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Abstract

Background: This study presents a new approach to measure and analyze the walking balance of humans by collecting motion
sensor data in a smartphone.

Objective: We aimed to develop a mobile health (mHealth) app that can measure the walking movements of human individuals
and analyze the differences in the walking movements of different individuals based on their health conditions. A smartphone’s
motion sensors were used to measure the walking movements and analyze the rotation matrix data by calculating the variation
of each xyz rotation, which shows the variables in walking-related movement data over time.

Methods: Data were collected from 3 participants, that is, 2 healthy individuals (1 female and 1 male) and 1 male with back
pain. The participant with back pain injured his back during strenuous exercise but he did not have any issues in walking. The
participants wore the smartphone in the middle of their waistline (as the center of gravity) while walking. They were instructed
to walk straight at their own pace in an indoor hallway of a building. The walked a distance of approximately 400 feet. They
walked for 2-3 minutes in a straight line and then returned to the starting location. A rotation vector in the smartphone, calculated
by the rotation matrix, was used to measure the pitch, roll, and yaw angles of the human body while walking. Each xyz-rotation
vector datum was recalculated to find the variation in each participant’s walking movement.

Results: The male participant with back pain showed a diminished level of walking balance with a wider range of xyz-axis
variations in the rotations compared to those of the healthy participants. The standard deviation in the xyz-axis of the male
participant with back pain was larger than that of the healthy male participant. Moreover, the participant with back pain had the
widest combined range of right-to-left and forward-to-backward motions. The healthy male participant showed smaller standard
deviation while walking than the male participant with back pain and the female healthy participant, indicating that the healthy
male participant had a well-balanced walking movement. The walking movement of the female healthy participant showed
symmetry in the left-to-right (x-axis) and up-to-down (y-axis) motions in the x-y variations of rotation vectors, indicating that
she had lesser bias in gait than the others.

Conclusions: This study shows that our mHealth app based on smartphone sensors and rotation vectors can measure the variations
in the walking movements of different individuals. Further studies are needed to measure and compare walking movements by
age, gender, as well as types of health problems or disease. This app can help in finding differences in gait in people with diseases
that affect gait.

(JMIR Mhealth Uhealth 2021;9(3):e24194) doi: 10.2196/24194
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Introduction

Human balance is achieved and maintained by a complex set
of human sensorimotor and musculoskeletal systems that control
vision, proprioception, vestibular function, muscle contraction,
and others. Multiple factors such as psychological factors, injury,
or disease can affect these components [1]. Postural balance is
commonly used for measurement in healthy and pathological
participants and is used for diagnosing disorders related to the
nervous system [2], such as ataxia [3], cognitive deficits [4-6],
Parkinson disease [7,8], vision problems [9], Alzheimer [4],
and so on. Walking balance is also a good method for measuring
human postural balance, as it requires the coordinated use of
the visual, vestibular, and musculoskeletal systems [10].
Walking balance can become less stable and can fluctuate if an
individual has experienced a stroke [11] or a lower limb or back
injury [12] due to fragile biomechanical structures in the
sensorimotor and musculoskeletal systems that influence how
the human body moves while walking [13,14].

Mobile health (mHealth) supports methods that measure physical
activities [15] such as measuring human balance and stability
by using gravity, linear acceleration, and orientation [16,17].
Moreover, in previous mHealth research, smartphones have
been used to support the diagnosis of diseases related to human
balance, such as Parkinson disease [18]. However, those studies
did not fully utilize smartphone sensors even though
smartphones have multiple physical and software sensors. Those
studies have also not considered the previous steps even though
human steps affect the next step. Additionally, the x, y, and z
axes of the motion sensors should be analyzed to obtain a
detailed understanding of the human walking movement.

Our study introduces a new method to measure the walking
balance by using motion sensors in a smartphone to determine
the rotation vector. The rotation vector provides the pitch, roll,
and yaw angles in the smartphone. We can, therefore, measure
the pitch, roll, and yaw angles of the human body while walking
by using the smartphone worn around the body waistline. Data
were collected from 1 healthy female, 1 healthy male, and 1
male with back pain wearing the smartphone while walking.
The male experiencing back pain injured his back during
exercise but he did not have any issues walking. His back pain
was confirmed by his doctor’s note.

We developed an mHealth app to record and analyze the sensor
output in the smartphone while participants walk. Pitch, roll,
and yaw angles were extrapolated from the recorded sensor
data, and a model was created to compare the differences in the
walking balance among the participants. We used the ggplot2
graphics package in R programming language to create the
visualizations.

Methods

Implementation of the mHealth App
The mHealth app was developed to measure and record
rotational data in real time by using an Android smartphone’s
motion sensors. Figures 1-7 show the mHealth app in use to

gather the sensor data. The app was programmed for Android
mobile platforms with software development kits greater than
21 using Android Studio [19]. This research used the app on
the default settings of the Samsung Galaxy S8 [20] with Android
7.0 mobile operating system. The code is written in Java using
the Android application programming interface [21]. This app
uses the Android sensor framework to access sensor data as part
of the hardware package that consists of 3 classes and 1
interface. The classes are SensorManager, Sensor, and
SensorEvent. SensorManager accesses the device’s sensors,
Sensor obtains the list of available sensors, and SensorEvent
creates the sensor object that includes the raw sensor data. The
interface, SensorEventListener, receives notifications when a
sensor value or accuracy changes [22].

Sensors used in this app include the gyroscope, accelerometer,
gravity, and magnetic sensors. The gravity and magnetic sensors
are used to calculate the rotation matrix using the
getRotationMatrix method, which belongs to the SensorManager
class [23]. Raw sensor data visualizations are created using the
Androidplot library [24]. The collected sensor data are stored
in an SQLite database [25]. Two comma-separated value files
are created from the saved participant information and sensor
values. These files are saved on the device for further data
analysis. Figure 1 shows the main fragment in the mHealth app.
In the main fragment, the mHealth obtains the participant’s
status such as any pain (back, leg, head, etc), any medication
in the last 3 days, any problems walking, concussion experience,
gender, race/ethnicity, height, and weight. After touching the
“SUBMIT” button in the main fragment, the mHealth app
proceeds to the fragment shown in Figure 2. After selecting the
“START” button (Figure 2), mHealth changes the fragment to
Stop Fragment, as shown in Figure 3. Then, the participant
walks straight forward for 2-3 minutes and then returns to the
starting location. After the participant returns to the starting
location, the participant touches the “STOP” button, as shown
in Figure 3. The walking data are recorded between the time of
selecting the “START” button (Figure 2) and the time of
selecting the “STOP” button (Figure 3). After touching the
“STOP” button, an administrator opens the widget in the
mHealth app (Figure 4) to save the data by swiping from left
to right on the smartphone screen. The “Admin” button (Figure
4) is used to save the recorded walking data. When selecting
the “Admin” option (Figure 4), the mHealth app moves to the
Save Fragment. There is 1 checkbox (Figure 5) to confirm
whether the walking data are valid or not. The checkbox is for
indicating whether the test was invalidated by an interruption
or an unexpected event during recording. By selecting the
“SAVE” button (Figure 4), the data are saved to an SQLite
database and a comma-separated value file on the local disk.
The mHealth app has several functions to analyze the raw data
in real time. By selecting functions such as “Metrics,”
“Accelerometer,” and “Gyroscope” (Figure 4), the mHealth app
displays the current status of the raw data, as shown in Figure
6 and Figure 7. Figure 6 shows the current accelerometer,
gyroscope, and rotation matrix in real time. Figure 7 shows the
graph of the sensor data.
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Figure 1. Main fragment of the mobile health app.
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Figure 2. Start fragment of the mobile health app.

Figure 3. Stop fragment of the mobile health app.

JMIR Mhealth Uhealth 2021 | vol. 9 | iss. 3 | e24194 | p. 4https://mhealth.jmir.org/2021/3/e24194
(page number not for citation purposes)

Lee et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Menu widget.
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Figure 5. Confirm walk test.
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Figure 6. Sensor data matrix.
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Figure 7. Sensor data graph.

Data Collection
The mHealth app was tested with 3 participants. Two
participants were healthy (1 female and 1 male) and they did
not have any problems walking; these 2 participants were in
their twenties. The third participant with back pain was in his
thirties and he had little pain in his back; however, he had no
problem walking and we could not find any difference in his
walking compared to the other participants. During the
experiment, all the participants wore the smartphone in a pocket

of a waistband at the center of their body, as shown in Figure
8. The smartphone was placed on the waistline with its top
frontside facing the right side of the body. The participants were
instructed to walk straight at their own pace in an indoor hallway
of a building. They walked a distance of about 400 feet. They
walked for about 2-3 minutes in a straight line and then returned
to the starting location. The duration of the test time for each
participant was 4-5 minutes. They were allowed only a single
trial for the walking movement test.
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Figure 8. XYZ-axis orientations of the smartphone during the walking balance test. X-axis is the right (−) and left (+) motions of the participant. Y-axis
is the up (−) and down (+) motions of the participant. Z-axis is the forward (+) and backward (−) motions of the participant.

The smartphone stored the motion sensor data in the real-time
mHealth app on the phone. The app collected the sensor data
in 20 milliseconds. The sensor data such as accelerometer (x,
y, and z), gyroscope (x, y, and z), and rotation matrix (3×3)
were stored in an SQLite database and a comma-separated value
file. Data corresponding to the first 10 seconds and the last 10
seconds of each participant session were removed to account
for the press time of the start and stop button activation within
the mHealth app. Among the sensor data, the rotation matrix
was used to determine the walking balance. Because the rotation
matrices can represent the rotation of the origin frame into the
reference frame, the rotation matrix is commonly used to
measure posture balance [26-31]. The next section explains the
analysis method using the rotation matrix.

Data Analysis
Considering the differentiation in the balance control of the
participants while walking, the rotation vector data are the most
effective [32,33]. Therefore, the rotation vector was extrapolated
from the rotation matrix data recorded with the smartphone. In
the mHealth app, the xyz-axis rotation vectors of the middle of
the waistline were identified as the center of gravity of each
participant. The x-axis represents the body motion angle between
the right and left side movements of a participant. The y-axis
represents the body motion angle between the up and down
movements of a participant. The z-axis represents the body
motion angle between the forward and backward movements
of a participant (Figure 8). The xyz-axis rotation vector was
obtained from the rotation matrix. A rotation matrix is a matrix
that is used to perform a rotation in Euclidean space. The Euler’s
theorem on the axis of a three-dimensional rotation is formulated
as follows:

If R is a 3×3 orthogonal matrix (RTR = RRT = I) and R is proper
(det(R) = +1), then there is a nonzero vector “v” satisfying Rv
= v [34]. The rotation matrix data were collected using the
rotation sensor in the Android Open Source Project. Using the
rotation sensor, the mHealth app determined the rotation matrix
[34] like equation 1. The rotation matrix was as follows:

From the equation 2 rotation matrix (3×3), we extracted the
rotation vector x-axis (RX), y-axis (RY), and z-axis (RZ) by using
the following formula [35]:

Although each participant wore the smartphone at the same
location of his/her body, the sensors in the smartphone appeared
to be located with slightly different slopes. Therefore, we used
the difference of rotation between current time (t) and previous
time (t-1) for the data analysis:

For comparison across the participants, the difference in the
rotation vector values was plotted as 2D graphs using ggplot2
in R (Figures 9-11).
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Figure 9. X-Y rotation vector. F1: healthy female; M1: healthy male; M2: male with back pain.

Figure 10. X-Z rotation vector. F1: healthy female; M1: healthy male; M2: male with back pain.
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Figure 11. Y-Z rotation vector. F1: healthy female; M1: healthy male; M2: male with back pain.

Results

We collected constant motion data by using the sensors in the
smartphone. Thereafter, to understand constant motion changes
in the middle of the participants’ waistline (umbilicus) as the
center of gravity, the rotation vector values of the 3 participants
were extracted and compared. There were no differences in the
rotation matrix data of each participant. However, we found a
difference among the participants when applying the formula
(equation 4) into the data.

We calculated the variation in each step of the participants by
using the formula (equation 4) (Table 1). Figures 9-11 show
the illustrative rotation data, which were obtained using the
formula (equation 4) by 2 combined axes during the same time
period recorded by the smartphones from 2 healthy individuals
and 1 individual with back pain. Illustrative rotation x-axis data

show the right (−) to left (+) body motions on the x-axis.
Illustrative rotation y-axis data show the up (−) to down (+)
body motions on the y-axis. Illustrative rotation z-axis data
recorded the forward (+) to backward (−) body motions on the
z-axis. Healthy participants appeared to have narrower ranges
of right-to-left and up-and-down motions than the participant
with back pain who had the widest range of motion while
walking. The results showed that there were differences in the
body xyz-axis variations of rotation vector data between the
participant with back pain and the healthy participants. The
variation in the y-axis rotation of the participant with back pain
was slightly wider than that of the healthy participants.
Moreover, the participant with back pain appeared to have more
variations in xz-axis rotations than the healthy participants,
suggesting that he had a wider range of motion between right
and left and forward and backward movements while walking
compared to the healthy participants (Figures 9-11).
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Table 1. Statistical information of the variations in the rotation vector data.

SDVarianceMeanMinimumMaximumParticipant, rotation vector

Healthy male participant

0.00400–0.0250.025x-axis

0.00600–0.0650.039y-axis

0.00400–0.0790.034z-axis

Healthy female participant

0.2920.0850–1.7151.715x-axis

0.01700–0.210.202y-axis

0.1880.0360–1.4891.184z-axis

Male participant with back pain

0.1290.0170–1.4661.467x-axis

0.02100–0.5340.944y-axis

0.130.0170–1.4941.492z-axis

Discussion

Principal Results
In this study, we developed an mHealth app to measure the body
movements of 3 participants wearing the smartphone on their
waists while walking. The motion sensors of the smartphone
were used to measure the walking movements and to analyze
the rotation matrix data with the proposed method, which shows
the variables of walking over time. The difference in each
walking step of the 3 participants was compared using a formula
(equation 4). Table 1 shows the statistical information of the
walking movement data after applying the formula. The healthy
male participant had the smallest standard deviation (Table 1),
indicating that he had the most balanced walking movement.
The healthy female participant showed symmetrical walking
movement in the left-to-right (x-axis) and up-and-down (y-axis)
movements in the variations of the x-y axis rotation vector
(Figure 9), indicating that she had lesser bias in gait than the
other two participants. The x-axis standard deviation in the
healthy female participant was the highest because female hip
is bigger than male hip [36]. The standard deviation of y-axis
and z-axis of the participant with back pain was the highest
(Table 1), indicating that he had a wider movement than the
other two healthy participants. Thus, the participant with back
pain had a lesser balanced walking movement while walking
than the other participants. Our app showed that the participant
with little back pain has a wide range of movement during
walking. Specifically, this participant appeared to show more
variations in the right-to-left and forward-to-backward
movements.

Limitations
This study has several limitations. The mHealth app was tested
only in 3 participants. Nevertheless, the proposed mHealth app
can effectively capture differences in the postural control during
walking between healthy individuals and individuals with back
pain. Further, our mHealth app is not available currently for
observing the data in real time while walking. Therefore, we

will implement a program that will make it possible to observe
the data while walking.

Future Directions
In future research, we will conduct feasibility and efficacy
testing with large pools of individuals with reduced physical
mobility. For the tests, we are planning to collect walking data
from high school students because we believe that this younger
group is ideal for researching on walking data. This younger
sample is lesser affected by aging/diseases related to walking
than an older group. Further, high school students will be in
school for 2 or 3 years before graduation, which is a long period
for tracking their walking movements. After we collect enough
walking movement data, we will compare our findings with the
results from previous mHealth studies. In addition, any variable
that may affect postural balance during walking such as body
habitus (ie, slim vs obese) or level of daily physical activities
will be considered in data collection and analysis with various
sensors in smartphones. We will also consider evaluating the
impact of the app at the health system level by using outcomes
such as health care utilization and medication use. This study
is beneficial since it provides a useful method for medical
evaluation in rehabilitation and physical fitness and a means
for participants to maintain a state of well-being. This research
can be used to classify walking movements between people
who have walking-related diseases and normal people. This
classification can help in diagnosing their diseases. Thereafter,
we will research the classification of walking movements based
on diseases that affect walking.

Conclusions
Our study shows that mHealth and the walking rotation vector
can be used to define the body walking movements. Currently,
the most widely used assessments for measuring postural control
are laboratory-based such as the previous walking movement
research [12,13] and human balance research [2,3]. Along with
requiring specialized equipment, such assessments typically do
not provide real-time feedback. However, our proposed mHealth
app and analysis methods support home-based measurements.
The findings of this study support our mHealth app as a low-cost

JMIR Mhealth Uhealth 2021 | vol. 9 | iss. 3 | e24194 | p. 12https://mhealth.jmir.org/2021/3/e24194
(page number not for citation purposes)

Lee et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


and easy-to-use alternative with minimal equipment required that provides sensitive walking balance assessment [6].
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