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Abstract

Background: Mental health disorders affect multiple aspects of patients’ lives, including mood, cognition, and behavior. eHealth
and mobile health (mHealth) technologies enable rich sets of information to be collected noninvasively, representing a promising
opportunity to construct behavioral markers of mental health. Combining such data with self-reported information about
psychological symptoms may provide a more comprehensive and contextualized view of a patient’s mental state than questionnaire
data alone. However, mobile sensed data are usually noisy and incomplete, with significant amounts of missing observations.
Therefore, recognizing the clinical potential of mHealth tools depends critically on developing methods to cope with such data
issues.

Objective: This study aims to present a machine learning–based approach for emotional state prediction that uses passively
collected data from mobile phones and wearable devices and self-reported emotions. The proposed methods must cope with
high-dimensional and heterogeneous time-series data with a large percentage of missing observations.

Methods: Passively sensed behavior and self-reported emotional state data from a cohort of 943 individuals (outpatients recruited
from community clinics) were available for analysis. All patients had at least 30 days’ worth of naturally occurring behavior
observations, including information about physical activity, geolocation, sleep, and smartphone app use. These regularly sampled
but frequently missing and heterogeneous time series were analyzed with the following probabilistic latent variable models for
data averaging and feature extraction: mixture model (MM) and hidden Markov model (HMM). The extracted features were then
combined with a classifier to predict emotional state. A variety of classical machine learning methods and recurrent neural
networks were compared. Finally, a personalized Bayesian model was proposed to improve performance by considering the
individual differences in the data and applying a different classifier bias term for each patient.

Results: Probabilistic generative models proved to be good preprocessing and feature extractor tools for data with large
percentages of missing observations. Models that took into account the posterior probabilities of the MM and HMM latent states
outperformed those that did not by more than 20%, suggesting that the underlying behavioral patterns identified were meaningful
for individuals’ overall emotional state. The best performing generalized models achieved a 0.81 area under the curve of the
receiver operating characteristic and 0.71 area under the precision-recall curve when predicting self-reported emotional valence
from behavior in held-out test data. Moreover, the proposed personalized models demonstrated that accounting for individual
differences through a simple hierarchical model can substantially improve emotional state prediction performance without relying
on previous days’ data.

JMIR Mhealth Uhealth 2021 | vol. 9 | iss. 3 | e24465 | p. 1https://mhealth.jmir.org/2021/3/e24465
(page number not for citation purposes)

Sükei et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

mailto:esukei@tsc.uc3m.es
http://www.w3.org/Style/XSL
http://www.renderx.com/


Conclusions: These findings demonstrate the feasibility of designing machine learning models for predicting emotional states
from mobile sensing data capable of dealing with heterogeneous data with large numbers of missing observations. Such models
may represent valuable tools for clinicians to monitor patients’ mood states.

(JMIR Mhealth Uhealth 2021;9(3):e24465) doi: 10.2196/24465
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Introduction

Passively Sensing Behavioral Biomarkers
The subjective experience of mood is one of the most valuable
sources of information about an individual’s mental health [1].
Self-reported mood is a critical component of the mental status
exam interview, which is to psychiatry what the physical exam
is to other fields of medicine [2]. Furthermore, clinicians
routinely ask questions about mood during clinical encounters.
The presence of a specific mood state is a required criterion for
many psychiatric diagnoses according to the Diagnostic and
Statistical Manual of Mental Disorders, fifth edition (eg,
depressed mood to diagnose a major depressive episode;
elevated, expansive, or irritable moods to diagnose a manic
episode; etc). Mood is a predictor of psychiatric outcomes, and
mood changes can be a harbinger for psychiatric
decompensations. Therefore, accurate monitoring of mood states
is a crucial component of mental health care. For example, both
valences of mood states [3] and their variability [4] have been
shown to predict important outcomes, such as several
binge-eating episodes in bulimia nervosa [4] and treatment
adherence in patients with bipolar disorder and opioid use
disorders [3,5].

Until recently, information about mood was only available to
clinicians by directly questioning patients in person, either over
the phone or via telepsychiatry video platforms. However,
technological advances over the last few decades have allowed
for real-time monitoring of patients’ self-reported mood states.
Smartphone-delivered ecological momentary assessment (EMA),
also known as experience sampling, “assesses individuals’
current experiences, behaviors, and moods as they occur in
real-time and in their real-world settings” [6]. However, despite
these technological advances, this form of mood state assessment
relies on an individual’s current level of insight and willingness
and ability to interact with the EMA platform. Many psychiatric
disorders cause behavioral changes that may decrease an
individual’s likelihood of interacting with an EMA tool
(demotivation, apathy, and survey fatigue), causing missing
data, not at random. Therefore, identifying objective behavioral
biomarkers of mood states that can be passively sensed without
patient participation is a research priority.

Through patients’ mobile phones and other wearable devices,
continuous sensor data can be collected in a noninvasive manner,
providing valuable information about everyday activity patterns.
The possibility of inferring emotional states by analyzing
smartphone use data [7-9], GPS traces of movement [10,11],
social media data [12], and even sound recordings [13,14] has
become a growing research focus over the past decade. Such

approaches can be used to analyze individuals’ emotional
patterns, enabling the better self-management of one’s activities
and behavioral choices. Moreover, for patients with mental
illnesses and their caregivers and health care providers, these
models could provide a means to predict mental health crises
and maladaptive behavioral patterns and allow for early
intervention.

Related Work
In the past few years, numerous studies have demonstrated the
potential of exploiting mobile sensing data to infer users’
emotional states and well-being. In an older study, LiKamWa
et al [7] developed MoodScope, a statistical inference model
for predicting the users’ daily mood average based on the
circumplex mood model [15,16], from communication history
and app use patterns. They collected data from 32 participants
over 2 months and reported an initial accuracy of 66%, which
improved over time for personalized models.

Jaques et al [17] conducted a study using physiological signals,
location, smartphone logs, and survey responses collected over
a month from 206 college students to model students’happiness.
They applied classical machine learning methods, such as
support vector machines (SVMs), random forests (RFs), neural
networks, logistic regression (LR), k-nearest neighbor, naive
Bayes, and Adaboost, to perform the classification task and
reported 70% accuracy.

Another study focusing on predicting college students’ stress
and mental health status was conducted by Sano et al [18]. They
compared lasso regression and SVM with linear and radial basis
function kernels for 2 classification tasks: low or high stress
and low or high mental health categories. They reported over
70% accuracy and showed a significant performance increase
when data from wearable sensors (such as skin conductance
and temperature) were used, compared with behavioral data
derived from phone sensing.

Umematsu et al [19] compared nontemporal (SVM and LR)
and temporal (long short-term memory [LSTM]) machine
learning methods to forecast the stress level of the upcoming
day using a predefined number of days of previous data
(physiological signals, mobile phone use, location, and
behavioral surveys). A more recent study by Morshed et al [20],
who used the StudentLife [21] and Tesserae [22] data sets,
demonstrated that mood instabilities (computed from the
mapping of moods on the photographic affect meter scale [23]
to arousal and valence values) are predictable from features
derived from passive sensor measurements.
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In a large-scale study conducted by Servia-Rodríguez et al [24],
the researchers used passive sensing data and self-reported
moods collected for about 3 years from 18,000 users to build a
predictive model for users’ mood. They trained a deep neural
network of stacked restricted Boltzmann machines for a 2-class
classification problem (positive and negative mood). They
reported above 60% prediction accuracy for weekdays and 70%
for weekends.

An LSTM recurrent neural network (RNN)–based analysis,
performed by Suhara et al [25], showed that applying a temporal
model for forecasting severe depressive states outperformed
nontemporal models. Their study relied on a large-scale
longitudinal data set of self-reported information about mood,
activity, and sleep of 2382 self-declared depressed people over
22 months.

Cho et al [26] conducted a prospective observational cohort
study to evaluate the mood of 55 patients with major depressive
disorder and bipolar disorder types 1 and 2. They collected light
exposure data passively via mobile phones of patients and
self-reported daily mood scores. Using activity trackers, they
registered activity, sleep, and heart rate data. This information
was then processed into 130 features based on circadian
rhythms, and mood prediction was performed using the RF
method. Their approach generally showed good sensitivity and
specificity for mood state and episode prediction.

Taylor et al [27] focused on building personalized models for
forecasting the next day’s mood (good or bad), health (fair or
poor), and stress intensity (low or high). The multitask
learning-based approach used data about the physiology and
behavior of 206 undergraduate students and the weather of the
current day, collected for 30 days. Their results showed that
tomorrow’s well-being could be predicted with 78% to 82%
accuracy using a personalized model based on the present day’s
data. Busk et al [28] proposed a hierarchical Bayesian approach
for forecasting mood for up to 7 days from smartphone
self-assessments of 84 patients diagnosed with bipolar disorder.
Their best performing model used a history of 4 days of
self-assessment, indicating that short-term historical mood is a
significant predictor.

Another recent observational study by Darvariu et al [29]
combined user-reported emotional information, passive sensing
data, and visual context information from individuals’
surroundings in the form of images to develop deep learning
techniques for emotional state inference. Their findings showed
context-dependent associations between self-reported emotional
states and the objects surrounding the individuals.

These studies provide insight into the potential of using mobile
sensor data to infer individuals’ mental well-being. However,
none of these studies reported working with a data set consisting
of observations from a nonexperimental setting or dealing with
large amounts of missing data. Moreover, in most of these
studies, the problem they are trying to solve is a 2-class
classification problem. Here, the problem is approached from
a more refined perspective (ie, predicting emotional state in
terms of both valence and arousal dimensions).

Objectives
This study focuses on applying machine learning algorithms to
predict mood states based on passively sensed behavioral
patterns. Specifically, we aim to assess which behavioral
features provide the most important information about daily
emotional valence. The study was conducted by using data
collected via a clinically validated eHealth platform (eB2
MindCare) [30,31]. This app is designed to run unobtrusively
in the background of an individual’s smartphone. It
automatically and continuously gathers information about
behavior, collected via both the individual’s smartphone and
wearable devices. It also provides an electronic diary type
interface for users to register information about their emotions
and other important events.

Methods

Participants
The data for this experiment were collected via eB2 MindCare
[32] in collaboration with public mental health hospitals Hospital
Universitario Fundación Jiménez Díaz and Hospital
Universitario Rey Juan Carlos, Madrid, from clinical outpatients
[30,33,34] and nonpathological volunteers from Universidad
Carlos III de Madrid and Universidad Católica de Valencia.
Patients were invited to participate in the data collection process
by their clinicians. The research followed the code of ethics
defined in the Declaration of Helsinki by the World Medical
Association.

Patient Inclusion and Exclusion Criteria
Patients were included in the study if they were at least 18 years
old clinical outpatients diagnosed by specialists at the
institutions mentioned above with mental disorders or were
attending therapy groups (such as support groups for
cyberbullying and relaxation) at these institutes. They had to
own a smartphone running on Android or iOS operating systems,
which they connected to a Wi-Fi network at least more than
once per week. Only patients who provided written informed
consent for the eB2 study were included. None of the patients
were paid for participating in the study.

Data
The eB2 MindCare app collects data from different sources (the
mobile phone’s sensors, Google Fit, and wearables such as Fitbit
and Garmin) at different time intervals. After installing the app,
the users are taken through an onboarding phase, in which they
are asked to give permission for specific data collection streams,
depending on the operating system. In addition to passively
collected data, users can record information about their
experiences, quality of sleep, and emotional state during the
day. The app offers the following emotion options to choose
from: angry, disgusted, scared, sad, overwhelmed, tired, grief,
neutral, relaxed, motivated, happy, and delighted. Within a day,
patients may register their emotions multiple times.

Daily summary values of 6 passively collected observations
were considered: step count, distance traveled, hours of sleep,
hours of phone use, time spent at home, and the number of
locations visited. An additional binary variable was included,
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indicating whether the patient practiced sports during the day.
The step count is recorded every 5 minutes, and the daily
summary value corresponded to the sum of the registered entries.
App use information was gained similarly. Distance information
is gathered every minute, whereas location data are gathered at
5-minute intervals. Locations are obfuscated with an offset and
randomly rotated to protect users’ data. From these sources, the
daily travel distance and the number of visited locations were
computed. Time spent at home was computed using clustering
based on the most common user locations throughout the day.
There is a hierarchical set up for hours of sleep for the credibility
of different sources; if data are manually introduced by the user
or calculated by the phone but confirmed by the user, that value
is first considered. Otherwise, the following ordering holds:
sleep data by iOS, sleep data by Garmin, sleep data by Fitbit,
sleep data calculated from light, app use and steps data, and
sleep data calculated by the phone. The devices register
sport-related activities on change, and the daily summary
encompasses the total number of times each action was
performed.

A subset of 943 users (patients and nonpathological subjects)
was selected with at least 30 days of passively sensed data in
the eB2 database between January 2019 and March 2020. The
number of recorded days per patient varied from 30 to 487 with
a mean of 190 (SD 122). Demographic information was
available only for 871 users. All the users were Spaniards. Of
these, 63.5% (553/871) were female and 25.1% (219/871) were
male, and gender information was not available for the
remaining 11.4% (99/871). All age groups were adequately

represented in the data set, with a mean age of 41 years (range
18-77 years) computed at the beginning of the measurement
period. The patient population came from 2 main categories:
61.3% (534/871) were outpatients from external psychiatric
consultancy and 22.1% (192/871) were suicidal high-risk
outpatients. The remaining 16.6% (145/871) were
nonpathological users. Note that neither demographic nor
diagnostic information was used in the rest of the study.

A well-known framework for dealing with emotional experience
characterizes emotions in a 2-dimensional space defined by
Russel [15,16]. The arousal and valence are combined, with
valences ranging from highly negative to highly positive and
arousal ranging from low to high. Daily emotional valence and
arousal metrics were determined using raw emotion data entered
by patients. Valence was then computed as the sign of the
difference between positive and negative emotion counts,
whereas arousal was determined based on the categories in the
study by Scherer [35].

The left subfigure in Figure 1 shows the projection of emotions
to the arousal-valence plane. The emotions listed on the graph
are those that patients can register via the eB2 app. As the right
subfigure in Figure 1 shows, there is a significant imbalance
between the different emotional labels. The majority correspond
to negative emotional valence (9105 entries), followed by
positive emotions (5271 entries) and only 3495 neutral entries
in the entire data set. Moreover, as emotions are self-reported,
with users not being prompted in any way to fill in this
information, these entries are scarce compared with passively
sensed behavioral data.

Figure 1. Projection of emotions into the arousal-valence plane and their distribution in the data set. HA-NV: high arousal-negative valence; HA-PV:
high arousal-positive valence; LA-NV: low arousal-negative valence; LA-PV: low arousal-positive valence.

As data have been collected from several sources and received
in different formats, the raw daily summary data have many
anomalies and unwanted information, and hence, noise. The
presence of noise in the data can degrade the performance of
machine learning methods. Therefore, it is important to
preprocess the data before using it as an input to any machine

learning algorithm. The first step of preprocessing was removing
any negative values, followed by thresholding the time-related
variables to 24 hours, the step count to 30,000 steps per day,
and the distance to 500 km. Data were then standardized over
all patient sequences, making each input feature 0 mean (SD
1).
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Moreover, the data set contained a large percentage of missing
observations. Figure S1 in Multimedia Appendix 1 shows the
missing pattern in the entire data set. Approximately 84%
(150,615/179,740) of the observations were partial, a bit over
5% (9399/179,740) were complete, and the remaining 10%
(19,726/179,740) were entirely missing. Slightly less than 10%
(17,871/179,740) of the observations were labeled by an emotion
entry. A total of 271 patient sequences were observed for all 7
summary variables. Close to half of them did not have
information about the time spent at home and the number of
locations visited. The app use information was also completely
missing for 226 patients. In addition, 114 patients had more
than 30 consecutive days of completely missed observations
(range 31-372).

Probabilistic Generative Models for Dealing With
Missing Data
Imputing missing data using statistical measures such as the
mean, median, or even interpolation fails when the percentage
of missing data is very high. These approaches can reduce
variability in the data set and introduce bias. However,
probabilistic generative models can learn the underlying
distributions in a data set by adjusting the model parameters to
best account for the data in the sense of maximizing the
evidence, even in the presence of missing data. Mixture models
(MMs) [36] and hidden Markov models (HMMs) [37] are
frequently used types of such models.

MMs comprise a finite or infinite number of components,
possibly different distributional types, that can describe different
data features. The data can then be modeled in terms of a
mixture of several components, where each component has a
simple parametric form (such as a Gaussian). The model is
formulated in terms of latent variables, which represent the
component each data point was sampled from and learned from
the observed features, referred to as observables by adjusting
the model parameters, which define the observable emission
probabilities, such that the MM best accounts for the data in the
sense of maximizing the evidence.

HMMs are temporal MMs that are commonly used for
time-series analysis. These are generative models characterized
by a set of observable sequences. The discrete states of the
HMM are assumed to have been generated by a first-order
Markov chain process, and each observation depends only on
the paired state. An HMM comprises an initial state probability
distribution, a state transition probability distribution, and a
symbol emission probability distribution. Both MMs and HMMs
were trained using the expectation-maximization algorithm.

In this study, the observed data were heterogeneous. Practice
sport and emotional state are categorical, and the rest of the
variables are assumed to be real-valued. Both MMs and HMMs
can deal with missing data, without requiring imputation before
training, via marginalization. For the Gaussian parameters, the
diagonal covariance matrices were considered. Furthermore,
both generative models were trained in a semisupervised manner
for emotional valence and arousal-valence discrete observations.
Namely, the different emotional states’ emission probabilities
were fixed for some of the components, whereas others were
adjusted during training, such as the other model parameters.

For instance, in a 5-component MM with binary label emissions,
the emission probability for label 0 of the 3 components can be
set to 1, forcing the components always to emit label 0. In
contrast, the other 2 components can always be forced to emit
label 1.

Emotion Prediction Models
A series of experiments were conducted for emotional status
prediction accuracy using both nontemporal and temporal
machine learning models. The underlying motivation was to
analyze whether there were long-term dependencies in the data
concerning patients’ daily emotional states.

Probabilistic generative models (MM and HMM) were used to
perform the imputation. Note that only the input features were
imputed, and the emotion labels were not. When using MMs,
first, for each observation, the posterior distribution needs to
be inferred to find which component the observation is most
likely to belong to; then, the missing attributes are imputed by
a sample generated from that component. Information about
the emotional state belonging to the current observation was
not included in the posterior computation (otherwise, the model
would overfit). When using HMMs, all observation sequences
were first decoded using the Viterbi algorithm on the trained
HMM. This method finds the most likely sequence of
components that could have resulted in the given observation
sequence. Once the state sequence was determined, the missing
data were imputed by the samples generated from the
corresponding states for each time step. The state posterior
probabilities were computed by applying the forward algorithm
[37], leaving out the current emotional observation.

For nontemporal machine learning methods, LR, support vector
classifier, random forest classifier (RFC), and multilayer
perceptron (MLP) were considered. These models allow
comparisons with previous emotional state studies [16-19,26].
A grid search was performed for each case for hyperparameter
tuning.

RNNs [38] have recurring inputs to the hidden layer; this allows
them to remember input states from previous time steps, which
can carry important information for future time-step predictions.
There are 3 common types of RNNs: vanilla RNN, LSTM [39],
and gated recurrent units (GRUs) [40]. Vanilla RNNs have
short-term memory. If the observation sequence is rather long,
these models have difficulty remembering relevant information
from earlier time steps. LSTM and GRU cells, which contained
gates that regulate the information flow, were designed to solve
this problem.

In this experiment, RNNs of each of the 3 types were tested. A
single layer with 64 hidden units was used, whose output was
connected to a dense layer. Finally, the softmax activation
function provides the predictions. The model was trained using
the Adam method and the negative-log-likelihood loss for 50
epochs, using early stopping. One-layer RNNs with vanilla
RNN, LSTM, and GRU cells were trained using 64 hidden units
for each case. More complex models, such as dilated RNN,
multilayer RNN, and temporal convolutional networks, have
also been tried. However, they did not improve performance,
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proving that simpler RNNs could explain the data’s temporal
correlations.

Personalized Models
To improve the above models, hierarchical Bayesian regression
models were proposed to account for individual differences and
predict the emotional state of patients. The proposed model
allows intercepts to vary across patients, according to a random
effect, while having a fixed slope for the predictor (ie, all
patients will have the same slope). In our model for individual
j, observation i, target variable yji, and input features xji:

where the random intercept effect is drawn from the population
distribution:

The population mean and SD are independent normal and
half-normal priors. By setting a separate bias term for each
patient, rather than fitting separate regression models for each
patient, multilevel modeling shares strength among patients,
allowing for a more reasonable inference in patients with little
data. The models were trained with Stein Variational Gradient
Descent [41,42] for 50 epochs using the Adam optimizer.

Evaluation and Interpretability
Accuracy, area under the receiver operating characteristics curve
(AUC-ROC), and area under the precision-recall curve
(AUC-PRC) were used as the evaluation metrics. AUC-ROC
is commonly used for both balanced and imbalanced
classification problems because it is not biased toward the
majority or minority class. However, AUC-PRC scores provide
more insight into the minority class when the problem is very
skewed. As the AUC-ROC and AUC-PRC scores are computed
for binary classification problems, in the case of multiclass
targets, different types of averaging can be performed on the
data. The reported results were microaveraged, meaning that
the metrics are global, computed by counting the total number
of true positives, false negatives, and false positives.

On the basis of several model interpretability methods, Lundberg
and Lee [43] defined the Shapley additive explanations (SHAP)
value, a modality to explain any machine learning model’s
output. The SHAP values can provide global interpretability to
the machine learning models by showing how much each feature
contributes, positively or negatively, to the target variable. This
approach was used in this study to analyze the feature
importance for the models. Moreover, this method can be
applied to analyze the decisions for individual predictions, which
provides better insights into the relationships between passively
collected mobile data and self-reported emotions.

Experiments
For MM and HMM training, only those patient sequences with
at least partial observations for each of the 7 features and
emotions were used. Moreover, the maximum sequence length

was limited to 365 days, and sequences that had more than 30
days of consecutive missing data for all variables were
discarded. After this elimination process, 233 sequences were
used to train both the MMs and HMMs with different numbers
of states. These patient sequences were excluded from both the
training and test sets of the later models.

For the global models, the data set containing the remaining
710 patient sequences was divided into training and test sets
using 80% of the sequences for training and 20% for testing.
These data sets were kept independent. The train-test split cannot
be done for the personalized models by randomly selecting a
given percentage of the patients for training while leaving the
others for testing, but all 710 patients must be included.
Therefore, the patient sequences themselves were split into
training and test sections. The first 80% of the labeled
observations, in chronological order, were used for training,
and the remaining samples were used for testing.

As the LR, support vector classifier, RFC, and MLP cannot
directly exploit time-series data, we created the following 2
cases as inputs for these models. First, the input-output pairs
consisted of 1 day of labeled observation. Second, 3 days and
a week before the entered emotion was considered and
concatenated into a single feature vector. In the case of the
temporal models, training was performed with 30-day, 3-month,
and 6-month long sequences.

Before creating the above feature vectors, the missing data in
each patient sequence were imputed by the MM or HMM
samples. For models trained with mini-batch stochastic gradient
descent, every data point is imputed every time it enters the
optimizer. The sequences were decoded multiple times, and
missing data were imputed by samples generated from the
corresponding state.

We designed two types of experiments. The first type is limited
to the projection of the recorded emotions to a single axis of
the arousal-valence plane. The second set of experiments
considered 2-dimensional projections. A total of 3 different
settings were analyzed for the classifiers’ input features, as
follows: using the imputed raw data, using the MM or HMM
posterior probabilities instead of the raw input features, and
using the raw inputs concatenated with the MM or HMM
posterior probabilities.

Results

Generative Models
After experimenting with several hidden state setups, 7 hidden
components captured the data’s underlying patterns well, leading
to the best results when a classifier was applied to the data later
to predict emotions and provide interpretable states. In this case,
the emission probabilities of the five states were fixed so that
two pairs of states always emitted negative and positive
emotions, and one always emitted a neutral emotion. The
different components turned out to be specialized, as they
captured contrasting behaviors (Figure 2).
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Figure 2. The 7-component mixture model structure was used for emotional valence modeling with each Gaussian mean in each component and
indicating discrete emission probabilities. The size of the icons indicates the magnitude of the discrete emission probabilities (emotion and sport). In
terms of features, "steps total" refers to step count, "distance" refers to the distance traveled, "sleep" refers to the hours of sleep, "app use" refers to the
hours spent using different apps, "home cluster" refers to the time spent at home, "clusters count" refers to the number of visited locations, and "practiced
sport" is an indicator of whether the patient practiced any sports. Of note, the negative mean values were a result of the normalization of the features.

Focusing on the three components that mainly emit negative
emotional valence (components 1, 2, and 3), it can be seen that
the corresponding modeled behaviors are contrasting.
Component 1 represents days when the patients are quite active,
visit multiple locations, spend a significant amount of time using
their phones, and sleep very few hours. Component 2 is
characterized by fewer steps and low app use. Component 3,
however, captures days with low activity and mostly spent at
home. The corresponding sport-related discrete emissions show
that the patients practice some sport (>15 minutes of walking,
biking, running, other, or a combination of those) in components
1 and 2, but less likely in component 3. Components 0, 5, and
6 correspond to positive emotional valence. They also seem to
capture significantly different behavioral patterns. In component
0, the patients seemed to sleep less and did not spend much time
at home; component 5 captured days with more time spent at

home and excessive phone use. Component 6 captures the days
of travel. Finally, the component capturing neutral emotions
indicates days with medium activity and more app use.

Including the temporal properties of HMMs, the trained
generative model with 7 hidden states and the same fixed
emotional state emissions led to very similar interpretable
outcomes as the MM (Figure 3). The temporal characteristics
were not very strong. States 2 (with fixed negative emotional
valence emission) and 1 (with mainly negative emotional
valence emission) had the highest self-transition probabilities.
If the self-transition probabilities are large, it indicates a stable
state. States 0, 3, 4, and 5 have somewhat large self-transition
probabilities, which suggests that days with positive and
negative but also neutral emotions following each other are
common in the patient population.
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Figure 3. The 7-component hidden Markov model structure was used for emotional valence modeling with each Gaussian mean in each component
and indicating discrete emission probabilities. The size of the icons indicates the magnitude of the discrete emission probabilities (emotion and sport).
Only the transitions with a higher than 0.1 probability are shown in the graph. In terms of features, "steps total" refers to step count, "distance" refers
to the distance traveled, "sleep" refers to the hours of sleep, "app use" refers to the hours spent using different apps, "home cluster" refers to the time
spent at home, "clusters count" refers to the number of visited locations, and "practiced sport" is an indicator of whether the patient practiced any sports.
Of note, the negative mean values were a result of the normalization of the features.

In the arousal-valence case, the 7-state generative models had
1 state assigned to all the emotional state emissions, and the
other 2 were trained with the rest of the parameters. Similarly,
as before, the states appear to capture specific behaviors, such
as days of medium activity but mostly spent at home, more
active days, days with more travel, and so on (Figures S2 and
S3 in Multimedia Appendix 1 provide the sketches of the
7-component MM and HMM, respectively).

Predicting Emotional Valence
Figure S1 in Multimedia Appendix 2 compares the accuracy
and the microaverage AUC-ROC and AUC-PRC scores for the

trained classifiers in the 3 experimental set ups, as described in
the Experiments section. Most classifiers achieved significantly
higher performance than random guessing (AUC-ROC=0.5).
As the figure shows, the models perform the worst on the raw
data. Using the HMM or MM posteriors as input features or
combining the raw data with the posteriors increases the
performance. Table 1 compares the best performing models
when using the MM and HMM posteriors. The difference in
the results obtained with the MM posteriors and HMM posteriors
is minimal. This indicates that the temporal dimension is not
very relevant to the problem at hand; hence, a simpler generative
model is sufficient for the problem.

Table 1. Performance comparison of the best performing models using mixture model and hidden Markov model posteriors as classifier input features.

Area under the precision-re-
call curve

Area under the receiver oper-
ating characteristics curve

Accuracy (%)Model and classifier input features

Multilayer perceptron using 7 days of observations as input features

0.700.8165Mixture model posteriors

0.690.8064Hidden Markov model posteriors

The best performing model was the MLP with the posteriors of
7 days of observations as input features. Concatenating the
posterior probabilities for 3 days or 7 days of observations
significantly improves the performance; however, training RNNs
with longer observation sequences leads to decreased
performance. This suggests no substantial seasonality or
long-term trend of the self-reported emotions; thus, time-series
models are not needed for the emotional state prediction task.

Generally, the most misclassified emotional state is the neutral
state (refer to Table S1 in Multimedia Appendix 2 for confusion
matrices). In most cases, it is confused with a negative emotional
state and reasonably often with a positive one. There is some
confusion between positive and negative emotional states, but
somewhat fewer for negative emotions. This suggests that the
models are more sensitive to detecting negative emotions, which
can be desirable; for example, if the app’s goal is to detect
periods when the patient is feeling down.
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Predicting Emotional Arousal Valence
In the second experiment, the target variables were the emotion
projections into the 2-dimensional arousal-valence space, based
on the categories in the study by Scherer [35]. Hence, the
problem becomes a 5-class classification task. Here, we aimed
to test the possibility of predicting daily emotions on a finer
scale than the 2-class valence analysis presented above.

The best performance for the emotional arousal-valence
prediction, with 48% accuracy (compared with the baseline of
20%), 0.77 AUC-ROC, and 0.50 AUC-PRC, was obtained by
the RFC with 7 days of data concatenated with the MM
posteriors. The GRU network trained on 30-day sequences
reached results closest to those from the temporal models: 42%
accuracy, 0.69 AUC-ROC, and 0.36 AUC-PRC. In this setting,
the added MM posteriors’ effect was more significant than the
emotional valence prediction case. Using the posteriors as input
features led to a 23% performance increase in some of the
models. Table S2 in Multimedia Appendix 2 provides a detailed
performance comparison of the models.

Predicting more refined emotional states is a difficult task, as
not only are there more classes to distinguish, but the class
imbalance is also more accentuated. The trained models became
somewhat biased toward the majority classes, resulting in the
wrong classification of the minority classes (high
arousal-positive valence and low arousal-positive valence).
Generally, when the predictor variable is well separable, and
there are no overlaps between the different classes, this
separation can compensate for the imbalance; however, in this
data set, that is not the case. Standard techniques to combat the
imbalance problem, such as upsampling of minority classes,
downsampling of majority classes, and one-versus-rest training,
were applied; however, these only led to a slight improvement.
Therefore, these results have not been reported.

Personalized Models
The previously presented models try to explain the variability
of the observations by considering the patient population. As
shown before, these models do not provide enough diversity
when the classifier takes as input 1-day worth of data.
Personalized models can provide a more scalable and accurate
way to achieve better representations for individual patients.

The posterior probabilities obtained from the MM components
were used as input features for the personalized models because
they proved to improve the prediction outputs of earlier
experiments. In the global models presented previously, features
representing 1 day of data led to insufficient classifier accuracy,
especially in the LR models, which only reached a maximum
of 43% for the 3-class problem and 16% for the 5-class problem.
The proposed hierarchical Bayesian LR method led to a
significant increase in performance, reaching 64% accuracy,
0.81 AUC-ROC, and 0.70 AUC-PRC for the 3-class problem
and 52% accuracy, 0.82 AUC-ROC, and 0.55 AUC-PRC for
the 5-class problem. This demonstrates that accounting for
individual differences through a simple hierarchical model can
substantially improve emotional state prediction performance
without relying on previous days of data.

Feature Importance Analysis
Figure 4 provides an overview of which features are most
important for the emotional valence MLP models using the raw
data and using the raw data and MM posteriors as input features.
To obtain an overview of which features are most important for
the models, the mean SHAP values (Evaluation and
Interpretability section) of every feature for every sample were
computed. The plot below sorts features by the mean absolute
value of the SHAP value magnitudes over all samples.

Figure 4. Summary plot of feature importance for the multilayer perceptron models for emotional valence prediction, showing raw data and raw data
concatenated with mixture model posteriors. In terms of features, "steps total" refers to step count, "distance" refers to the distance traveled, "sleep"
refers to the hours of sleep, "app use" refers to the hours spent using different apps, "home cluster" refers to the time spent at home, "clusters count"
refers to the number of visited locations, "practiced sport" is an indicator of whether the patient practiced any sports, and "P(si | xt)" refers to the posterior
probability in component i. The following class labels were used: 0=negative; 1=neutral; and 2=positive emotional valence. MM: mixture model; SHAP:
Shapley additive explanations.

The hours of sleep and the time spent using their phone (app
use) influenced all classes’ outcomes the most. The other

features have an almost similar influence on the positive and
negative classes. The negative output (class 0) is also strongly
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influenced by the step count, sport indicator, and time spent at
home. If the posterior probabilities are used in combination with
the raw features as inputs to the model, some outweigh the raw
features in the decision-making process. For instance, the MLP
relies heavily on the hours of sleep, the posterior probability of
state 2, and the step count. The other classes seem to be more
involved, requiring several posterior probabilities and raw values
to form the prediction. The importance of posterior probabilities
underlines the robust feature extraction provided by MM.

Similarly, the arousal-valence classifiers can be analyzed. In
the raw data case (Figure 5), although the model emphasizes
the hours of sleep and the step count, the other parameters
become slightly less important. In the second case (Figure 5),
some of the posterior probabilities seem to weigh more in the
decision-making process than the raw features, as in the first
experiment.

Figure 5. Summary plot of feature importance for the random forest models for emotional arousal-valence prediction, showing raw data and raw data
concatenated with mixture model posteriors. In terms of features, "steps total" refers to step count, "distance" refers to the distance traveled, "sleep"
refers to the hours of sleep, "app use" refers to the hours spent using different apps, "home cluster" refers to the time spent at home, "clusters count"
refers to the number of visited locations, "practiced sport" is an indicator of whether the patient practiced any sports, and "P(si | xt)" represents the
posterior probability in component i. The following class labels were used: 0=neutral; 1=high arousal-positive valence; 2=high arousal-negative valence;
3=low arousal-negative valence; and 4=low arousal-positive valence. MM: mixture model; SHAP: Shapley additive explanations.

Discussion

Principal Findings
A variety of different machine learning methods were used to
analyze passively sensed behavioral data from 6 sources (step
count, distance traveled, hours of sleep, hours of phone use,
time spent at home, number of locations visited, and a binary
variable indicating whether the patient practiced sports during
the day). These models were used to predict self-reported
emotional state (valence or combination of valence and arousal)
in a large, heterogeneous sample of treatment-seeking patients
with clinically significant levels of psychological and/or
emotional symptoms. Preliminary inspection of this data set
revealed that the data exhibited significant missingness
(approximately 84% [150615/179740] of the observations were
partial). This represents real-world clinical data sets, which
usually contain many missing samples and are sparsely labeled.
The fact that this kind of data are both noisy and often
nonrandomly missing means that the development of robust
imputation techniques is a nontrivial problem. However, the
development of such methods is vital if this type of information
is used to support clinical decision making.

We addressed this problem by training generative models to
handle missing data. These models were then used for data
imputation and latent state (feature) extraction for emotional
state prediction. Notably, predictive models performed
significantly better when MM or HMM posterior probabilities

were included alongside the raw behavioral input features. This
suggests that the latent representation of the passively sensed
behavioral variables discovered by the probabilistic generative
models contains information relevant to daily emotional
experience fluctuations. However, using HMMs over MMs did
not improve the classification performance, which implies that
there are no strong temporal correlations in the daily
observations that can be captured by an HMM. Furthermore,
in both experiments, the nonlinear models outperformed the
other static models. The use of RNNs did not improve daily
emotion predictions, suggesting that long-term behavior does
not significantly influence patients’ everyday emotional states.

When using raw data alone as input features, the hours of sleep
had the most substantial influence on the emotional state
predictions. The importance of activity-related features varied
between the 2 experimental set ups. When posterior state
probabilities were included in the model, some proved to be
more important than the raw features. This indicates that the
MM provided excellent feature representation and filtering of
the observed behavioral signals. Interestingly, an inspection of
the confusion matrices for the best performing models revealed
that, for the valence prediction analysis, models were more
sensitive to the detection of negative, compared with positive
or neutral emotional states. This is a useful feature as this is the
domain of emotional experience most likely to be relevant for
clinicians or self-monitoring of trends in overall mental health.
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Finally, we proposed a hierarchical Bayesian regression with
varying intercepts and a common slope to personalize the
models. This approach performs personalized predictions while
accounting for population-level characteristics. The personalized
models using 1-day long feature vectors achieved similar
performance to the nonlinear variants using 3-day long feature
vectors. Moreover, they performed significantly better than
global linear LR models. Personalized models outperforming
the generalized models are intuitively reasonable as mood is
very personal, and its perceptions among individuals differ.

Limitations
This study has some limitations. As previously mentioned, the
data analyzed in this study contained a large percentage of
missing observations; approximately 84% (150,615/179,740)
of the observations were partial, only a bit over 5%
(9399/179,740) were complete, and the remaining 10%
(19,726/179,740) were entirely missing. Some of the patient
sequences had large chunks of consecutively missing
observations, which could be because of sensor or software
errors or the patients not using their devices for an extensive
amount of time. Moreover, information about emotional states
was sporadically reported. Therefore, only 10%
(17,871/179,740) of the behavioral data were labeled with
respect to the outcome of interest.

Recording emotions is a subjective process, and regular
reflection of the emotional state may influence how one answers.

The majority of the registered emotions were negatively
valenced, meaning that the prediction models were somewhat
biased toward negative emotional states. As a result, the models
were most sensitive in the negative domain, and the overall
prediction accuracies were not high in some cases. In addition,
mood variability, another important point in psychiatric
disorders, was not analyzed in this study. However, it will be
important to explore in the future to better differentiate whether
it is a pathological mood state or a mood within the normal
range.

Conclusions
This study is an initial step toward developing more robust and
informed models for predicting emotional states from passively
sensed data. It presents a sound basis for further exploration by
proposing a solution to missing and sparsely labeled data,
allowing the future focus to be directed toward developing more
advanced models.

Future plans include examining other deep learning models to
improve prediction accuracy and analyzing effects at a more
refined time scale. Another intriguing question is to consider
the effect of seasonality (weekdays and weekends, seasonal
variation) on patients’ emotional states. Moreover, the
possibilities of specialized models for different patient groups
or individual patients will be further investigated.

Acknowledgments
This project has received funding from the European Union’s Horizon 2020 Research and Innovation Program under the Marie
Sklodowska-Curie grant agreement number 813533. This work was partly supported by the Spanish government (Ministerio de
Ciencia e Innovación) under grants TEC2017-92552-EXP and RTI2018-099655-B-100; the Comunidad de Madrid under grants
IND2017/TIC-7618, IND2018/TIC-9649, IND2020/TIC-17372, and Y2018/TCS-4705; the BBVA Foundation under the Domain
Alignment and Data Wrangling with Deep Generative Models (Deep-DARWiN) project; and the European Union (European
Regional Development Fund and the European Research Council) through the European Union’s Horizon 2020 Research and
Innovation Program under grant 714161. The authors thank Enrique Baca-Garcia for providing demographic and clinical data
and assisting in interpreting and summarizing the data.

Authors' Contributions
ES, with the supervision and guidance of AA and PMO, designed and conducted the study. AN and MMP-R provided expert
advice on clinical and patient-related matters. All authors contributed to the writing and editing of the manuscript.

Conflicts of Interest
AA is co-founder of Evidence-Based Behavior (eB2). MMP-R has received research grant funding from Neurocrine Biosciences
(Inc), Millennium Pharmaceuticals, Takeda, Merck, and AI Cure. She is an Advisory Board member for Neurocrine Biosciences,
Inc, and a consultant on an American Foundation for Suicide Prevention (AFSP) grant (LSRG-1-005-16, PI: Baca-Garcia).

Multimedia Appendix 1
Supplementary figures of the data missingness pattern and the mixture model and hidden Markov model structures for the
emotional arousal-valence case.
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Multimedia Appendix 2
An overview of the accuracy, the microaverage area under the receiver operating characteristics curve and area under the
precision-recall curve scores, and confusion matrices for each of the models in the 3 experimental setups, as described in the
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Experiments section, for both the 3-class and 5-class experiments using the mixture model for missing data imputation and feature
extraction.
[PDF File (Adobe PDF File), 157 KB-Multimedia Appendix 2]
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