
MoCA score, and mood problems (ie, anxiety and depression
as assessed by the HAM-A and HAM-D rating scales,
respectively) in this cohort. Recent research efforts have
provided evidence that gait and other movement disorders in
PD, including freezing of gait (FOG), are not only motor issues,
but arise in part because of deficits in cognitive functioning
[36-40]. For example, Amboni and colleagues [39] observed
that compared to those without FOG, participants with PD and
FOG had significantly poorer performance of cognitive tasks,
including frontal assessment battery, verbal fluency, and the
10-point clock test [39]. Therefore, the assessment of dual-task
gait in PD promises to help the characterization of
cognitive-motor functioning as it relates to gait and mobility in
this population.

This study demonstrated the feasibility of using a smartphone
app for gait assessment in PD, as well as the validity of
app-derived gait metrics within this population. Several
participants in this study had mild-to-moderate cognitive
impairment as assessed by the MoCA (the mean score was 22)
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and all of the participants successfully completed the test without
any reported difficulties. Future development and testing is
nevertheless needed to optimize the design of the app for use
in patients with PD that have more severe cognitive impairment,
as well as for those with other comorbidities (eg, diabetes
mellitus, cardiovascular disease, chronic pain), and those with
limited vision, hearing loss, tremor, or other issues that may
hinder the ability to interact with the smartphone. In this study,
the association between gait metrics and functional
characteristics was assessed cross-sectionally, and gait metrics
were only assessed in person within the clinical setting. Future
work is thus warranted to establish the usefulness of regular,
smartphone-based gait assessments captured from remote

settings (ie, patient homes). Work focused on remote assessment
is of particular importance during the current COVID-19
pandemic as it promises to help maintain quality of care while
reducing the spread of infectious disease. The usefulness of the
app is also likely to be further optimized by validating other
clinically meaningful metrics of gait (eg, gait speed and the
asymmetry of gait); characterizing gait during turning [41];
detecting FOG, festination, or other movement abnormalities
that may occur during walking; enabling the passive monitoring
of gait throughout the day; and implementing other types of
cognitive tasks (eg, auditory wording task [42]) into the
dual-task walking paradigm.
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