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Abstract

Background: Major depressive disorder (MDD) is a common mental illness characterized by persistent sadness and a loss of
interest in activities. Using smartphones and wearable devices to monitor the mental condition of patients with MDD has been
examined in several studies. However, few studies have used passively collected data to monitor mood changes over time.

Objective: The aim of this study is to examine the feasibility of monitoring mood status and stability of patients with MDD
using machine learning models trained by passively collected data, including phone use data, sleep data, and step count data.

Methods: We constructed 950 data samples representing time spans during three consecutive Patient Health Questionnaire-9
assessments. Each data sample was labeled as Steady or Mood Swing, with subgroups Steady-remission, Steady-depressed, Mood
Swing-drastic, and Mood Swing-moderate based on patients’ Patient Health Questionnaire-9 scores from three visits. A total of
252 features were extracted, and 4 feature selection models were applied; 6 different combinations of types of data were
experimented with using 6 different machine learning models.

Results: A total of 334 participants with MDD were enrolled in this study. The highest average accuracy of classification
between Steady and Mood Swing was 76.67% (SD 8.47%) and that of recall was 90.44% (SD 6.93%), with features from all
types of data being used. Among the 6 combinations of types of data we experimented with, the overall best combination was
using call logs, sleep data, step count data, and heart rate data. The accuracies of predicting between Steady-remission and Mood
Swing-drastic, Steady-remission and Mood Swing-moderate, and Steady-depressed and Mood Swing-drastic were over 80%,
and the accuracy of predicting between Steady-depressed and Mood Swing-moderate and the overall Steady to Mood Swing
classification accuracy were over 75%. Comparing all 6 aforementioned combinations, we found that the overall prediction
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accuracies between Steady-remission and Mood Swing (drastic and moderate) are better than those between Steady-depressed
and Mood Swing (drastic and moderate).

Conclusions: Our proposed method could be used to monitor mood changes in patients with MDD with promising accuracy
by using passively collected data, which can be used as a reference by doctors for adjusting treatment plans or for warning patients
and their guardians of a relapse.

Trial Registration: Chinese Clinical Trial Registry ChiCTR1900021461; http://www.chictr.org.cn/showprojen.aspx?proj=36173

(JMIR Mhealth Uhealth 2021;9(3):e24365) doi: 10.2196/24365
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Introduction

Depression is a common mental illness characterized by
persistent sadness and a loss of interest in activities that people
normally enjoy, accompanied by an inability to carry out daily
activities for 14 days or longer [1]. The latest estimates from
the World Health Organization show that more than 300 million
people are now living with depression, and it has increased by
more than 18% between 2005 and 2015. Treatment of major
depressive disorder (MDD) usually spans a long period (no less
than 6 months). Receiving continuous and long-term
maintenance treatment could reduce or even prevent relapse. It
is essential for doctors to monitor patients’ condition and
symptoms to provide appropriate treatment. However, it is
impossible for doctors to track the patients’condition every day
as patients revisit their doctors twice a month in an ideal case.
Besides, it is not easy for patients to provide a precise
description of their conditions for the past several weeks;
sometimes, the answer could be as vague as an OK.

This study analyzed daily phone usage data, sleep data, and step
count data of patients with MDD and their self-evaluated mood
scores. According to a study on smartphone ownership across
countries, of the top 20 countries reported, an average of 73.45%
(SD 10.79%) of adults own a smartphone [2]. According to the
China Netcasting Services Association [3], the average time
people spend on mobile internet using their smartphones is
341.2 minutes per day in China. With the rapid evolution of
smartphone and wearable device technologies, many
internet-based mental health services have emerged. Many
researchers are focusing on using smartphone usage data to infer
mood [4-8]. Sleep and sports data collected by mobile sensors
have also been studied by researchers as an inference of mood
[9-13]. Jacobson et al [14] used movement and light data to
assess depression severity. Cho et al [15] predicted the mood
state of patients with MDD in the next 3 days using passively
collected data from smartphones. Merikangas et al [16]
examined the association among motor activity, energy, mood,
and sleep in adults with mental disorders. Cao et al [17] used
smartphone-based self-reports, parent evaluations, and passive
phone sensor data to monitor depressive symptoms of adolescent
patients with MDD. Canzian et al [18] investigated the
correlation between patterns of human mobility and emotional
states of depressive patients using GPS data collected from
smartphones.

When reviewing works on mental state monitoring and
predicting, we found that there are 2 major approaches: (1)
training a generic model using all data collected and (2) building
a personalized model for each patient. During data
preprocessing, we observed differences in phone usage routines
among patients. Owing to the nature of Patient Health
Questionnaire-9 (PHQ-9), which reflects a patient’s mental state
for the past week, there were limited data samples for each
patient to build a personalized model. To eliminate individual
differences between patients, we examined the correlation
between the change in phone usage routine, sleep data, and step
count and the change in the patient’s level of depression.

The main objective of this study is to examine the feasibility
and technical foundation of monitoring variations in depression
levels in patients with MDD during a period based on the
amount of variation in smartphone usage data, sleep data, and
step count data. We then analyzed different models trained by
data to determine which types of behaviors were most affected
by the change in their depression level.

Methods

Smartphone-Based Depression App Design
We designed an app called Mood Mirror to track and record
patients’ daily activities and mood (Figures 1 and 2). The goal
was to collect phone usage data and physical data passively
with minimal human action. Owing to the limitations of access
to app usage on the iOS platform, our Mood Mirror app only
supported the Android platform. The app requires users to wear
a wristband that we provided to collect sleep, heart rate, and
step count data.

The Mood Mirror app consists of 2 main parts: self-evaluation
of mood condition and data collection. The app sends a
notification to the user every day at 8 PM to use the Visual
Analog Scale (VAS) to evaluate their mood of the day on a
scale of −3 to 3, with −3 indicating sadness and 3 indicating
happiness (Figure 3). The app also provides multiple self-rating
tools such as PHQ-9 and Generalized Anxiety Disorder-7
(Figure 4). Users could use these tools to evaluate their mental
state anytime. Meanwhile, with users’ consents, the Mood
Mirror app runs in the background to collect phone usage data,
including call logs, text message logs, app usage logs, GPS, and
screen on and off status. These phone usage data would be
uploaded instantly to our server. In addition, the app is able to
connect with the wristband that is provided via Bluetooth. The
data collected by the wristband would first be stored locally and
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uploaded to our server when the user connects with the
wristband using the Mood Mirror app. The Mood Mirror app
also allows users to record their medication prescriptions and
side effects to keep track of their conditionsAll patients provided
written informed consent to participate in the study. Users are
able to track their mood variation history, sleep data, and step
count via the Mood Mirror app. The Mood Mirror app would
send notifications to remind users to keep recording their mood
if the app was not used for more than 3 days.

In this study, we selected Mi Band 2 (Xiaomi Corporation), a
top-selling wristband model that was sold to millions in China

at the time. According to the product description, the data
collected were calibrated in their research and development
laboratory, and their algorithms of sleep and sports have been
widely accepted.

To collect phone usage data that could reflect a subject’s real
daily routine, subjects were asked to install the Mood Mirror
app on their own phone. The app was tested on more than 20
different models for sale at the time from top-selling brands
such as HUAWEI, Xiaomi, and OPPO and had also been tested
on different Android operating systems for its compatibility.
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Figure 1. Home screen of the Mood Mirror app.
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Figure 2. Screenshot of the menu page.
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Figure 3. Screenshot of filling the Visual Analog Scale.

JMIR Mhealth Uhealth 2021 | vol. 9 | iss. 3 | e24365 | p. 6https://mhealth.jmir.org/2021/3/e24365
(page number not for citation purposes)

Bai et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Screenshot of filling Patient Health Questionnaire-9.

Study Design
This was a multisite, noninterventional prospective study. The
study was conducted at 4 psychiatric hospitals or units in general
hospitals in Beijing, China. The protocol was approved by the
Independent Medical of Ethics Committee Board of Beijing
Anding Hospital and the other 3 sites (ethical approval no.
2018-119-201917FS-2). All patients provided written informed
consents to participate in the study.

The study was designed to establish a correlation between
clinician rating scales, self-rating scales, and passive collected
phone usage measures for patients with depression. There were
4 types of data being collected:

1. Physician rating scales, including the Hamilton Depression
Rating Scale, were performed by psychiatrists at each visit.

2. Self-rating scales, including PHQ-9, were performed by
participants biweekly via the Mood Mirror app.
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3. Daily immediate mood was recorded by participants using
the VAS via the Mood Mirror app.

4. Phone usage data, including call logs, text message logs,
app usage logs, GPS, and screen on and off status, were
analyzed.

5. Wristband data, including sleep data, step count, and heart
rate, were analyzed.

The study lasted for 12 weeks, and all participants were asked
to check in with their doctors and complete the self-rating scales
at weeks 0, 2, 4, 8, and 12. There was no restriction to their
treatment.

All participants were explained about the study, the design of
the app, and the types of data being collected by it. Each
participant was then instructed to install the Mood Mirror app
on his or her personal smartphone and given a wristband.
Participants would connect the wristband to the app and allow
the app to gain access to certain data under the assistance of a
research assistant and complete self-rating scales.

During the follow-up visits, all participants were asked to record
their mood status daily and complete PHQ-9 biweekly via the
Mood Mirror app.

Participants
All participants were recruited from outpatient clinics at 4 sites
in Beijing from February 2019 to April 2020. Participants were
outpatients aged 18 to 60 years and had been diagnosed with
MDD according to theDiagnostic and Statistical Manual of
Mental Disorders, fourth edition criteria. Participants were
excluded if they had Axis I primary psychiatric diagnosis other
than MDD or had a diagnosis of substance abuse. Clinicians
introduced the study to patients who met the study criteria in

outpatient clinics. If the patients who own an Android phone
were interested, the clinician would refer the patients to the
research center, and a research assistant would explain the study
in detail. If the patients agreed to participate in the study, the
research assistant would ask them to sign an informed consent
form and help with the app and wristband setups. Participants
received ¥100 (US $15.5) for each follow-up visit.

Data Preprocessing and Feature Extraction

Data Preprocessing
The focus of this study is to monitor mood changes in patients
with depression. To do so, the data needed to be resampled and
labeled.

For each patient, every 3 consecutive PHQ-9 results and the
data collected between the first and the last PHQ-9 evaluation
day would be treated as 1 data sample. The data were then
divided into 2 parts: (1) data collected between the first and
second PHQ-9 evaluation day and (2) data collected between
the second and third PHQ-9 evaluation day. These 2 parts are
called PHQ-9 periods (Figure 5). As participants were allowed
to complete the PHQ-9 tests and submit the scores at any time,
the sample would be discarded if either period lasts less than 1
week as the PHQ-9 test mostly reflects the patient’s mental state
for the past week. The sample would also be discarded if there
were less than 3 days of effective data in either period. On the
basis of this standard, the compliance rates for phone usage,
call logs, and wristband data are 65.3%, 71.1%, and 58.11%,
respectively.

The samples were then labeled into 2 groups and 4 subgroups
using 3 PHQ-9 results of each data sample according to the
criteria shown in Table 1.

Figure 5. Example of forming a data sample. PHQ-9: Patient Health Questionnaire-9.
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Table 1. Data labels and criteria.

CriteriaLabel

Steady

All three PHQ-9a results≤5Remission

All three PHQ-9 results≥11 and PHQ-9max−PHQ-9min<5Depressed

Swing

PHQ-9max−PHQ-9min≥10Drastic

PHQ-9max−PHQ-9min≥5Moderate

aPHQ-9: Patient Health Questionnaire-9.

Feature Extraction
As data collected by the smartphone and the wristband were in
different forms, the features extracted were different. There
were, however, certain types of collected data that were not
used in the following study based on common sense judgment
and the quality of collected data. For example, text message
data were not used because of the popularity of the instant
messaging app WeChat. People rarely send text messages using
SMS, and there was a large amount of junk messages sent by
merchants and service providers. The music data were not used
as well; owing to technical problems, the names of the songs
were mixed with lyrics and it was difficult to clean the data
without human involvement. The details of each data type that
were used and extracted features are explained next.

Call Logs

It is widely believed that phone call is the key feature that
reflects one’s status of social life. For each phone call, the type
of call (incoming, outgoing, or rejected), duration, and phone
number were logged. The time of the call being made (by hour),
the duration of each phone call, the number of different people
the phone call was made to or from, and the entropy of callers
were extracted from each type of call (incoming, outgoing, and
rejected) and for all phone calls during each period.

The entropy H(X) was calculated as follows:

H(X)=-Σ P(X)log2[P(X)]

where P(X) is the probability of the occurrence of event X.

Each caller was considered as an event, and the probability was
calculated based on the number of times he or she called, was
called, or was rejected.

The difference, mean value, and SD of each feature from both
PHQ-9 periods were then calculated for each data sample.

Phone Usage

The overall phone usage was calculated based on the phone
screen on and off status. The Mood Mirror app logged the
timestamp when the smartphone was activated or locked by the
user either automatically or manually. The number of times and
the duration of smartphone used were calculated by screen on
and off data. The average and median of phone usage duration
and the average and median of the number of times of phone
usage were calculated for each period. In addition, the average
duration of phone usage for each period the phone was activated
was calculated. The ratio of the phone usage duration in the
morning (6 AM to noon) to all day phone usage duration was
calculated as well as the ratio in the afternoon (noon to 6 PM)
and the ratio at night (6 PM to midnight).

The difference, mean value, and SD of each feature from both
PHQ-9 periods were then calculated for each data sample.

App Usage

Apps were grouped into the following 8 categories (Table 2).

For each group, the following features were calculated:

1. The average, SD, and entropy of the app usage duration.
2. The duration of app usage in the following period: midnight

to 3 AM, 3 AM to 6 AM, 6 AM to 9 AM, 9 AM to noon,
noon to 3 PM, 3 PM to 6 PM, 6 PM to 9 PM, 9 PM to
midnight.

3. The average, SD, and entropy of the number of times of
apps being used.

4. The number of times apps were used in the following
period: midnight to 3 AM, 3 AM to 6 AM, 6 AM to 9 AM,
9 AM to noon, noon to 3 PM, 3 PM to 6 PM, 6 PM to 9
PM, 9 PM to midnight.

The entropy H(X) was calculated as follows:

H(X)=-Σ P(X)log2[P(X)]

where P(X) is the probability of the occurrence of event X.
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Table 2. Apps categories and examples.

ExamplesCategories

WeChat, QQInstant messaging

Weibo, Zhihu, XiaoHongShuSocial networking

Taobao, JD, PinDuoDuoShopping

TikTok, Bilibili, Youku, iQiyiEntertainment

Netease Music, QQ Music, Xiami MusicMusic

Meituan, Ele.meFood delivery

Baidu browser, Youdao DictionaryOthers

All apps being usedAll apps

Each app category was considered as an event, and the
probability was calculated based on the number of times and
the duration of that category of app being used.

As messaging is one of the most common ways that people are
using recently to communicate with each other, the ratio of the
duration of using instant messaging apps to the duration of all
apps being used was calculated as a feature to partially represent
one’s social life.

The difference, mean value, and SD of each feature from 2
PHQ-9 periods were then calculated for each data sample.

Sleep and Step Count

The sleep and step count data were collected using a wristband.
There are 4 types of wristband data: activity, light sleep, deep
sleep, and not worn.

The wristband uploaded one data packet per minute, containing
timestamp, data type, activity intensity, step count, and heart
rate.

For sleep data, the average, median, and SD of light sleep, deep
sleep, and total sleeping durations were calculated. The ratio of
the light sleep duration to the total sleep duration and the ratio
of the deep sleep duration to the total sleep duration were
calculated as a reference of sleep quality. The time of falling
into sleep and wake-up time were also used as features to
estimate the user’s daily routine.

For step count data, the total step count for each period was
calculated. The average, median, and SD of daily step count
and of the following period were calculated as well: midnight
to 3 AM, 3 AM to 6 AM, 6 AM to 9 AM, 9 AM to noon, noon
to 3 PM, 3 PM to 6 PM, 6 PM to 9 PM, and 9 PM to midnight.

The difference, mean value, and SD of each feature from both
PHQ-9 periods were then calculated for each data sample.

Heart Rate

Heart rate data were collected using a wristband with a sampling
rate of one piece of data per minute. Heart rate data were
collected only when the wristband detected the user was in a
light sleep mode or in a deep sleep mode.

A cosinor analysis (cosine curve fitting) was performed on heart
rate data of each night. The amplitude, acrophase (peak), mesor
(mean), and r-squared value (strength) were then generated from

the cosine curve, and the average, median, and SD were
calculated.

The difference, mean value, and SD of each feature from both
PHQ-9 periods were then calculated for each data sample.

Feature Selection and Machine Learning Models

Feature Selection
With all calculated features, it was important to determine which
subset of features could best describe the difference between
participants who were in a steady mood and those with a mood
swing. In this study, 2 different feature selection models were
experimented to find a better subset of features that delivered
the best accuracy and recall of classification and to avoid
overfitting of data.

L1-Based Feature Selection

The L1-based feature selection method takes advantage of the
fact that linear models using L1 regularization have sparse
solutions. L1 regularization adds the sum of the absolute values
of the coefficient as a penalty term. Owing to the inherent linear
dependence on the model parameters, L1 regularization disables
irrelevant features and produces sparse sets of features [19].

Tree-Based Feature Selection

The tree-based feature selection method adopts the
interpretability of the tree model. The importance score of each
feature is calculated, with each feature contributing to the final
decision. By ranking all the importance scores, the features with
lower scores contribute less to the final decision and can be
removed.

Machine Learning Models
In this study, some of the most classic machine learning (ML)
models were deployed to learn from the features extracted earlier
and make predictions. To obtain a more accurate result, 10-fold
cross-validation was performed for each subset of features of
each model.

The average accuracy rate and recall rate of all 10 folds were
calculated to estimate the performance of the model.
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The ML models used were support vector machines (SVMs),
K-nearest neighbors, decision trees, naïve Bayes, random forest,
and logistic regression.

SVM

An SVM is a supervised ML model that can be used for
classification. The SVM algorithm creates a line, a hyperplane,
or a set of hyperplanes and maximizes the margin around it to
separate data into classes.

Decision Tree

A decision tree is a tree-like predictive model. In a decision
tree, each interior node represents an input feature, the leaf node

represents the class label, and the branches represent the
decision-making progress from nodes to leaves.

Random Forest

Random forests, as shown in Figure 6, are a combination of tree
predictors such that each tree depends on the values of a random
vector sampled independently and with the same distribution
for all trees in the forest [20]. It is an ensemble learning method
for classification. Random forests grow many decision trees.
When classifying, the input is put to each decision tree and each
tree returns a classification result, and the trees vote for the final
result. The forest then returns the final classification result with
the most votes [21].

Figure 6. Mechanism of a random forest.

Results

A total of 334 participants were enrolled in this study. Owing
to technical limitations and participants’ different degrees of
involvement, the amount of usable data samples is limited. Of

334 participants, 261 contributed 950 data samples that were
suitable for analysis. As the data collection mechanisms differed
between the Mood Mirror app and the wristband, there were
discrepancies between the number of phone usage data samples
and the number of sleep data samples. The numbers of data
samples used for each model are shown in Tables 3-8.

Table 3. Classification result using selected features of phone data.

Average percent
recall (SD)

Average percent
accuracy (SD)

Best MLa modelFeatures selected, nTwo classes or subclasses being predicted (number of data samples)

80.93 (7.72)66.76 (4.94)Random forest4Steady (n=144) and Swing (n=234)

77.58 (7.12)70.74 (6.62)Random forest36Steady-remission (n=25) and Swing-drastic (n=75)

95.50 (2.30)80.92 (5.34)Random forest7Steady-remission (n=25) and Swing-moderate (n=159)

65.71 (6.99)66.18 (6.31)Decision Tree10Steady-depressed (n=119) and Swing-drastic (n=75)

88.99 (6.00)75.23 (3.75)Random forest34Steady-depressed (n=119) and Swing-moderate (n=159)

aML: machine learning.
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Table 4. Classification result using selected features of sleep data.

Average percent
recall (SD)

Average percent
accuracy (SD)

Best MLa modelFeatures selected, nTwo classes or subclasses being predicted (number of data samples)

90.80 (3.92)72.70 (4.74)Random forest48Steady (n=230) and Swing (n=382)

90.61 (6.23)77.34 (7.50)Random forest44Steady-remission (n=88) and Swing-drastic (n=124)

97.38 (2.95)84.46 (5.94)Random forest17Steady-remission (n=88) and Swing-moderate (n=258)

67.09 (9.19)68.87 (9.34)Random forest48Steady-depressed (n=142) and Swing-drastic (n=124)

90.37 (5.18)74.75 (5.96)Random forest5Steady-depressed (n=142) and Swing-moderate (n=258)

aML: machine learning.

Table 5. Classification result using selected features of step count data.

Average percent
recall (SD)

Average percent
accuracy (SD)

Best MLa modelFeatures selected, nTwo classes or subclasses being predicted (number of data samples)

86.97 (7.35)69.24 (8.54)Random forest11Steady (n=138) and Swing (n=246)

96.53 (5.32)76.09 (8.49)KNNb10Steady-remission (n=31) and Swing-drastic (n=78)

99.41 (1.76)85.42 (5.69)Random forest9Steady-remission (n=31) and Swing-moderate (n=168)

84.16 (11.82)70.35 (8.57)Logistic regres-
sion

8Steady-depressed (n=107) and Swing-drastic (n=78)

84.57 (8.41)72.33 (7.55)Random forest12Steady-depressed (n=107) and Swing-moderate (n=168)

aML: machine learning.
bKNN: K-nearest neighbors.

Table 6. Classification result using selected features of heart rate data.

Average percent
recall (SD)

Average percent
accuracy (SD)

Best MLa modelFeatures selected, nTwo classes or subclasses being predicted (number of data samples)

91.92 (6.71)75.19 (8.38)Random forest20Steady (n=80) and Swing (n=122)

85.17 (15.10)75.48 (16.53)KNNb9Steady-remission (n=18) and Swing-drastic (n=48)

97.64 (4.73)82.67 (10.03)KNN13Steady-remission (n=18) and Swing-moderate (n=74)

73.79 (16.04)74.55 (13.97)Decision tree8Steady-depressed (n=62) and Swing-drastic (n=48)

75.16 (13.96)69.29 (13.21)Random forest18Steady-depressed (n=62) and Swing-moderate (n=74)

aML: machine learning.
bKNN: K-nearest neighbors.

Table 7. Classification result using selected features of all data collected.

Average percent
recall (SD)

Average percent
accuracy (SD)

Best MLa modelFeatures selected, nTwo classes or subclasses being predicted (number of data samples)

90.44 (6.93)76.67 (8.47)KNNb75Steady (n=79) and Swing (n=122)

84.31 (10.89)74.29 (9.27)Naïve Bayes7Steady-remission (n=18) and Swing-drastic (n=48)

97.08 (5.91)80.56 (15.28)KNN8Steady-remission (n=18) and Swing-moderate (n=74)

89.83 (10.34)75.91 (13.18)Logistic regres-
sion

7Steady-depressed (n=61) and Swing-drastic (n=48)

83.95 (12.27)74.73 (8.44)SVMc12Steady-depressed (n=61) and Swing-moderate (n=74)

aML: machine learning.
bKNN: K-nearest neighbors.
cSVM: support vector machine.
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Table 8. Classification result using selected features of call logs, sleep data, step count data, and heart rate data.

Average percent
recall (SD)

Average percent
accuracy (SD)

Best MLa modelFeatures selected, nTwo classes or subclasses being predicted (number of data samples)

89.93 (7.26)75.64 (5.09)Random forest37Steady (n=79) and Swing (n=122)

93.33 (10.41)81.67 (15.32)Naïve Bayes8Steady-remission (n=18) and Swing-drastic (n=48)

92.88 (10.43)80.56 (10.49)Decision tree7Steady-remission (n=18) and Swing-moderate (n=74)

85.33 (15.72)84.27 (14.36)Random forest35Steady-depressed (n=61) and Swing-drastic (n=48)

88.99 (9.76)77.86 (8.90)SVMb25Steady-depressed (n=61) and Swing-moderate (n=74)

aML: machine learning.
bSVM: support vector machine.

Table 3 presents the classification results of predicting mood
changes using selected features of phone data, including app
usage data and call logs. It is observed that the classification
between Steady-remission and Swing-moderate has the highest
accuracy rate of 80.92% and recall rate of 95.50%. The
classification between Steady-depressed and Swing-drastic has
the lowest accuracy rate of 66.18% and recall rate of 65.71%.
The classification between all Steady status samples and all
Swing data samples has an accuracy rate of 66.76% and a recall
rate of 80.93%.

Table 4 describes the classification results of predicting mood
changes using the selected features of sleep data. The
classification between Steady-remission and Swing-moderate
has the highest accuracy rate (84.46%) and recall rate (97.38%).
The classification between Steady-depressed and Swing-drastic
has the lowest accuracy rate of 68.87% and recall rate of
67.09%. The classification between all Steady data samples and
all Swing data samples has an accuracy rate of 72.70% and a
recall rate of 90.80%.

The classification results of predicting mood changes using
selected features of step count data show that the classification
between Steady-remission and Swing-moderate has the highest
accuracy rate of 85.42% and recall rate of 99.41%. The
classification between all Steady data samples and all Swing
data samples has the lowest accuracy rate of 69.24% and recall
rate of 86.97% (Table 5).

Table 6 presents the classification results of predicting mood
changes using the selected features of heart rate data. The
classification between Steady-remission and Swing-moderate
has the highest accuracy rate of 82.67% and recall rate of
97.64%. The classification between Steady-depressed and
Swing-moderate has the lowest accuracy rate of 69.29% and
recall rate of 75.16%. The classification between all Steady data
samples and all Swing data samples has an accuracy rate of
75.19% and a recall rate of 91.92%.

Table 7 compares the classification results of predicting mood
changes using the selected features of all data collected. The
classification between Steady-remission and Swing-moderate
has the highest accuracy rate of 80.56% and recall rate of
97.08%. The classification between Steady-remission and
Swing-drastic has the lowest accuracy rate of 74.29% and recall
rate of 84.31%. The classification between all Steady data

samples and all Swing data samples has an accuracy rate of
76.67% and a recall rate of 90.44%.

The classification results of predicting mood changes using
selected features of call logs, sleep data, step count data, and
heart rate data show that the classification between
Steady-depressed and Swing-drastic has the highest accuracy
rate of 84.27% and recall rate of 85.33%. The classification
between all Steady data samples and all Swing data samples
has the lowest accuracy rate of 75.64% and a recall rate of
89.93% (Table 8).

Discussion

Principal Findings
To our knowledge, this study is the first to investigate the
prediction of mood swings in patients with MDD by using the
amount of variation in phone data, sleep data, and step count
data in a period.

In this study, we calculated over hundreds of features from
phone data, sleep data, and step count data and used different
feature selection models to find features that could best represent
the data. Multiple ML models were applied, and different
combinations of types of data were examined to select the types
of data to collect for future applications.

Most of the models have accuracies of more than 70%, showing
promising results using passively collected phone and wristband
data to predict whether patients with MDD have mood swings.

Among the 6 combinations of types of data we experimented,
the overall best combination was using call logs, sleep data,
step count data, and heart rate data. Accuracies of predicting
between Steady-remission and Mood Swing-drastic,
Steady-remission and Mood Swing-moderate, and
Steady-depressed and Mood Swing-drastic are more than 80%,
and accuracies of predicting between Steady-depressed and
Mood Swing-moderate and the overall Steady to Mood Swing
classification accuracy were over 75%. The features used in
this model included the average, SD, and median of the
following: sleep duration, deep sleep duration, light sleep
duration, the ratio of the deep sleep duration to all-night sleep
duration, the ratio of the light sleep duration to all-night sleep
duration, step counts for each 3-hour period of a day, number
of people called (incoming and outgoing calls), number of
rejected calls, number of answered calls, and r-squared of heart
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rate fitted curves. We consider that the features chosen by the
model reflect some of the depressive symptoms (PHQ-9) of
patients with MDD: low sleep quality, reduced social interaction,
and reduced physical activity. These features are consistent with
clinical phenotypes such as sleep disturbance, loss of interest,
social isolation, and fatigue.

Comparing all the 6 aforementioned combinations, we found
that overall prediction accuracies between Steady-remission
and Mood Swing (drastic and moderate) are better than those
between Steady-depressed and Mood Swing (drastic and
moderate). We think that patients who continuously show
depressed symptoms might have a similar behavior pattern to
patients who have mood swings. On the other hand, the
differences in daily behavior patterns between patients who are
in remission and those who have mood swings might be more
significant. This could explain why the classification accuracies
between all Steady data samples and all Mood Swing data
samples are lower, sometimes the lowest among all
classifications, even with the largest data training set.

We found that models using features from all collected data had
lower accuracies than those using features from all collected
data except for app usage data (Tables 7 and 8). This might
suggest that the differences in app usage behaviors are
insignificant between patients who are in Steady status and
those who have mood swings. Meanwhile, among the 6
combinations of types of data, models using phone data,
including app usage and call logs, have the lowest overall
accuracies.

Limitations and Future Work
We observed a data imbalance in our data set with a low
prevalence of the Steady-remission class. As recruitment was
done in the hospital outpatient department, the severity of
depressive symptoms among patients was different, and there

were limited data samples of patients who were in remission.
The imbalance of data caused most of the models mentioned
earlier to have a much higher recall rate compared with accuracy
rates.

The overall data size was also limited. With a larger data set,
the prediction model could be more robust. We recruited 334
participants, and all of them were asked to use the app as
frequently as possible to record their mood and depression level
for 12 weeks. Owing to certain restrictions on the Android
system, it was difficult to keep our app running in the
background 24×7 collecting data.

This study has shown the possibility of using digital phenotyping
data to detect MDD patients’ mood stability. We are currently
working on a new version of the Mood Mirror app; with more
utility functions provided and interaction designs, patients could
gain more information about their current condition, which
could increase patients’ compliance rate and enhance both the
size and quality of data. The current prediction model will be
installed on this version and will provide predictions of patients’
mood stability. The app would ask for patients’ feedback on
the prediction results. The performance of the models could be
improved by a larger and more balanced data set along with the
prediction results feedback.

Conclusions
This study verified the feasibility of using the amount of
variation in smartphone data, sleep data, and step count data to
predict whether a patient with MDD has a mood swing that
should be noticed by his or her guardian and doctors. The key
novelty of this study is instead of predicting the mood state of
a certain point, we focus on the variation of mood over a period
using the amount of variation in passive digital data. The study
was limited by the imbalance of data samples and the technical
constraint that the app only runs on the Android platform.
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