
Original Paper

Learning From Others Without Sacrificing Privacy: Simulation
Comparing Centralized and Federated Machine Learning on
Mobile Health Data

Jessica Chia Liu1, MA; Jack Goetz1, PhD; Srijan Sen2,3, MD, PhD; Ambuj Tewari1, PhD
1Department of Statistics, University of Michigan, Ann Arbor, MI, United States
2Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
3Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States

Corresponding Author:
Jessica Chia Liu, MA
Department of Statistics
University of Michigan
1085 South University Ave
Ann Arbor, MI, 48109
United States
Phone: 1 7346474820
Email: liujess@umich.edu

Abstract

Background: The use of wearables facilitates data collection at a previously unobtainable scale, enabling the construction of
complex predictive models with the potential to improve health. However, the highly personal nature of these data requires strong
privacy protection against data breaches and the use of data in a way that users do not intend. One method to protect user privacy
while taking advantage of sharing data across users is federated learning, a technique that allows a machine learning model to be
trained using data from all users while only storing a user’s data on that user’s device. By keeping data on users’devices, federated
learning protects users’ private data from data leaks and breaches on the researcher’s central server and provides users with more
control over how and when their data are used. However, there are few rigorous studies on the effectiveness of federated learning
in the mobile health (mHealth) domain.

Objective: We review federated learning and assess whether it can be useful in the mHealth field, especially for addressing
common mHealth challenges such as privacy concerns and user heterogeneity. The aims of this study are to describe federated
learning in an mHealth context, apply a simulation of federated learning to an mHealth data set, and compare the performance
of federated learning with the performance of other predictive models.

Methods: We applied a simulation of federated learning to predict the affective state of 15 subjects using physiological and
motion data collected from a chest-worn device for approximately 36 minutes. We compared the results from this federated model
with those from a centralized or server model and with the results from training individual models for each subject.

Results: In a 3-class classification problem using physiological and motion data to predict whether the subject was undertaking
a neutral, amusing, or stressful task, the federated model achieved 92.8% accuracy on average, the server model achieved 93.2%
accuracy on average, and the individual model achieved 90.2% accuracy on average.

Conclusions: Our findings support the potential for using federated learning in mHealth. The results showed that the federated
model performed better than a model trained separately on each individual and nearly as well as the server model. As federated
learning offers more privacy than a server model, it may be a valuable option for designing sensitive data collection methods.

(JMIR Mhealth Uhealth 2021;9(3):e23728) doi: 10.2196/23728
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Introduction

Mobile Health Data
The ubiquitous nature of wearables generates considerable
potential for data collection and analysis but comes with the
issue of protecting user privacy. Some important privacy
considerations are protecting patient confidentiality [1],
protecting against security breaches [2], and protecting against
researchers using user data in a way that the user did not intend
[3,4]. Individuals may be more willing to participate in studies
and disclose information if these concerns are alleviated [5,6].
Privacy breaches can occur when data servers are compromised
but can also occur when data are shared for legitimate purposes
by well-intentioned members of the medical community [7]. In
this paper, we use privacy to denote the aspects related to
protecting the identity, personal information, and use of the data
of users.

Mobile health (mHealth) data are often related to the cognitive,
behavioral, and affective states of users, making such data highly
sensitive. Therefore, we want to ensure that individuals’
confidential health information is not leaked to others.
Wearables passively record a range of medically relevant data,
such as temperature, heart rate, and electrodermal activity
(EDA). As people may carry these items with them throughout
the day, this allows for high-frequency collection of data from
more people, who may have a greater variety of health
conditions, than ever before. Such rich data collection opens
up the possibility of using increasingly powerful but data hungry
machine learning methods in the analysis of these data [8].

In this paper, we apply predictive machine learning models on
the publicly available Wearable Stress and Affect Detection
(WESAD) data set published by Schmidt et al [9]. In particular,
we focus on models that can be trained by fitting a function,
potentially nonlinear, to the data using gradient descent and
variants thereof. Many of these models make few assumptions
about the structure of the underlying data-generating process.
To improve privacy, we propose leaving each user’s data on
their personal device and training our models using federated
learning. In federated learning, there is no single server that
contains all users’ information. Instead, model training occurs
on each individual’s device, and only model parameter updates
leave the user’s device. This allows for more user privacy by
maintaining data only on individual user devices. In addition,
as explained later, federated learning is still able to take

advantage of some shared information across individuals. Thus,
it can alleviate some of the concerns in analyzing mHealth data,
such as user heterogeneity and privacy preservation.

Federated Learning
Before further describing federated learning, we establish some
common terminology. The goal is to produce a model, often a
neural network, trained using data from many individuals. Each
individual will have a mobile device, which we call a user
device—in the networking literature, these are called
clients—and we will not make a distinction between an
individual and their user device. Each user device has its own
private data, and the data will never leave the user device.
Storing private data on each user device instead of uploading
them centrally is the source of improved privacy provided by
federated learning. We will also have a single device controlled
by the researchers that can communicate with each user device,
and we will call the former device the server. The server will
coordinate the training procedure and store a copy of the model
but will not have any private data uploaded onto it. The training
process is iterative, as is common for many machine learning
models. Each time the model parameters on the server change,
we will call that one server training round (or server training
iteration).

In Figure 1, we compare how a model is trained on a central
server (top) with how a model is trained using federated learning
(bottom). In federated learning, one server training round
comprises the following three distinct parts:

1. Broadcast: A small number of user devices will be selected
at random, and the current server model will be transmitted
to that cohort of user devices.

2. Local update: Each of these user devices will perform a
small amount of training of the model they received, using
the data from the user device.

3. Update aggregation: Each user device in this cohort will
then transmit a copy of their (locally updated) model
parameters to the server. The server then averages these
parameters and replaces the server model parameters with
these new averaged parameters.

The server then repeats this process by selecting a new cohort
of user devices for each server training round. Thus, the data
from every user device contribute to the training of the model.
Algorithm 1 (Figure 2) presents the pseudocode, and a full
algorithmic description is provided in Multimedia Appendix 1.
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Figure 1. Diagram comparing central and federated learning workflows. Color abstractly represents the private information content at different locations,
with red, blue, and green colors representing private information for different user devices. When training on a central server, user data are uploaded
onto the server once. In federated learning, model parameters are updated on the user device, producing updates that contain less private information
than the data themselves. The updates from many users are then aggregated, further mixing the contribution from each individual user.

Figure 2. Pseudocode for federated learning algorithm 1.
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The model trains using updates from the data on all user devices;
however, individual, private, data remain only with each user
device. This protects the privacy of users in several ways. Under
federated learning, private data are significantly less vulnerable
to the central server being compromised. The server never
contains any raw private data and generally contains only the
current model parameters. This protects users from being subject
to adverse consequences of failings in the server’s security.
Another benefit for users under federated learning is private
data cannot be reused for other purposes at a later date. It cannot
be shared or released either accidentally or in good faith but
with inadequate anonymization measures. Finally, federated
learning gives users the freedom to withdraw access to their
data—both past and future—at any time without relying on
guarantees from the researchers that any previously collected
data will be deleted.

Federated learning has been successfully applied in complex
real-world applications, most notably in training the next-word
prediction model for Google’s Keyboard [10]. We refer
interested readers to excellent surveys of federated learning
[11-13] and federated learning software and data sets [13].

Previous Work
There has been substantial research on privacy in mHealth and
mood prediction using machine learning. Protecting the data of
individual users stored in mHealth apps is important because
the apps contain personal information about the user,
information used to make treatment decisions, and information
that could be misused for financial gain, among other concerns
[4]. Users’ willingness to disclose personal information in
mobile data varies according to their demographics and personal
characteristics [14-16]. Concerns about privacy vary among
different age groups; for example, some older people are less
willing to use mHealth services [6,14] and are more likely to
cite privacy concerns [6]. As such, it is important to consider
the target population when considering the amount of privacy
guarantee needed. Increased privacy concerns about health
information technologies reduce patients’ willingness to share
information and reduce their positive attitudes toward the
technologies [14,17]. In the same vein, reducing privacy
concerns makes patients more comfortable in sharing their health
information [5,17]. Sometimes, individuals are willing to give
up some privacy if they consider mHealth technology as
beneficial; however, this depends on the sensitivity of the
information they are providing [18]. Due to these privacy
concerns, there are many innovations for increasing patient trust
and privacy protection [19].

Many researchers have used machine learning methods,
including neural networks, random forests, and support vector
machines, to predict outcomes such as depression, mood, and
stress using mobile data [20-26]. Various physiological and
behavioral features help predict these outcomes, such as skin
temperature, EDA, 3-axis accelerometer data, mobility, sleep,
and self-reported histories [20-23,27,28]. Detecting aberrations
in some of these measures can help identify early signs of mental
illness [16].

Personalization techniques in machine learning allow parts of
a model to be specific to each user while other parts are shared

between users, allowing both the sharing of data to estimate
certain parameters and fitting to unmeasured covariates of each
individual. To an extent, both unique traits among different
individuals and commonalities across users are helpful in
prediction. Some studies have taken advantage of this and
grouped users based on common traits, finding that this
improved mood prediction accuracy [8,24,29]. In the same vein,
accounting for individual user differences is valuable in
prediction using machine learning [8]. There is growing
recognition within the mHealth literature [30] that there are
trade-offs between individual and centrally trained models and
that often there are reasons to make them work in tandem.

In the Methods section, we describe federated learning in the
context of mHealth by addressing some of the issues raised in
the mHealth literature. Specifically, we discuss the application
of federated learning using neural networks to make predictions
from mHealth data. We address practical considerations for
researchers who consider using federated learning for their
study. We then evaluate the performance of federated learning
on an mHealth data set to predict subjects’ affective states.

Methods

Federated Learning in mHealth
Federated learning is a nascent field within machine learning
[31], which arose, at least partially, in response to the
opportunities and difficulties presented by personal devices that
can record information and perform computation [11]. As such,
many practical challenges in mHealth, such as privacy [32,33],
user heterogeneity [34], user hardware constraints [35,36], and
even incentivizing voluntary participation [37], are already
being studied by the machine learning community. The medical
science community has also proposed ways to share information
while preserving privacy, such as developing models in a
distributed manner [38,39], using a federated patient hashing
framework for similar patient matching [40], and using
collaborative privacy-preserving training to detect protected
health information in text [41]. A recent paper describes how
federated learning can be useful to various stakeholders in the
mHealth field [42].

Federated learning provides a middle ground between extremes
in privacy and data utilization. One extreme is collecting data
centrally on the server and performing all analyses and training
there. The other extreme is individual training, in which each
user device trains a completely separate model on its own data.

In centralized learning, we take all individual users’ raw data
and store them in one location. This unlimited access gives
researchers the most flexibility when analyzing the data—clearly
any analysis that can be performed with limited data access can
be performed with unlimited data access—and the best chance
of extracting useful insights from the data. However, it is likely
that some individuals are reluctant to have all of their raw data
stored in a central location, as the central location could be
hacked or because individuals feel that their data are too
sensitive to be released. A model trained using federated
learning is useful because it is trained without putting all
individuals’ raw data together in one place. Not only does this
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help alleviate concerns about data privacy, but it can also help
potential subjects be more willing to engage in studies, as their
raw data will not be sent to a foreign central location. As we
show in our case study, a model trained in a federated way
performs almost as well as a centrally trained model. We refer
to the former as the federated model and the latter as the server
model.

In individual training, each user device trains a separate model
using only their own data; therefore, no information, besides
potentially their final model, leaves the user device. We refer
to this as the individual model. This provides a very high level
of privacy. However, it prevents information sharing across
users during model training. Federated learning takes advantage
of the information shared across users, which can be especially
useful when analyzing health care data. Each person’s
characteristics and health care need personalization; however,
there is also a lot of useful information that can be shared across
people, as every person’s distribution is not entirely different.
In training, the algorithm can learn from similar users and apply
this knowledge when predicting another user’s outcome. It is
significantly easier to use a federated model to make predictions
for a new patient because there is a single model that is trained
using data from many people, and we do not need previous data
from the new patient. In this way, the federated model can do
better than the individual model. Thus, federated learning can
help improve the prediction accuracy while preserving privacy.

Practical Considerations for Using Federated Learning
The decision to use federated learning must be made when
designing the study so that one leaves the data on the user
devices and trains the model using federated learning. If data
have already been collected from each user device and stored
together on a server, privacy has been violated, and we cannot
use federated learning to retroactively make the experiment
privacy preserving. A small burden might need to be placed on
user devices to use federated learning. To minimize disruptive
usage of user device bandwidth and compute resources, the
local update on the user device should take place while the user
device is connected to a nonmetered internet such as Wi-Fi, and
the device should be idle and plugged into a charger. To avoid
inducing bias in the training process by the overuse or underuse
of certain user devices because of their passive adherence to
these restrictions, we may need to request that user devices be
available for local training during certain times of the day. The
structuring of these times should be considered during the
experimental design phase. In addition, the server should follow
certain protocols to minimize the privacy loss. The model
updates may contain some information about the data on the
user device; however, the privacy loss from these updates can
be mitigated by not storing or viewing any locally updated
parameters during each server training round. Similarly,
information about when each user device participated in the
training should also not be stored.

Although concerns about user privacy deter users from sharing
health information, the perceived effectiveness of information
security reduces these concerns [5,17]. However, federated
learning is not the only tool for privacy, and it does not alone
provide perfect privacy. Depending on the privacy requirements

of the study, federated learning may or may not be the best
method to use. We provide a few examples to illustrate cases
where federated learning may not be the correct method.

• Low privacy: If a doctor is collecting data from his or her
patients and the patients completely trust their doctor and
the security of their server, then there is no need to collect
data using federated learning—the doctor can simply take
all of his or her patients’ raw data. However, the more
assured patients are about their information security, the
more willing they are to disclose information and the higher
their perceived quality of care [17].

• Verifiable privacy: If patients completely distrust the
researcher, they may insist on formal guarantees of privacy.
This could manifest itself as requiring privacy protection
from an honest-but-curious server, wherein the server will
attempt to learn anything it can from the information it
receives. Under such a requirement, we cannot simply
transmit model parameters back to the server, as an
individual’s model parameters may reveal information about
the user. It requires significant technical expertise and
engineering effort to implement federated learning under
such a strong privacy requirement [43], which may be
beyond the resources available in a clinical trial.

• Privacy under model access: Even if no user device data
are transmitted to the server, it may be possible to infer
information about the data used to train the model, given
sufficient access to the model itself, including the
reconstruction of specific data points used to train the model
[44]. Protection against such attacks is particularly
important if the model will be made available to those
beyond trusted researchers; in the most extreme cases,
researchers themselves may not be trusted. Federated
learning provides no guarantees of protection against such
attacks; complementary forms of privacy protection, such
as differential privacy [45], may be required.

Federated learning is not a silver bullet against privacy loss,
and it is not a black-box tool that can be simply tacked onto an
existing study. However, when properly integrated into the
study design, federated learning can significantly reduce the
loss in users’ privacy while incurring only a small reduction in
model accuracy.

Evaluation of Federated Learning on mHealth Data
To assess the practicality of using federated learning on mHealth
data, we compared its predictive performance with that of other
predictive machine learning models. We used the WESAD data
set for this purpose [9]. We had a 3-class classification problem
using physiological and motion data to predict whether each
subject was, at the time, performing a task designed to elicit a
neutral, stressed, or amused affective state.

We used the WESAD data set because it is publicly available
and thus easily accessible by other interested researchers, and
it is in the University of California, Irvine, Machine Learning
Repository as a data set that measures stress in users using
wearables. The data were collected from 15 subjects and
contained physiological and motion data measured
simultaneously by a wrist device and a chest device during
specific tasks designed to capture 3 different affective states:
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neutral, stress, and amusement. There was approximately 36
minutes of data for each subject. Using 30-second windows for
all 15 subjects, 1087 windows were generated in total. Of these
windows, 53.45% (581/1087) were collected during the baseline
task, 29.99% (326/1087) during the task designed to elicit stress,
and 16.56% (180/1087) during the task designed to elicit
amusement.

The authors of the data set found that using physiological and
motion data from the chest-worn device was more informative
than using physiological and motion data from the wrist-worn
device in the 3-class classification problem [9]. The chest-worn
and wrist-worn devices differed slightly in the modalities they
measured. Thus, we restricted our analysis to the data collected
using the chest-worn device. These include electrocardiogram,
EDA, electromyogram, respiration, body temperature, and 3-axis
acceleration (x-axis, y-axis, and z-axis) measurements collected
at 700 Hz. For additional information, we refer interested readers
to the original WESAD paper [9].

The authors of the WESAD paper used feature extraction to
identify useful features for their predictive models, which often
included the mean, SD, minimum, and maximum of
measurements. For simplicity, we used these four summary
statistics, calculated over 30-second windows, of each of the 8
measurements for each subject as the features in our models.

The code to extract our features was derived from Matthew
Johnson’s GitHub repository [46]. The limitations of our
analysis include whether the subject was in the intended
affective state and the set of features used.

As we had access to each subject’s data, we were able to use a
server model. However, in many situations, researchers may
not want to access each subject’s raw data for privacy reasons.
As true federated learning would not store raw data on a central
server, we could not use a true federated model and instead use
simulated federated learning. Nonetheless, we saw this as a
feature and not a limitation. As we had the server data, we could
compare the accuracy between our simulated federated model
and the truth in the centralized data. If we had implemented true
federated learning, we would not be able to compare
performance with the centralized, or server, model, or compare
performance with the individual model. Much of published
federated learning research uses federated learning simulations
for experimental results [31,32,34,36].

Data Preprocessing
Of the 15 participants, 12 were male and the remaining 3 were
female. Table 1 shows the demographics of the subjects in the
WESAD study. Table 2 shows the summary statistics of some
of the features used. The full table of summary statistics for the
features used is provided in Multimedia Appendix 1.

Table 1. Demographic characteristics of the participants in the study (N=15).

Value, mean (SD)Characteristic

27.5 (2.4)Age (years)

177.6 (6.7)Height (cm)

73.1 (10.3)Weight (kg)

Table 2. Summary statistics of a subset of features.

Participants, third quartileParticipants, mean (SD)Participants, medianParticipants, first quartileFeature

6.34.6 (3.4)3.72.0Mean EDAa

1.5E−031.1E−03 (7.8E−04)1.1E−037.2E−04Mean ECGb

−2.5E−03−3.0E−03 (9.2E−04)−3.0E−03−3.5E−03Mean EMGc

0.135.4E−02 (2.0E−01)0.05−0.02Mean respiration

3534 (1.3)3434Mean temperature

0.908.0E−01 (1.3E−01)0.860.73Mean ACC_Xd

0.02−3.1E−02 (1.0E−01)−0.02−0.06Mean ACC_Ye

−0.17−3.5E−01 (2.6E−01)−0.31−0.54Mean ACC_Zf

aEDA: electrodermal activity.
bECG: electrocardiogram.
cEMG: electromyogram.
dACC_X: 3-axis acceleration (x-axis).
eACC_Y: 3-axis acceleration (y-axis).
fACC_Z: 3-axis acceleration (z-axis).
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Neural Network Architecture
We tuned the hyperparameters for the individual, federated, and
server models separately. We used 3-fold cross-validation to
jointly tune the number of epochs and learning rate for the
individual and server models. For the federated model, because
it involves more hyperparameters, we jointly tuned the number
of epochs, learning rate, number of clients sampled per round,
number of local updates per round, and step size. The training
set consisted of the first two-thirds of the data from each task
for each user. The test set consisted of the remaining third of
the data from each task for each user. Within each training set,
one-third of the training data were used for validation, that is,
to tune the hyperparameters.

Our neural networks had 1 dense input layer with 12 hidden
units, followed by a dense layer with 10 hidden units, and then
followed by a dense layer with 8 hidden units. These layers
used the leaky rectified linear unit (leaky ReLU) activation
function with a slope of 0.01 where the x-axis is negative. The
output layer was a dense layer with 3 hidden nodes and used a
softmax activation with categorical cross-entropy loss. We used
Adam as the optimizer. We standardized our training data and
applied that same standardization to our test set. By privately
calculating the mean and SD, standardization can preserve
privacy [47]. Our code, which uses Python TensorFlow, and

the best hyperparameters chosen by our cross-validation process
are available on the authors’ GitHub repository [48]. The
transformed data are available on GitHub and in Multimedia
Appendix 2 [9].

We tested augmentations in the architecture to allow for model
personalization. The simplest example of adding personalization
to a model is a fixed effects model for linear regression, where
each user is given a user-specific intercept, and the other
parameters are estimated jointly. This is mathematically
equivalent to augmenting each data point by adding a single
covariate, where the covariate’s value is the same for all data
points from the user, and the value is learned by the
model-fitting process. We add personalization to our neural
network in a similar way, in which we augment each data point
by adding a user embedding, with u extra covariates that are
the same for all data from that user and learned by the
model-fitting process (Figure 3). Note that if we solely use user
embeddings, then each prediction for the same user would be
exactly the same, and the best possible prediction would be the
user mean for all data points. This is a very simple example of
collaborative personalization [49,50]; in the same way fixed
effects models can be extended, there are many extensions of
collaborative personalization. However, this simple method is
sufficient for our study.

Figure 3. Comparison between the architecture of nonpersonalized and personalized versions of our models. The green blocks represent trained model
parameters, and the blue blocks represent the input covariates. Note the user ID is removed from the covariates once it is used to attach the correct
parameters, which represent that user’s embedding.

User embeddings often encode unmeasured user-specific
covariates, meaning that access to user embeddings from a
trained model has the potential to expose information about that
user. However, a small change in the federated learning protocol
can prevent such privacy loss. As user embeddings are
user-specific and only updated by training with the user’s data,
there is no need to transmit gradients for updating any user
embeddings to the server. Thus, each person’s user embedding
may be kept only on that user’s device, preventing the server
from using that embedding to learn private information about
that user.

To choose the dimension of the user embedding for the
personalized federated and personalized server models, we used
3-fold cross-validation, as described earlier, with 1D, 2D, and
3D user embeddings. We used the same number of dimensions
for both personalized models each time. Using a 2D user
embedding achieved the highest accuracy on the validation set
for the personalized server model. As such, we used 2D user
embeddings in our final personalized federated and personalized
server models.
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Results

In this section, we present the results for evaluating federated
learning on the WESAD data set and compare them with the
performance of a server model and an individual model. We
include results of personalized federated and server models as
well as nonpersonalized federated and server models.

There is inherent variation each time we run a neural network
because the initial weights are randomized, and there is

randomness in stochastic gradient descent as the neural network
tries to find the local minimum. Further, there is variation each
time we run a federated model because federated learning takes
a random sample of user devices per round of training. As such,
we ran each of our models 15 times, using different seed settings
each time. We report the median and mean accuracy over 15
tests in Table 3. The distribution of the results over 15 tests and
graphs of the average prediction accuracy after each epoch of
training of the neural network are presented in Multimedia
Appendix 1.

Table 3. Median and mean accuracy of each model over 15 tests.

Accuracy, mean (SD)Accuracy, medianModel

0.932 (0.019)0.929Personalized server

0.888 (0.028)0.897Server

0.928 (0.018)0.929Personalized federated

0.859 (0.021)0.853Federated

0.902 (0.021)0.899Individual

The personalized server model achieved the highest accuracy.
The personalized federated model came in second, performing
nearly as well as the personalized server model. Thus, the
personalized server model and the personalized federated model
beat their nonpersonalized counterparts.

The individual model outperformed both the nonpersonalized
server and nonpersonalized federated models. The individual
model is trained separately on each user, whereas the server
model takes the data of all individuals at once and cannot adjust
for each user. For comparison, a model that always predicts the
majority class would attain 53% accuracy on the data set.

These results provide evidence that using personalization, which
takes into account individual differences, helped improve the
prediction accuracy of the models. This is reasonable for the
WESAD data set, considering that each person has varying
baseline physiological measurements.

Discussion

Principal Findings
This paper discusses the advantages and challenges of using
federated learning as a predictive model in mHealth data
collection and demonstrates an empirical example in which
federated learning could have been effective. Furthermore, it
shows empirical evidence that a federated model can make
accurate predictions, is compatible with personalization, and
has the added privacy advantage of not storing raw data from
individual users. The personalized server model performed the
best on the chosen data set, followed closely by the personalized
federated model. As a federated model offers more privacy for
users than a server model, there is evidence to suggest that
federated learning may be a valuable option for collecting and
analyzing sensitive mHealth data.

Limitations
The decision of whether to use federated learning is based on
a combination of factors, including how much privacy is

required, how much data are available, and what resources are
available to implement the federated model. Each of the models
we tested has advantages and disadvantages. The server model
uses all raw data stored in one place for easy access and future
use. However, this poses the risk of breaching user privacy if
the server is compromised and the risk of the data being accessed
and used in a way that the users did not intend. An individual
model can maintain user privacy by keeping the data on the
user’s device and requires less engineering to implement than
a federated model. However, the individual model did not
perform as well as the personalized server model and
personalized federated model in our tests. Nonetheless, if a
researcher has a lot of data from each user, using an individual
model can be useful for prediction, and a federated model may
be unnecessary. The federated model provides more privacy
than a server model, as well as reasonably accurate predictions,
but it requires some design work before collecting data and
software engineering to implement. Moreover, although
federated learning provides an added degree of privacy, it does
not guarantee privacy, as explained in the Methods section. To
achieve stronger privacy guarantees in federated learning, a
substantial amount of software engineering is needed.

Federated learning is used for predictive modeling; therefore,
implementing it limits the research questions that can be
answered from the data. Researchers may often wish to pursue
research questions aside from prediction; in the future, it would
be interesting to extend federated learning to estimate treatment
effects. Other future work includes developing ways to handle
missing data for time series in the context of federated learning.
In addition, Python TensorFlow has recently released
capabilities to apply federated learning in their TensorFlow
Federated package, and it would be interesting to compare it
with our implementation.

Comparison With Previous Work
Previous research in the mHealth field has explored
privacy-preserving methods. Some of these studies do not
involve neural networks and federated learning [38-40]. One
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study applied a methodology similar to federated learning [41],
although it selectively updated parameters from individual users,
whereas we used multiple local updates between transmission
rounds. As federated learning started in the machine learning
community, there have been papers in the computer science and
engineering fields regarding collaborative privacy-preserving
learning tested on mHealth data [33,51]. Our work bridges the
mHealth and machine learning communities by discussing
practical considerations for mHealth researchers who want to
consider implementing federated learning. Furthermore, we
evaluate the effectiveness of federated learning on a publicly
available mHealth data set. Our code is available on GitHub to
encourage reproducibility of our results.

As mentioned earlier, many mHealth researchers have applied
machine learning methods to predict mood and stress
[20-23,25,26]. Research has shown that accounting for both
unique traits among different individuals and commonalities
across users is valuable in prediction [8,24,29]. We demonstrate
the use of federated learning as a privacy-preserving method
that also has these advantages.

Conclusions
This paper discusses federated learning and its importance in
the field of mHealth. For example, federated learning provides
added protection to preserve patient confidentiality and inhibits
the use of data in a way that the participants in a study did not
intend. As federated learning does not store raw data from
individual users on a central server, there is no possibility of a
central server being hacked and raw data leaked. This provides
more privacy to users when recording sensitive data.

Protecting user privacy is critical in mHealth. Having more
privacy protection measures in place may encourage people to
participate in a study and to be more willing to disclose
information that is useful for treatment and research. Federated
learning offers additional data privacy and can overcome some
common challenges in mHealth data by addressing user
heterogeneity and taking advantage of commonalities across
users. As such, federated learning has considerable potential to
help advance mHealth research.
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