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Abstract

Background: There is increasing interest in reusing person-generated wearable device data for research purposes, which raises
concerns about data quality. However, the amount of literature on data quality challenges, specifically those for person-generated
wearable device data, is sparse.

Objective: This study aims to systematically review the literature on factors affecting the quality of person-generated wearable
device data and their associated intrinsic data quality challenges for research.

Methods: The literature was searched in the PubMed, Association for Computing Machinery, Institute of Electrical and
Electronics Engineers, and Google Scholar databases by using search terms related to wearable devices and data quality. By using
PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, studies were reviewed to identify
factors affecting the quality of wearable device data. Studies were eligible if they included content on the data quality of wearable
devices, such as fitness trackers and sleep monitors. Both research-grade and consumer-grade wearable devices were included
in the review. Relevant content was annotated and iteratively categorized into semantically similar factors until a consensus was
reached. If any data quality challenges were mentioned in the study, those contents were extracted and categorized as well.

Results: A total of 19 papers were included in this review. We identified three high-level factors that affect data quality—device-
and technical-related factors, user-related factors, and data governance-related factors. Device- and technical-related factors
include problems with hardware, software, and the connectivity of the device; user-related factors include device nonwear and
user error; and data governance-related factors include a lack of standardization. The identified factors can potentially lead to
intrinsic data quality challenges, such as incomplete, incorrect, and heterogeneous data. Although missing and incorrect data are
widely known data quality challenges for wearable devices, the heterogeneity of data is another aspect of data quality that should
be considered for wearable devices. Heterogeneity in wearable device data exists at three levels: heterogeneity in data generated
by a single person using a single device (within-person heterogeneity); heterogeneity in data generated by multiple people who
use the same brand, model, and version of a device (between-person heterogeneity); and heterogeneity in data generated from
multiple people using different devices (between-person heterogeneity), which would apply especially to data collected under a
bring-your-own-device policy.

Conclusions: Our study identifies potential intrinsic data quality challenges that could occur when analyzing wearable device
data for research and three major contributing factors for these challenges. As poor data quality can compromise the reliability
and accuracy of research results, further investigation is needed on how to address the data quality challenges of wearable devices.
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Introduction

Emerging Biomedical Data—Person-Generated
Wearable Device Data
With the recent movement toward people (patient)-centered
care and the widespread routine use of devices/technologies,
person-generated health data (PGHD) have emerged as a
promising data source for biomedical research [1]. A survey
conducted in 2019 reported that 38% of Americans currently
use technologies such as mobile apps or wearables to track their
health data, and 28% have used them in the past [2]. Examples
of PGHD include data collected passively through sensors, such
as step count, heart rate, and sleep quality; data entered directly
by people, such as diet, stress levels, and quality of life; and
social or financial information that is not specifically health
related but could potentially provide health-related insights [3].
Among the different PGHD, data generated through wearable
devices are unique in that they are passively, continuously, and
objectively collected in free-living conditions; such data are
different from those generated through other technologies that
require the manual input of data (eg, dietary tracking mobile
apps) [4-7]. Therefore, person-generated wearable device data
are becoming a valuable resource for biomedical researchers to
provide a more comprehensive picture of the health of
individuals and populations.

Use of Person-Generated Wearable Device Data for
Research Purposes
There are two ways to use wearable device data for research
purposes. Typically, researchers collect wearable device data
for a specific research by recruiting eligible participants and
asking them to use the device for a certain period. For example,
Lim et al [8] issued Fitbit devices to 233 participants and asked
them to use the device for 5 days. Collecting data with this
traditional method can be beneficial in that people can collect
data that fits their needs, but it can be costly to recruit and follow
a large number of participants for an extended period.

Researchers can also reuse existing data, which is a timely and
cost-effective way to conduct research. Previous studies have
used existing wearable device data collected for other research
studies for their own research [8,9]. For example, McDonald et
al [9] used a data set collected as part of the
SingHEART/Biobank study to investigate the association
between sleep and body mass index. In addition, Cheung et al
[10] used data collected from a study by Burg et al [11] to
develop a novel methodology to reduce the dimension of data
while maintaining core information.

More recently, real-world wearable device data collected
through routine use of devices have been reused for research
purposes [7,12,13]. For example, the All of Us research
program, which is the precision medicine initiative launched
by the National Institutes of Health (NIH), initiated a Fitbit
Bring-Your-Own-Device project, which allows participants to
connect their Fitbit account to share data, such as physical

activity, sleep, and heart rate [14]. In addition, multiple studies
have shown the potential of routinely collected wearable device
data for use in large-scale longitudinal multinational studies.
Menai et al [15] used Withings Pulse activity tracker data of
9238 adults from 37 countries collected from 2009 to 2013 to
examine the association between step counts and blood pressure.
Kim et al [16] used data of more than 50,000 individuals from
185 countries collected over a month, with nearly 17 million
measurements generated by Nokia Health Wireless blood
pressure monitors to characterize blood pressure variability.
These studies underscore the potential secondary uses of
person-generated wearable device data for generating health
insights from large real-world population that might not have
been possible using traditional methods of data collection.
Furthermore, the studies demonstrate how wearable device data
add value by expanding the scope of biomedical research that
can be conducted, which would not have been feasible if relying
on electronic health record (EHR) data alone.

Data Quality Challenges in the Use of
Person-Generated Wearable Device Data
Data used in research studies, even data originally collected to
support research, may not meet the ideal level of quality
[13,17,18]. For instance, data collected daily through consumer
wearables are meant to be used for routine use of devices rather
than for research. Therefore, although the quality of collected
data may be sufficient for an individual’s health management,
it may be insufficient for research purposes. Hicks et al [19]
presented the best practices for reusing large-scale consumer
wearable device data that were collected through routine use.
The study describes challenges with data quality, such as
missing data or inaccuracy of sensor data, as these data are
collected from individuals through their daily use of wearables
(not through a research study). Thus, as recommended for the
use of any data set, the study recommends assessing the quality
of wearable device data set before conducting research. Once
the research question and data set to be analyzed are identified,
it is important to assess its fitness-for-use to ensure that it would
produce valid analytical results that answer the research question
[19].

There have been previous efforts to understand the data quality
challenges for wearable device data. For example, Codella et
al [7] identified the data quality dimensions that influence the
analysis of PGHD. The concerns and expectations of PGHD
stakeholders were identified through a literature review and
mapped to the relevant data quality dimensions of an established
framework [7]. However, the review does not systematically
provide the steps of how they screened and selected the literature
and what information they extracted within the studies. Another
systematic review by Abdolkhani et al [20] identified factors
influencing the quality of medical wearable device data and
their corresponding dimensions from the literature. However,
this review did not include literature on data from nonmedically
approved wearables (eg, consumer wearable devices). As such,
there is a research gap in understanding data quality challenges
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that arise from consumer wearables, specifically those from
passively collected data, as there might be unique quality
challenges associated with these types of data.

Objectives
While assessing data quality, having a full understanding of the
types of data quality challenges and the factors associated with
them can be useful in implementing additional analytic
procedures to ameliorate potential negative impacts or false
conclusions. However, one of the barriers is that there is a lack
of studies investigating the data quality challenges of wearable
device data specifically for research purposes. Therefore, this
study aims to (1) identify factors influencing the quality of
person-generated wearable device data and potential intrinsic
data quality challenges (data quality in its own right or, in other
words, data quality challenges inherent to the data itself) for
research, and (2) discuss implications for the appropriate use
of person-generated wearable device data for research purposes
based on the findings [21].

Methods

Data Sources and Search Strategy
We performed a rapid review following the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-analyses)
guidelines. The literature search was conducted in four scholarly
databases (PubMed, Association for Computing Machinery
[ACM] Digital Library, Institute of Electrical and Electronics
Engineers [IEEE], and Google Scholar) in June 2019. In
PubMed, we used a combination of MeSH terms and keywords
related to wearable devices and data quality. Terms related to
mobile health were not searched because they include mobile
apps or telemedicine, although the scope of this review focused
specifically on passively collected data through wearable
devices. The search results were limited to studies published
within the past 5 years, studies conducted with human species
and studies written in English language. The search was limited
to 2014 onward because the characteristics of devices may
change with advances in technologies, and this may result in
changes in data quality challenges. Thus, the search was focused
on recent publications using the year with the largest increase
in the emergence of new consumer fitness trackers as a heuristic
cutoff for determining recent studies [12]. The publications
were sorted by best match, which is appropriate for searching
studies that meet the informational needs on a topic [22].

In the ACM Digital Library and IEEE Xplore Digital Library,
we used a query that combined search terms related to data
quality and wearable devices. The search results were limited
to studies published since 2014. To complement the search
results from the 3 scholarly databases, we performed an
additional literature search on Google Scholar. In total, 4
searches were conducted using different queries. The search
excluded patents and citations, examined studies published since
2014, and sorted the results by relevance. Although all of the
search results were reviewed for other scholarly databases, only
the first 100 results for each of the 4 queries in Google Scholar
were reviewed. To prevent the filter bubble effect, which
customizes search results based on the search history of users,
Google accounts were logged out when conducting the literature

search [23]. The full query used in each database can be found
in Table S1 in Multimedia Appendix 1.

Literature Selection
Inclusion criteria were as follows: (1) papers that contained
content on the data quality of wearable devices or sensor data;
(2) papers that demonstrated the scope of wearable devices,
including devices such as fitness trackers, sleep monitors,
continuous glucose monitors, and remote blood pressure
trackers; (3) papers on research-grade and consumer-grade
devices; and (4) not only peer-reviewed studies, but also
conference proceedings and book chapters to expand the search
space.

Although smartphones can passively collect health data, studies
that exclusively focused on smartphones were excluded, as they
are not worn on the body. In addition, as we were interested in
passively collected person-generated wearable device data being
used for research, studies were excluded if (1) the study was on
wearable device data that were generated by providers in a
clinical setting (eg, device being used for clinician or surgical
training), (2) the study was on wearable device data being used
for clinical care of patients, and (3) the study was on data that
were manually recorded (eg, food logging by user). Device
validation studies such as testing the accuracy, reliability, or
validity of the device were also excluded, as those studies were
about testing the accuracy of the device rather than conducting
analyses on data.

One reviewer (SC) screened the retrieved literature based on
the title and abstract. After filtering based on titles and abstracts,
the full text of the remaining studies was reviewed based on the
same selection criteria by two reviewers (SC and KN). The
reviewers discussed any discrepancies to reach a consensus on
the final set of studies. The literature selection process was
conducted using Covidence (Veritas Health Innovation), which
is a web-based systematic review production tool.

Data Extraction and Categorization
Overall, two reviewers (SC and KN) examined the papers to
extract sentences about the factors affecting data quality.
Although our focus was on wearable device data, sentences that
apply to both mobile app and wearable device data were
extracted as long as the content did not exclusively apply to
mobile app data. The reviewers extracted the sentences and
annotated the relevant factors. In addition, intrinsic data quality
challenges associated with those factors were extracted if any
were mentioned. Microsoft Excel was used to manage qualitative
data. Codes were assigned to phrases that indicated factors
influencing data quality by 1 reviewer (SC). Coded concepts
were reviewed, and semantically similar concepts were
consolidated into the same category. The categories were
iteratively refined to derive core categories. The categories were
then iteratively reviewed by domain experts (one data quality
expert [KN] and one wearable device expert [IE]) to refine and
validate the results. Domain experts commented on whether
they agreed with the categorization and names used for each
category. The discussion continued until a consensus among
the reviewers and domain experts was reached.
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Results

Literature Search and Selection Results
A total of 1290 publications were retrieved for screening.
Among the retrieved publications, 139 duplicates were removed,
leaving 1151 unique publications to be screened by title and

abstract. The screening of titles and abstracts resulted in 131
studies after removing 1020 publications that did not meet the
eligibility criteria. The full texts of the remaining 131
publications were reviewed. After removing 112 irrelevant
publications, 19 studies remained. The literature selection
process is depicted in Figure 1, and a summary of the included
studies can be found in Table S2 in Multimedia Appendix 1.

Figure 1. Flow diagram of the literature selection process. ACM: Association for Computing Machinery; IEEE: Institute of Electrical and Electronics
Engineers.

Data Extraction and Categorization Results
Some extracted sentences were specifically related to wearable
device data. For instance, sentences within a study by Wright
et al [24] describe the challenges associated with using consumer
fitness trackers in biomedical research:

The algorithms used in consumer physical activity
monitors to determine steps taken, distance traveled,
and energy expenditure are typically not shared with
researchers due to proprietary concerns.

On the other hand, there were sentences that could apply to both
wearable devices and mobile apps. For example, Bietz et al [25]
examined data quality challenges of routine use of devices data
and explicitly stated the challenges that researchers face:

Researchers also reported being concerned with the
kinds of data they may get from companies, including
the lack of standardization, potential problems with

proprietary algorithms, and that most of the
consumer-level health devices have not gone through
a validation process.

Not all concerns regarding wearable device data were extracted
from these studies. For example, Bietz et al [25] mentioned
selection bias, which was not extracted, as we believe that bias
is not an intrinsic data quality challenge but is a byproduct of
data quality and a universal challenge to research design:

A related concern is the potential bias in PGHD that
derives from who uses personal health devices and
who does not.

After 5 iterations of categorizing the factors influencing data
quality with domain experts, 3 broad categories emerged, which
are summarized in Textbox 1. The mappings between the factors
and the intrinsic data quality challenges are presented in Table
1.

JMIR Mhealth Uhealth 2021 | vol. 9 | iss. 3 | e20738 | p. 4https://mhealth.jmir.org/2021/3/e20738
(page number not for citation purposes)

Cho et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Textbox 1. Factors influencing data quality and the themes identified in selected literature.

Device- and technical-related factors

• Hardware issues [26-28]

• Malfunction [26,29-32]

• Quality of sensor [3,7,24,32-34]

• Sensor degradation over time [27]

• Device update makes older models outdated [24]

• Limited storage space [32]

• Software issues [24,25,27,29,34,35]

• Quality (accuracy) of algorithm [7,31,33]

• Proprietary algorithm or system [25,27,29,35]

• Wearable device companies change and update their algorithms [24]

• Software updates may change settings to default setting or affect data [34]

• Network and Bluetooth issues [29-31,34,36]

• Lost satellite connection [29,30,32,34,36]

• Delay and error in synchronization and data upload [29,30,34,36]

User-related factors

• User nonwear [7,24,26,30,33,34,36]

• Forget to wear [26,33]

• Nonwear during battery charging [7,24,30,34,36]

• User’s health condition prevents device use [30]

• Discomfort of wearing the device [7,24]

• Unsatisfied with the appearance of device [30]

• User’s lifestyle or not wearing for certain everyday activities [30]

• Concerns over privacy and security of data [30]

• Poor usability experience [30]

• User error [27,29-31,33,34,37]

• Device not synced by users [29]

• Poor calibration of the device [37]

• Quality of skin contact [34]

• Misplacement of device on the body [24,27,34]

Data governance-related factors

• Lack of standardization [3,7,25,33,34,38]

• No industry standards for data formats, range of values, and sample rates [34,38-40]

• Different devices use different algorithms for the same variable [3,7,38]

• Different type or placement of sensors on the body for the same variable [37]

• Different data definition for the same variable [7,33]
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Table 1. Mappings between factors and intrinsic data quality challenges.

Intrinsic DQ challengesFactors influencing DQa

HeterogeneityCorrectnessCompleteness

Device- and technical-related factors

—c✓✓bHardware issues [26,27]

✓✓—Software issues [24,25,27,29,34,35]

——✓Network and Bluetooth issues [29-31,34,36]

User-related factors

——✓User nonwear [7,24,26,30,33,34,36]

—✓✓User error [27,29-31,33,34,37]

Data governance-related factors

✓——Lack of standardization [3,7,25,33,34,38]

aDQ: data quality.
bThis indicates that the data quality challenge is associated with the factor according to the studies included in the review.
cNot available. This indicates that the data quality challenge was not particularly mentioned in studies as an associated challenge of the factor.

Factors Affecting the Quality of Person-Generated
Wearable Device Data

Device- and Technical-Related Factors
Device- and technical-related factors consist of issues related
to (1) hardware, (2) software, and (3) network and Bluetooth.
Issues related to hardware include sensor malfunction
[26,29-32], the quality of sensors [3,7,24,32-34], and sensor
degradation over time [27]. For instance, companies
continuously upgrade their devices, which means that older
models are outdated and may no longer be supported by the
company [24]. This may affect studies that are interested in
longitudinal data, as discontinued device support may lead to
incomplete data [24].

There are several issues with software or algorithms used to
interpret raw sensor data [24,25,27,29,34,35]. One major issue
is that consumer wearables use proprietary algorithms for their
devices [25,27,29,35]. Thus, it is difficult to know if or when
consumer wearable companies change and update their
algorithms [24]. The lack of transparency regarding the timing
and impact of software change can impact data consistency
between participants who have data from different periods and
also between data from the same participant collected
longitudinally [24].

Network and Bluetooth problems can also affect the data quality
of wearable devices. Lack of wireless signals or lost satellite
connections can cause errors and delays in capturing,
synchronizing, and uploading the data [29,30,34,36]. In addition,
the location tracking function might stop working when the user
is in a building with poor satellite connection, which could lead
to missing data problems [30].

User-Related Factors
A primary user-related factor is not wearing the device (nonwear
time) [7,24,26,30,33,34,36]. Missing data that occur from
nonwear is a major limitation to the accuracy of estimates
derived from wearables because the pattern of missingness in

these instances is often not at random (ie, missing not at
random), which has implications for inferences that can be made
based on these estimates [41,42]. Another user-related factor is
incorrect use by users. For instance, researchers conducting
time-sensitive studies should keep in mind that automatic time
zone updates may fail, and users may forget to manually update
or synchronize their time zone when traveling [29].

Data Governance-Related Factors
Data standard is an essential deliverable of data governance that
can not only affect the comparability between data systems but
can also influence the researcher’s ability to make reliable
inferences from data [43]. However, wearable device data, more
specifically consumer-grade wearables, are rarely standardized
to interoperate with clinical systems, as such devices are
developed for consumer use rather than research or clinical
practice [44]. Lack of standardization can cause significant
heterogeneity across data from different device brands (eg, Fitbit
vs Garmin) or different models within the same brand (eg, Fitbit
Charge 3 and Fitbit Inspire) and more broadly across individuals
and different clinical centers. As a result, it might be difficult
for researchers to integrate data sets and make a direct
comparison between the analysis results from different device
data [3,7,25,33].

Intrinsic Data Quality Challenges of Person-Generated
Wearable Device Data
One of the goals of this study was to identify potential data
quality challenges when reusing data from the routine use of
devices for research purposes. However, because of the lack of
literature on the reuse of wearable device data, data quality
challenges for research in general have been investigated. As a
result of the review, three intrinsic data quality challenges were
identified—completeness, correctness, and heterogeneity.
Missing data were indicated as challenges occurring because
of device malfunction, lost satellite connection or
synchronization error, users not wearing the device, and devices
unstably contacting the skin [7,26,30,34,36]. Incorrect data,
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which were more frequently stated as inaccurate data in studies,
was another potential data quality challenge [26,27,33,35]. Poor
sensor quality, the unknown limitations of proprietary
algorithms, or user errors such as incorrect device placement
can all contribute to incorrect data [26,33]. Another problem is
the potential heterogeneity across data sources, which can lead
to difficulty in intra- and intersubject comparisons [25,35,38].
This is because (1) companies do not always reveal whether or
when they update their device algorithms or whether or when
the users install the provided software updates, and (2) different
devices may use different algorithms or data definitions for the
same variable [25,35,38]. The focus of this study was on
intrinsic data quality challenges, which are challenges on the
data in its own right [21]. Thus, challenges extrinsic to data
such as data accessibility, security, and privacy were not
included.

Discussion

Principal Findings
Device- and technical-related, user-related, and data
governance-related factors were identified as factors that
influence the quality of wearable device data. These factors can
potentially affect 3 intrinsic data quality challenges:
completeness, correctness, and heterogeneity of data. Of note,
the factors identified in this review are inherent to the
characteristics of wearable device data as opposed to factors
that could occur while processing the data, such as factors in
extract, transform, and load (ETL) processes [45]. Researchers
conducting multicenter studies should keep in mind that
converting their wearable device data by using a common data
model may induce additional errors during ETL processes [46].

Factors associated with data quality problems were classified
into 3 main categories; however, the authors realized that the
identified factors were highly connected to each other, and thus,
the categorization could be subjective. For example, limited
battery life is a device-related feature, but as a low battery level
could make the user take off the device to charge the device, it
was classified as a user-related factor. In addition, the
proprietary algorithm of devices can be a data
governance-related factor as proprietary algorithms lead to
heterogeneity in multidevice data due to lack of data standards.
However, the proprietary algorithm of devices was classified
as a device-related factor because algorithms are part of the
device and can produce data heterogeneity in single-device data
as well. Despite the subjective nature of this work, three
researchers iteratively refined the categories until a consensus
was reached. As this is an early attempt to investigate data
quality challenges for wearable device data, the authors expect
this categorization to be refined in the future as researchers start
to apply this framework while assessing data quality.

Implications and Recommendations for Researchers

Summary of Recommendations for Researchers
Our study results indicate that a multitude of intrinsic data
quality challenges exist for person-generated wearable device
data, and we summarize the factors that underlie these
challenges. We report completeness, correctness, and
heterogeneity of data as the 3 primary concerns for researchers
looking to conduct research using data from wearable devices.
The implications and recommendations provided in this section
are derived from the authors’ domain expertise and are based
on existing literature both within and outside this review. A
summary of the recommendations is presented in Textbox 2.

Textbox 2. Summary of intrinsic data quality challenges and recommendations for researchers.

Completeness

• Report the definition of completeness used in research studies.

• Best practices on fitness-for-use measures for data completeness should be investigated.

Correctness

• Community effort to create a knowledge base of data quality rules is needed.

• Identify methods or external data sources that would help researchers retrospectively assess the plausibility of their data set.

Heterogeneity

• Data providers should collect metadata on which device brand, model, and software version the data are generated from.

• Researchers should check these metadata before conducting analyses and report it when publishing study results.

Data Completeness

Completeness is one of the major data quality challenges for
wearable device data, mainly because users do not wear the
device. Completeness is also a complex challenge, as various
considerations need to be made by researchers to assess it. First,
researchers need to determine how they would distinguish
between true inactivity and device nonwear. This is especially
the case for step count data, as missing data are unique in that
they could appear as null values (eg, because of error in the

device) or appear as zeros if the device is not worn. This is a
challenge, as the cause of zero values (eg, nonwear, sedentary
behavior, connectivity issue) is typically not documented,
especially if the device is routinely used in daily lives. Previous
studies have defined nonwear time with various thresholds for
inactivity (zero count of activity) periods ranging from 10 to
60 minutes [47,48]. As different definitions of nonwear time
may significantly change the total wear time per day and
analysis results, reporting what threshold was used would be
an important step for researchers [47].
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In addition, there are multiple measures to consider when
assessing data completeness among which one is valid day—a
day with sufficient data that can be kept for analyses [49]. Tang
et al [49] proposed three heuristic criteria for valid days: (1)
minimum step count (eg, a day is valid if the daily step count
is greater than 500), (2) the minimum count of hours with data
(eg, a day is valid if there are 10 hours of data each with at least
one step), and (3) 3-a-day (eg, a day is valid if there is data
within 3 periods of the day).

In the past, research-grade devices did not have the capacity to
collect data over time, but with the advent of newer devices that
can collect data longitudinally over several months and years,
concepts of valid week or valid month have been introduced.
Researchers should question, for example, how many valid days
per week or month is sufficient for their specific analysis;
whether valid days, weeks, or months should be consecutive
and for how long; or whether valid data should be regularly
occurring rather than having long-term gaps in between valid
data points. All these are fitness-for-use measures unique to
person-generated wearable device data, which means that
depending on the research question and data type involved, the
definitions for valid days, weeks, and months may differ or may
not be required. The large number of potential research questions
and different data types makes a one-size-fits-all approach
infeasible for data completeness and suggests the need to
investigate fitness-for-use measures that apply to
person-generated wearable device data. Furthermore, explicitly
stating the completeness definitions used in the analyses would
benefit future researchers in reproducing the work. As data
completeness is complex in nature, further work to assist the
assessment of data completeness would alleviate the burden on
researchers.

Data Correctness

Checking the correctness of data values is another quality-related
challenge, as it is impossible to retrospectively identify the

correct value. This is especially the case for data generated
through the routine use of wearable devices because it is unlikely
that a gold standard data set would exist. One approach to
circumvent this challenge might be to identify outliers that are
against common sense and rules for plausibility based on
published values in the literature. An example rule would be
that there should be no steps counted during sleep mode. The
fact that researchers are currently using ad hoc rules can lead
to inconsistencies and difficulty in replicating studies. Thus, a
community effort to create a knowledge base for data quality
rules would be beneficial to researchers because creating data
quality rules is time consuming and heavily dependent on
domain experts. Another indirect method to speculate data
correctness would be to assess the concordance of user input
data, such as age, gender, height, and weight, with another data
source such as the EHR. It is known that incorrect user input
while setting up the device may result in incorrect data values,
as there are variables calculated based on user input (eg, calorie
expenditure) [50]. If the demographic data recorded in the
wearable device and the EHR agree with each other, we can at
least be assured that the data values were calculated based on
a trustable user input. This is an important step for those who
are interested in using both wearable device data and EHR data
in their study.

Data Heterogeneity

Through this review, the authors found that heterogeneity of
data exists at three levels—single-person data (a data set
generated by a single person), single-device data (data set
generated by multiple people who use the same brand, model,
and version of device; eg, a data set consisting of data generated
from Fitbit Charge HR), and multidevice data (a data set
generated by multiple people who use diverse brands, models,
and versions of devices, eg, data set consisting of data generated
from Fitbit Charge HR, Fitbit Alta HR, Withings Steel HR
Sport, Apple Watch Series 3, etc). Figure 2 depicts the three
levels of data heterogeneity.

Figure 2. Data heterogeneity on three levels.

In single-person data, a change in algorithms over time may
produce within-person heterogeneity [24]. For single-device
data, there would be between-person heterogeneity, as data are

collected from multiple people at different periods, where
different versions of algorithms can be used across people
depending on the period of data collection [24]. Even if data
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are collected in the same period, heterogeneity could exist if
the software is updated at different time points across
individuals. In this setting, both between-person and
within-person heterogeneity can occur simultaneously. For
multidevice data, the heterogeneity increases even more because
of the different proprietary algorithms used for different devices.
There would be between-person heterogeneity across data from
individuals using different devices in addition to the
between-person heterogeneity across data from individuals using
the same device and within-person heterogeneity across data
from different time points within the same person. This would
especially be a concern for data sets collected under a
bring-your-own-device policy, as individuals would provide
data from different device brands, models, and different periods.
Thus, it is recommended that data providers collect metadata
on which device brand, model, and software version the data
are generated from, and researchers should check this metadata
before conducting their analyses. It would also be a good
practice to report these data when publishing study results so
that they could be compared with other studies [51,52].

Through the literature review process, we found that there is a
lack of studies that thoroughly investigate the data quality
challenges of person-generated wearable device data, especially
for research purposes. Although the current literature describes
the existence of data quality problems, it rarely elaborates on
how the data quality metrics were defined or how the data
quality problems of wearable device data were assessed. For
large-scale, routinely collected wearable device data that are
commonly used for biomedical research, further studies are
needed to deeply understand the data quality challenges for
wearable device data and provide guidance to researchers.

Limitations
One limitation of this study is that only one researcher went
through the process of screening the title and abstract of studies.
Therefore, the selection of literature could have been subjective
in the initial phase of screening, and there is the possibility that
some factors or challenges were not extracted because of
potential biases in selecting the literature. However, the reviewer

followed the systematic, a priori–defined selection criteria and
data extraction rules to ensure consistency and reproducibility
[53]. Although the initial screening of the literature was
performed by a single author, other activities such as full-text
screening, determining search queries, and categorizing
extracted data were conducted by multiple authors. Another
limitation is that although we excluded device validation studies
in our review, these studies may mention factors affecting data
quality for research. However, our full-text screening contained
a few device validation studies, and we did not find unique
information that was not captured from the final list of 19
studies.

Conclusions
The goals of this review were to (1) summarize the factors
associated with data quality reported in the literature with respect
to passive data collection methods using wearable devices, (2)
identify data quality challenges of wearable device data, and
(3) deduce implications on data quality challenges for using
data for research purposes. With this goal in mind, we identified
three categories—namely device- and technical-related,
user-related, and data governance-related factors—along with
the associated data quality problems mentioned in the
literature—namely completeness, correctness, and heterogeneity.
In the case of the secondary use of data, knowing the factors
may not directly help researchers, as most of the problems
cannot be retrospectively amended. However, the value of this
study is that it facilitates the understanding of the potential
causes of data quality challenges, which is a complex and
time-consuming process that requires thorough discussions
among domain experts, analysts, and researchers [45,54].
Moreover, it could guide the application of appropriate analytical
procedures to mitigate the negative impact on analytic results.
Our review provides some insight into potential data quality
problems, such as the incorrectness, incompleteness, and
heterogeneity of data. However, further work is required to gain
a deeper understanding of each challenge, to investigate if there
are any other existing challenges that have not been discovered
in the literature, and to provide guidance on data quality
assessments for person-generated wearable device data.
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