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Abstract

Background: There is worldwide demand for an affordable hemoglobin measurement solution, which is a particularly urgent
need in developing countries. The smartphone, which is the most penetrated device in both rich and resource-constrained areas,
would be a suitable choice to build this solution. Consideration of a smartphone-based hemoglobin measurement tool is compelling
because of the possibilities for an affordable, portable, and reliable point-of-care tool by leveraging the camera capacity, computing
power, and lighting sources of the smartphone. However, several smartphone-based hemoglobin measurement techniques have
encountered significant challenges with respect to data collection methods, sensor selection, signal analysis processes, and
machine-learning algorithms. Therefore, a comprehensive analysis of invasive, minimally invasive, and noninvasive methods is
required to recommend a hemoglobin measurement process using a smartphone device.

Objective: In this study, we analyzed existing invasive, minimally invasive, and noninvasive approaches for blood hemoglobin
level measurement with the goal of recommending data collection techniques, signal extraction processes, feature calculation
strategies, theoretical foundation, and machine-learning algorithms for developing a noninvasive hemoglobin level estimation
point-of-care tool using a smartphone.

Methods: We explored research papers related to invasive, minimally invasive, and noninvasive hemoglobin level measurement
processes. We investigated the challenges and opportunities of each technique. We compared the variation in data collection
sites, biosignal processing techniques, theoretical foundations, photoplethysmogram (PPG) signal and features extraction process,
machine-learning algorithms, and prediction models to calculate hemoglobin levels. This analysis was then used to recommend
realistic approaches to build a smartphone-based point-of-care tool for hemoglobin measurement in a noninvasive manner.

Results: The fingertip area is one of the best data collection sites from the body, followed by the lower eye conjunctival area.
Near-infrared (NIR) light-emitting diode (LED) light with wavelengths of 850 nm, 940 nm, and 1070 nm were identified as
potential light sources to receive a hemoglobin response from living tissue. PPG signals from fingertip videos, captured under
various light sources, can provide critical physiological clues. The features of PPG signals captured under 1070 nm and 850 nm
NIR LED are considered to be the best signal combinations following a dual-wavelength theoretical foundation. For error metrics
presentation, we recommend the mean absolute percentage error, mean squared error, correlation coefficient, and Bland-Altman
plot.

Conclusions: We addressed the challenges of developing an affordable, portable, and reliable point-of-care tool for hemoglobin
measurement using a smartphone. Leveraging the smartphone’s camera capacity, computing power, and lighting sources, we
define specific recommendations for practical point-of-care solution development. We further provide recommendations to resolve
several long-standing research questions, including how to capture a signal using a smartphone camera, select the best body site
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for signal collection, and overcome noise issues in the smartphone-captured signal. We also describe the process of extracting a
signal’s features after capturing the signal based on fundamental theory. The list of machine-learning algorithms provided will
be useful for processing PPG features. These recommendations should be valuable for future investigators seeking to build a
reliable and affordable hemoglobin prediction model using a smartphone.

(JMIR Mhealth Uhealth 2021;9(4):e16806) doi: 10.2196/16806
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Introduction

Hemoglobin (Hb) abnormalities cause several blood diseases,
and lead to fatal and chronic health problems, including heart
attack, stroke, and pregnancy complications [1]. When an
adequate Hb blood level (men≥13 g/dL, women≥12 g/dL) is
not maintained, the disorder complicates the function of the
major organs (eg, kidney, brain, and heart) that require oxygen
[2]. Anemia, a common Hb disorder, may be caused by blood
loss, which is mostly a chronic condition (as occurs with
menstruation), decreased red blood cell (RBC) production
associated with iron and other nutritional deficiencies, and
increased RBC destruction [3,4]. The central role of Hb is to
maintain physiologic homeostasis, and the high frequencies of
Hb abnormalities make assessment of this parameter a daily
clinical activity.

Approximately 5.6% of the US population is anemic and 1.5%
of the population has moderate to severe anemia [5]. Sickle cell
diseases (SCD) cost more than US $1.5 billion annually in the
United States [6]. Globally, blood disorders and associated
complications affect more than 5 million people. In Africa,
approximately 250,000 babies are born with SCD every year
[7] and 1.62 billion people are affected by Hb-related
abnormalities worldwide [8]. A reliable, affordable, and
user-friendly solution is crucial to assess the Hb status of a large
population. Clinical assessment of Hb typically involves the
cyan-methemoglobin method, which is considered to be reliable.
However, this invasive process has several limitations, including
that the diagnostic devices are not portable, results are not
immediately available, and the entire process is expensive. Thus,
an Hb disorder diagnosis based on an invasive method is not a
perfect solution, especially for people in low- and
middle-income countries [9,10]. With available medical
facilities, frequent invasive testing is also less convenient due
to pain, anxiety, and infections [11]. A recent study estimated
the cost for a complete blood count (CBC) test in Bari, Puglia,
Italy, with approximately 1,000,000 inhabitants, to be US $3.14,
resulting in a total cost of US $560,000 in 2018. Considering
the entire national territory of Italy, the estimated cost will be
more than US $20 million per year for public hospitals for
outpatients. However, the laboratory costs for other cases,
including hospitalized patients and private clinic patients, will
be much higher than this previous estimation in Italy [12]. These
multiple circumstances indicate the reasonable importance of
a noninvasive point-of-care (POC) method for Hb measurement.

Commercially available noninvasive POC tools for Hb
measurement (Figure 1) are already available [13-16], but have
one or more of the following limitations: (1) challenging data
collection methods, (2) complex data analysis and feature
extraction processes, (3) lack of affordability and portability,
and (4) lack of user-friendliness with costly external modules
[17]. Smartphone-based solutions are emerging owing to their
multifaceted benefits. Recent Hb level assessments use the
signal captured from human body locations such as the fingertip
[18], nail beds [19], and lower eyelid area [20]. The
smartphone’s built-in sensors, additional attachments, signal
processing methods, and machine-learning algorithms offer
major advantages for Hb level estimation. However, most of
these components (devices and data collection sites) vary among
studies assessing noninvasive methods for Hb level estimation.
Therefore, it is important to investigate what, how, and why
these components play a vital role in Hb calculation.

Accordingly, in this study, we investigated invasive, minimally
invasive, and noninvasive approaches to address the following
research questions: (1) How is the signal captured by a
smartphone camera from a body site? (2) What issues hinder
the smartphone-captured signal for building a noninvasive
diagnostic tool? (3) How are a signal’s features calculated
considering a fundamental theory? (4) What machine-learning
algorithms are used to develop a smartphone-based POC
diagnostic app?

This study addressed the details of measuring Hb noninvasively.
The paper is organized according to the functional components
of a noninvasive Hb measurement system. The Methods section
describes these components and briefly details current invasive
and minimally invasive methodologies for Hb estimation. A
list of noninvasive methods is discussed in detail, assessing the
challenges and opportunities of smartphone-based solutions. In
the Results section, we describe several sensors and signal
processing methods that are currently available to process
captured signals from different body sites and produce features
to apply machine-learning algorithms. We further discuss the
most common machine-learning algorithms, including ordinary
least squares, multiple linear regression (MLR), partial least
square regression (PLSR), and support vector machine
regression (SVR). In the Discussion section, we provide several
recommendations for the development of a POC tool using a
smartphone and propose lighting sources to improve the
measurement accuracy levels. Finally, we note our contributions
to and limitations of this field.
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Figure 1. Point-of-care tools for minimally invasive and noninvasive hemoglobin measurement: (a) Hemo Cue, and (b) Astrim-Fit. (These two photos
are licensed under CC BY-ND).

Methods

Overview of Hb Estimation Methods
Hb level measurement is a blood diagnosis process to determine
the concentration of Hb in the blood. Clinicians measure Hb in
several ways, although the invasive (blood sample collection)
approach remains the most common. Invasive processes involve
the addition of various chemicals to a blood sample and then
optical variations are calculated using spectroscopic data to

measure the Hb level (Figure 2). By contrast, a noninvasive
(without blood sample collection) approach involves data
obtained from image sensors [21], spectroscopic information,
and output of a photoplethysmographic (PPG) sensor to calculate
the Hb level (Figure 3). In addition, a minimally invasive
process requires only a couple of drops of blood to calculate
Hb, and then collects image and spectra-based information from
the blood sample for an estimation. Such minimally invasive
techniques are comparatively less painful and have fewer
complications in collecting sample data.

Figure 2. Collecting patient's blood sample for doing invasive hemoglobin diagnosis.
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Figure 3. Phases involved in a noninvasive hemoglobin measurement system.

Invasive and Minimally Invasive Processes
Smartphone-based solutions have appeared in recent years for
invasive and minimally invasive blood Hb level measurement.
In these cases, smartphones follow the characteristics of a
spectrometer. For example, Edwards et al [22] built a
smartphone-based G-Fresnel spectrometer that works within a
wavelength range of 400-1000 nm. The G-Fresnel spectrometer
showed a mean error of 9.2% in Hb level measurement in
phantom tissue studies. A tungsten halogen lamp illuminates
the liquid tissue phantom of human Hb and sends the diffusely
reflected light to the G-Fresnel smartphone spectrometer.
Although the smartphone-based spectrometer opens a new
research horizon toward developing a portable and affordable
solution, the use of liquid phantoms may not be an appropriate
approach for layered biological tissues. Living tissue has both
oxy- and deoxy-Hb molecules, and the phantom’s Hb is
saturated mostly with oxygen. Therefore, in vivo studies seem
to be more appropriate for developing a reliable
smartphone-based solution to measure Hb levels.

A color-based POC system developed by Tyburski et al [23]
was built with an inexpensive, disposable, and standalone device
that consisted of two parts: a cap and a body. By capillary action,
blood automatically fills the entire sample tube of the body.
The cap is then placed into the body, which is prefilled with the
reagent solution. After 60 minutes, the blood initiates a redox
reaction and the solution shows a stable color change. Using a
color scale sticker or with the optional smartphone app after
capturing an image of the solution, the Hb level was measured
in 238 patients. The sensitivity of the visual interpretation and
smartphone analysis of this POC device was 90.2% and 91.1%,
respectively, and the specificity was 83.7% and 79.2%
respectively. However, this minimally invasive approach suffers
from the limitation of the reagent’s expiration date, quality of
the cap and body of the device, captured image quality and
resolution, and identification of an exact Hb level by a visual
scale.

Visual image-based approaches have also been introduced for
Hb measurement. Glycated Hb (HbA1c), which provides
information about an average sugar level for the last 4 months,
can be measured using a paper-based system and a smartphone,
which will help to capture an image of a drop of blood. Using
this colorimetric process, Siva et al [24] applied
image-processing techniques to investigate the pixel color
intensity values and correlated the level of Hb with HbA1c [24].
Siemens Healthineers developed and commercially launched a
blood diagnosis device named Aina that can be attached to a
smartphone for determining levels of Hb, HbA1c glucose, and
a lipid profile [25].

A chromatography paper-based test was developed that involves
a mixture of blood and Drabkin reagent based on bloodstain
images digitized with a portable scanner to quantify Hb levels
[26]. This process may be accomplished with a smartphone
camera sensor by developing a mobile app and analyzing the
captured image. For continuous Hb monitoring, a sensor that
can calculate Hb levels is implanted in the body, which requires
replacement every 3-4 days due to enzyme depletion and
membrane contamination [27]. In this implanted system, a wire
has to be attached to the patient’s body to transmit signals [28].

In these invasive and minimally invasive systems, drawing
blood from a vein involves insertion of a needle, which can
cause some discomfort, pain, numbness, or a shocking sensation
to patients, with subsequent itching or burning at the collection
site. These procedures are often traumatic for children and
people with mental disabilities. This situation is further
exacerbated for patients with needlephobia, a medical condition
affecting approximately 10% of the global population [29].

Noninvasive Process
Noninvasive systems are usually composed of the three main
functional components shown in Figure 3: (1) a data acquisition
sensor that captures a raw biological (eg, image or spectral)
signal; (2) a feature engineering unit that preprocesses the signal
and calculates features from the signals; and (3) an Hb level
estimation system, which generally incorporates different layers
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of user authentication, data storage, prediction model usage,
machine learning, and result validation [21]. The user
authentication and Hb estimation phase depend on the device,
internet availability, user data, and prediction model.

Before elaborating on the smartphone-based noninvasive
approaches, we investigated spectroscopy-based techniques
with near-infrared (NIR) spectroscopy (NIRS), because these
methods have received considerable attention for the
noninvasive measurement of blood Hb, oxygenation, pH,
hematocrit, and glucose levels [30]. We investigated the lighting
sources used in various NIRS methods to determine which NIR
lights are most useful in calculating an Hb level noninvasively.
The light sources used in a spectra-based investigation may
enhance the chance of obtaining accurate Hb information using
a smartphone camera to which lights can be attached as an
external device.

External lights (ie, NIR lights) are required when a smartphone
has no support to sense blood Hb noninvasively in living tissues.
One noninvasive method for measuring Hb flow involves
analyzing the response of an NIR spectrometer that monitors
variations in the absorption of NIR light in the arm, followed
by calculating the changes in deoxy-Hb and oxy-Hb
concentrations using six wavelengths: 797.5, 802.5, 831.2,

848.7, 866.5, and 907.8 nm [31]. A strong correlation (R2=0.95)
between Hb values calculated by venous occlusion PPG and
NIRS was determined. Using the PPG signals under eight
wavelengths (ranging from 600.22 nm to 1000.60 nm), Yi et al
[32] improved the accuracy of dynamic spectrum extraction
and analyzed transmitted light through the fingertip of 220
subjects. They developed a calibration model between the
dynamic spectrum data and Hb levels, obtaining a correlation
of r=0.86 and a root mean square error of prediction of 8.48
g/L. Although the estimated Hb levels were accurate and precise,
closely matching clinical requirements, there is an opportunity
to involve a more rational calibration set selection process and
further improvements of the instrument’s signal to noise ratio
(SNR). Again, this solution should involve a portable and
low-cost instrument.

Table 1 summarizes other spectra-based Hb level measurement
processes, which vary in terms of the ranges of light wavelength,
input signals, and acquisition devices. In most cases,
investigators have used an expensive spectrometer for data
collection. Among these spectra-based studies, the most
commonly used spectral wavelengths have been 850 nm, 940
nm, and 1070 nm. Investigators have also employed specialized
devices to capture PPG signals from the data collection sites
such as the finger, hand, and earlobe.

Table 1. Summary of spectra-based techniques proposed for noninvasive hemoglobin measurement.

Participants (N)SignalComparatorWavelength (nm)Reference

220PPGaHematology analyzer (Pentra 60; ABX; France)600-1100Yi et al [32]

78PPGSysmex-KN21670, 940Rochmanto et al [33]

10PPGPronto-7, Hemocue Hb analyzer530Desai et al [34]

33PPGHemocue Hb-201TM660, 905Kavsaoglu et al [35]

32PhotonStandard CBC test400-700Kim et al [36]

69PPGPrototype624, 850Nirupa et al [37]

119SpectraLEDb and photodiode600-1050Ding et al [38]

8SpectraOcean Optics DH-2000350-1050Bremmer et al [39]

48PPGLED600-1000Timm et al [40]

—dSpectraIRc LEDs760-940Fuksis et al [41]

—LightAnalyzer oximetry660, 940Pothisarn et al [42]

41PulseRadical 7, XE-2100940Nguyen et al [43]

129PulseHemoglobin cyanide method569, 660, 805, 880, 940, 975Jeon et al [44]

—SpectraWhite LED500-700Jakovels [45]

1008SpectraOxyTrue Hb600-1400Timm et al [46]

32PPGMasimo Pronto 7, RGB CMOS camera500-700, 1300Wang et al [47]

—LightK1713-09 Hamamatsu Photonics, Co-oximeter600, 625, 660,

760, 800, 940, 1300

Suzaki et al [48]

10PPGHemo Cue670Al-Baradie et al [49]

aPPG: photoplethysmography.
bLED: light-emitting diode.
cIR: infrared.
d—: information not provided.
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Results

Smartphone as a POC Tool
A smartphone-based POC tool as a potential alternative to
invasive clinical blood testing is rapidly attracting attention
because of the advantages of availability, user-friendliness, and
easy attachability to different biosensing devices. The
combination of a smartphone and an external device can offer
a reliable and affordable POC tool for remote health monitoring.
Moreover, the enhanced computing ability, sensing capability,
portability, and wide availability of smartphones have propelled
this development.

Approximately 56% of US adults and more than 2.5 billion
people worldwide are currently using smartphone devices.
Multiple critical issues have been addressed in employing
smartphones for clinical measurement, including for
physiological parameter estimation [50-52], noninvasive Hb
diagnosis [53,54], and blood glucose measurement [55,56].
Several studies have shown a higher level of performance in
some biomedical applications where a smartphone plays a
pivotal role in measuring blood oxygenation, Hb, glucose level,
cholesterol, and antibody levels (see Multimedia Appendix 1).
The most frequently used smartphones are developed by Apple,
Samsung, Motorola, Google, HTC, Sony, and Asus, where the
camera sensor is used to capture videos or images. The accuracy
level was deemed to be reliable in each of the studies listed in
Multimedia Appendix 1 [50,51,54,55,57-64]. Data commonly
captured by a smartphone were obtained from two main body
sites: the fingertip and eyelid.

Finger-Based Analysis
The average width of a human index finger is 14 mm, including
the bone (∼6 mm), tissue, dermis (∼3 mm), epidermis (∼1.5
mm), and nail-plate (∼1 mm) [65]. As a data collection site, the
finger is frequently chosen for several reasons: it is easy to place
on a smartphone, it is less sensitive than the eyelid, and it is
easy to control. In most cases, the finger pulp area is illuminated
using either the phone flashlight or external light sources to
obtain the pulsatile information of blood in this area. Reflectance
and transmittance oximetry, based on the light source’s position,
have been applied to the fingertip area using a smartphone to
estimate Hb levels. For example, SmartHeLP [53], HemaApp
[66], and Hb Meter [67] determinations have used smartphone
camera sensors to capture image or videos. In these studies,
various lengths of fingertip videos were recorded with different
smartphones, and each video frame was analyzed pixel-wise by
separating the red, green, and blue (RGB) pixel intensities.
Hasan et al [53] subdivided each frame into 10×10 similar sized
blocks, separating RGB pixel intensities, and generating
time-series information on each block over all frames. They
also applied an artificial neural network to estimate Hb levels
based on training data of 75 subjects. The gold-standard Hb
levels ranged from 7.6 to 13.5 g/dL, and a rank-order correlation
of 0.93 was obtained between model-predicted and
gold-standard Hb levels. Based on the pixel information from
the group of blocks, the most significant region of interest was
determined to be close to the smartphone’s flashlight. Although
RGB pixels were explored in this study, only the red pixel

information was employed for development of the prediction
model. In addition, the presence of extreme (lower and higher)
levels of Hb was limited.

Similarly, Wang et al [66] evaluated fingertip videos using three
different hardware embodiments, in which the first embodiment
included a white flash and infrared emitter, the second
embodiment incorporated an incandescent lamp with a white
flash and infrared emitter, and the third embodiment was made
by a white flash and custom infrared light-emitting diode (LED)
array (Figure 4) [66,68-70]. The external lighting sources, a
combination of incandescent and NIR LEDs, resulted in better
estimation with an error of 1.26 g/dL and correlation of r=0.82
compared with the other two embodiments. In this case, they
captured 15-second-long fingertip videos from 31 subjects,
generated pulsatile signals, and extracted RGB time-series
waveforms for each video. Additional features, including peak
and trough, were calculated from each time-series dataset, and
SVR was applied to estimate the level of Hb for each user. In
this study, the analyzed Hb levels ranged from 8.3 g/dL to 15.8
g/dL, which were compared with those estimated using Masimo
Pronto. Although HemaApp showed greater accuracy than
Masimo Pronto, HemaApp was not tested on various types of
devices (eg, smartphone) and lighting sources. HemaApp used
the bulb to receive light of about 1000 nm, and the age of the
light bulb impacted the efficiency. In addition, the effect of
ambient light in this study was significant. To make HemaApp
more versatile, the prediction model requires upgrading on the
training data with more subjects.

In another report, four LED lights with different wavelengths,
photodiodes, and a microcontroller unit were used to capture a
finger’s PPG signal, enabling calculation of the ratio between
alternating current (AC) and direct current (DC) signals of the
PPG, and estimation of the Hb level, which was transferred to
a smartphone through Bluetooth [71]. The microcontroller
analyzed the PPG signal using the exponential moving average
and then linear regression was applied to calculate the Hb level
of 30 subjects, with a root mean square error of 1.53 g/dL.
However, the light setting requires correct illumination for
precise Hb estimation and the effect of different skin
pigmentation is yet to be tested in this system.

A human fingernail, with about 1 mm thickness on average, is
comprised of keratin protein, which is translucent [72].
Fingernails have been studied since they allow for easy data
capture and they are relatively easy to control [73]. Mannino et
al [19] analyzed the images of a fingernail bed captured by a
smartphone-based app to investigate critical information for
noninvasive Hb level measurement. In this study, an Apple
iPhone 5s captured the fingernail bed images (with the camera
flash both on and off) from 337 participants who provided blood
samples for a standard CBC test. Multilinear regression with a
bisquare weighting algorithm was applied to build a prediction
model from the nail bed’s image parameters and standard
laboratory reports. Although the smartphone app measured the
Hb level within 2 gm/dL with a bias of 0.2 gm/dL in 100
patients, and showed a good correlation (r=0.82) compared with
CBC reports, the system suffers from a limitation of automated
region of interest selection.
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Figure 4. Smartphone-based point-of-care tools for noninvasive hemoglobin measurement using fingertip and eyelid images. (a) SmartHeLP [53], b)
HemaApp [66], (c) SSR-based Hgb [20], and (d) Conjunctiva-based Hgb [80]. The images are presented with permissions.

Most of the finger-based studies for Hb level estimation
considered reflectance oximetry, in which the smartphone
camera and the light source were on the same side. However,
transmittance oximetry has been rarely applied for finger-based
data collection in estimating Hb levels. There is an opportunity
to investigate the finger as a data collection site by applying
transmittance oximetry, in which light from the finger’s dorsal
area is sent to the pulp area, because peak absorption of the
human melanin pigment occurs at around 335 nm [74], whereas
tissue has low absorbance (translucent) in the red and NIR
regions, and prior studies indicated that NIR light could
penetrate more than 1-2 cm [75].

Palpebral Conjunctiva
The palpebral conjunctiva, the lower eyelid area of the eye, has
received considerable attention as a measurement site because
the microvessels in this area are clearly visible and melanocytes
are not present [76]. Reflectance spectroscopy has been applied
to capture data from the eyelid area [77]. Digital photography
and spectral data of lower eyelid images or spectral data
converted from an RGB image were applied in several studies
to measure Hb levels in a noninvasive manner.

Recently, Park et al [20] introduced a smartphone-based solution
that converts an RGB image captured by a smartphone’s camera
sensor into a virtual hyperspectral image. The need for additional

equipment such as an attachment with a smartphone to capture
the spectral response was avoided by generating a conversion
matrix (T) to transfer a regular image to a spectral image. The
generated spectral image was defined as virtual spectra, which
were used to train an Hb prediction model. In this study, a wide
range of Hb values were calculated in clinical settings and
compared with the estimated Hb levels, and Bland-Altman
analyses showed reliable performance. Although three different
smartphones were used to collect the data, the testing on other
smartphones, creation of a more extensive dataset with a wide
range of Hb levels, and inclusion of patients with a variety of
possible confounding medical conditions are required for further
evaluation of this approach.

Selim et al [77] developed a solution based on a lower eyelid
image captured by a commercially available Sony DSC-F1
digital camera with a charge-coupled device (CCD), exposing
the palpebral conjunctiva. To minimize the effect of ambient
light, a gray card was placed close to the eye, and the region of
interest was selected from both the eyelid and gray image
manually. Invasively measured Hb, using an automated cell
counter (SE 9500, Sysmex Corporation, Japan), was compared
with the estimated Hb of 117 subjects’ eyelid images,
demonstrating a Pearson rank-order correlation coefficient of
0.6. However, the prediction algorithm was not verified with
other light sources, compared with a gold-standard test, checked

JMIR Mhealth Uhealth 2021 | vol. 9 | iss. 4 | e16806 | p. 7https://mhealth.jmir.org/2021/4/e16806
(page number not for citation purposes)

Hasan et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


according to the variation in oxygen saturation, or tested in
outdoor settings.

Dimauro et al [78] attached an enclosed macrolens with a
smartphone to capture a close and high-resolution image of an
eyelid with precise focus. The image was segmented using the
SLIC Superpixels algorithm, a region of interest was selected
for feature extraction, the erythematous was calculated for the
CIE-Lab color space, and the k-nearest neighbor classification
algorithm [79] was applied to the eyelid image data captured
from 102 participants. Applying the Random Oversampling
Examples (ROSE) balancing algorithm, they found reliable
prediction of the Hb level using conjunctiva images.

Digital images of the palpebral conjunctiva can provide
information to measure the level of Hb in a noninvasive manner
[80]. Anggraeni et al [57] built a regression model using the
digital images of 20 participants’eyelids along with white paper
images captured at the same time by Asus ZenFone 2, and
estimated the Hb concentration, which correlated highly with
clinically measured Hb levels (r=0.92). Among the three color
pixels of a palpebral conjunctiva image, the red color intensity
showed better performance than the green and blue pixel
intensities in this study. However, specific software is required
for image analysis, and the region of interest needed to be
selected for enhancing the precision level.

In addition to conjunctiva images, Rojas et al [81] developed
Selienemia, a smartphone and cloud-based platform, using RGB,
ISO files, and exposure of images of the tongue, and built a
curve-fitting model applying logistic regression and a neural
network algorithm. The tongue images provided a better result
(sensitivity 91.89% and specificity 85.18%) than the
conjunctiva-based prediction model (sensitivity 91.89% and
specificity 70.34%) when tested on 64 patients. However, the

training model was built on a population in which most of the
participants were young (mean age of 22.6-31.6 years) and
extreme levels of Hb were rarely observed in this group (mean
10.6-14.8 g/dL). Establishing a controlled environment and
standardized images for Selienemia is challenging.

Although noninvasive devices can capture accurate blood Hb
values, their application can be cumbersome and limit users,
since the devices have to be attached and oriented correctly,
and must be operated with expertise. Access to expensive
noninvasive devices for Hb diagnosis is not a practical solution
in many low- and middle-income countries. Since the number
of smartphone users in the world is estimated at about 6 billion
[82], discussion about noninvasive methods should involve
user-friendly and cost-effective solutions developed using a
smartphone; however, more details of the sensors used are
required. In the following sections, we discuss several sensors
and signal processing tools.

Sensors
Sensors translate a physiological signal into machine-accessible
data that allow for measurement of physical properties of the
human body by collecting physiological signals from one or
multiple body sites, including the skin [45], fingertip [66], lip
[83], and eye conjunctiva [84]. A machine-learning algorithm
with the features generated from a sensor’s signal can be used
to build a prediction model to estimate Hb levels.

Table 2 lists the different types of sensors that have been used
to capture physiological data to estimate Hb levels
noninvasively. Most of these sensors are based on image, PPG
signal, and optical data. Some of the sensing devices were built
by the research team, whereas others used off-the-shelf hardware
such as a smartphone, PPG device, or spectrometer.
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Table 2. Summary of different sensors, signal types, and body sites used for hemoglobin level measurement.

Body partSignalSensorDeviceReference

FingerLightPPGaHemocue Hb-201Kavsaouglu et al [35]

ConjunctivaSpectraOpticalSpectrometer, quartz-tungsten-halogen
source

Kim et al [36]

FingerLightPPGPrototypeNirupa et al [37]

FingerSpectraOpticalLEDb and photodiodeDing et al [38]

FingerSpectraOpticalInGaAs photodiodeTimm et al [40]

FingerLightOpticalAnalyzer oximetryPothisarn et al [42]

FingerPulseFluorescence and
optical

XE-2100, Masimo Radical 7Nguyen et al [43]

FingerPulseOpticalHardware prototypeJeon et al [44]

SkinSpectraOpticalNuance 2.4Jakovels et al [45]

FingerSpectraOpticalHemocueTimm et al [46]

FingertipPPGImageMasimo Pronto 7, RGBc CMOSd cameraWang et al [47]

FingerPPGImageSmartphone cameraKamrul et al [53]

FingerPPGImageSmartphone cameraWang et al [66]

Finger, ear or toeSpectraOpticalModified pulse oximeter, Coulter STKS
Monitor

Kuestner et al [85]

Finger or earSpectraOpticalHemocue 201+, Radical-7Lamhaut et al [86]

ArmSpectraOpticalRGB CMOSJakovels et al [87]

FingerSpectraOpticalR1-25 and R2-25aMiyashita et al [88]

FingerSpectraOpticalAvaSpec HS1024x58TEC-USB2Li et al [89]

FingerSpectraOpticalHemocue 301, Siemens RapidPoint 405,
Sysmex XT 2000i

Frasca et al [90]

aPPG: photoplethysmography.
bLED: light-emitting diode.
cRGB: red, green, blue.
dCMOS: complementary metal oxide semiconductor.

Optical sensors, as a type of photometric device, capture the
optical signal from an external source such as an LED, laser,
or lights of different spectra [91]. Photodiodes are primarily
used as optical sensors, which are made of indium gallium
arsenide (InGaAs) and indium-phosphor. In some cases, optical
sensors contain an embedded amplifier that can select different
wavelengths (500-1600 nm) of the signal. A complementary
metal oxide semiconductor (CMOS) is a sensor that converts
photons to electrons for digital processing, which is used in
smartphones, digital video cameras and digital CCTV cameras,
astronomical telescopes, scanners, barcode readers, robots, and
optical character recognition systems. As high-end smartphone
devices include CMOS camera sensors, we can collect data
using a smartphone in data collection. In addition to RGB, a
CMOS sensor, RGB LED ring-light illuminator, and
orthogonally orientated polarizers can be used to capture images,
where multiple images under different light sources may carry
rare information [87]. The reason is that CMOS chips, with
PPG light-capturing cells, pick up the photons at different
wavelengths and translate them into electrons, which are
converted by digital-to-analog converters into pixels of various

colors [92]. The CCD sensor, a light-sensitive integrated circuit,
can convert each image pixel into an electrical charge, and has
a high degree of sensitivity that can generate an image even in
low-light conditions [93].

InGaAs, an alloy of indium arsenide and gallium arsenide, is
another type of infrared sensor used in photodiodes. As a faster
response, an InGaAs photodiode is preferred in most studies
since these photodiodes have shown higher quantum efficiency
[94]. An InGaAs photodetector may also be useful for
noninvasively monitoring the Hb concentration and oxygen
saturation [95]. A silicon photomultiplier is a solid-state photon
detector that can count every single photon, is small in size, of
low cost, able to detect low light, and is quantum-efficient [96].
Several studies have used a silicon photomultiplier to build
embedded systems to detect PPG signals in both reflective and
transmittance modes [97].

A PPG sensor captures an optical response from the
microvascular bed of a fingertip, and is used for arterial, venous,
and respiratory measurements. Recently, optical PPG sensor
data were used for noninvasive Hb measurement [98]. A PPG
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device can identify the finger motion with a motion detector
and can work with more than one wavelength. Compared with
data captured by an electrocardiogram machine, a PPG device

reliably (R2=0.93) calculated the heart rate of 170 subjects [99].

Sensing through an electrical-sensing device costs additional
money, which complicates the use of such systems. By reducing
the number of electrical sensors through leveraging the
smartphone’s camera sensor, an image or video signal can be
collected from a body site, and these data can be processed to
generate machine-readable signals and features, and then
machine-learning algorithms are applied to build an Hb
prediction model. Smartphone-captured data, either image,
audio, or video, should be preprocessed using signal processing
techniques.

Signal Processing
Smartphone-recorded signals captured from a body site are
attenuated by different unintentional issues such as movement,
external noise, and motion artifacts. As part of preprocessing,
smartphone-captured data, image, or video are processed using
OpenCV library, which generates time-series signals [100] that
can be applied to Fourier series analysis on a cycle-by-cycle
basis. To remove high-frequency noise in the signal, the data
can be filtered using smoothing filters such as Savitzky-Golay
smoothing, Butterworth, and Gaussian filters. A cycle-by-cycle
Fourier series analysis could reduce the measurement error of
the signal from 37% to 3% [101].

The Savitzky-Golay data smoothing filter uses a least-squares
polynomial approximation by fitting a polynomial to an input
dataset, and evaluates the resulting polynomial at a single point,
maintaining the shape and magnitude of the waveform peaks
while smoothing the waveform [102].

Biological signals, which are nonstationary as they tend to
change over time, can be passed through wavelet transformation
for noise reduction and signal enhancement [103]. Stationary
wavelet transform was applied to PPG signals, and the wavelet
transforms modulus maxima was used to reduce motion artifacts,
resulting in an 87% reduction in heart rate estimation error, 76%
reduction in heart rate variability estimation error, and 66%
reduction in instantaneous heart rate error [104]. A continuous
wavelet transform can be used to determine the accurate position
of the peak and trough of a PPG signal [105]. However, wave
transform has limited capability in restoring corrupted PPG
signals for both heart rate and pulse transmit time measurements

[106]. There are also more advanced techniques derived from
wave transform such as synchrosqueezing transform that have
been used to process PPG signals [107].

Independent component analysis (ICA) can separate the additive
non-Gaussian subcomponents of a multivariate signal [108].
As motion artifacts in a PPG signal are derived from
independent sources, these can be separated using ICA. ICA
can also be used to separate the effect of ambient light and other
sources of interference. Kim et al [109] used a combination of
ICA and block interleaving with low-pass filtering to reduce
motion artifacts in PPG signals. Holton et al [110] compared
ICA with principal component analysis, another source
separation technique, with respect to their effectiveness in PPG
signal recovery from video recordings, and found that ICA
produced the most consistent result.

A Butterworth filter, as a maximally flat filter, makes the
frequency response of a signal as flat as possible in the passband
[111]. By applying the Butterworth filter, high-pass, low-pass,
or band-pass filter, a PPG signal can be processed as an
authentication method of a PPG biometric [112]. With the
Butterworth filter, using both low-pass filtering and wavelet
transform, motion artifacts can be removed from PPG data,
monitor blood pressure, and identify wrong peaks [113-115].

A biological signal captured by a smartphone introduces noise
due to uncontrolled data collection processes, which results in
a low SNR. To remove the motion artifact, a Butterworth filter
[113], singular value decomposition [116], adaptive filtering
[117], Fourier series analysis [118], ICA [109], and principal
component analysis [119] have been most commonly used.
More than one technique should ideally be used to reduce the
motion artifact based on the generated signal’s pattern, noise
level, sources, environment, and acquisition process. After
cleaning, features of the signal are calculated to apply
machine-learning algorithms to build a prediction model.

Machine-Learning Algorithms

Definition
A machine-learning algorithm trains a machine to learn and
apply acquired knowledge in predictions. Most of the current
Hb prediction models use machine-learning algorithms.
Although these algorithms could be used in any type of
diagnostic system, we here present a list of machine-learning
algorithms that are commonly used to assess Hb levels
noninvasively (Table 3).
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Table 3. Summary of machine-learning algorithms for noninvasive hemoglobin measurement.

Performance measuresAlgorithmsReference

r and R2kNNa classifierDemauro et al [12]

r, RMSbDifference accumulationYi et al [32]

MSEk, R2, RMSEl, MAPEm, IAnCARTc, LSRd, GLRe, MVLRf, PLSRg, GRNNh, MLRi,

SVRj

Kavsaouglu et al [35]

MSE, R2Linear regressionNirupa et al [37]

rBP-ANNo and PCApDing et al [38]

rLLSq fitBremmer et al [39]

MSE, R2, rMLR, PLSRJeon et al [44]

Gaussian analysisRegression analysisJakovels et al [45]

BAArRegressionTimm et al [46]

RMSELinear regressionWang et al [47]

r, BAASVRWang et al [66]

r, BAA, P value, bias, precisionLinear regressionLamhaut et al [86]

r and BAA bias plotLinear regressionMiyashita et al [88]

RPLSRLi et al [89]

MSE, r, RMSE, R2, BAARegression, BAAFrasca et al [90]

RPLSR and ANNsKamrul et al [18,53]

akNN: k-nearest neighbor.
bRMS: root mean square.
cCART: classification and regression trees.
dLSR: least-squares regression.
eGLR: generalized linear regression.
fMVLR: multivariate linear regression.
gPLSR: partial least-squares regression.
hGRNN: generalized regression neural network.
iMLR: multiple linear regression.
jSVR: support vector regression.
kMSE: mean square error.
lRMSE: root mean square error.
mMAPE: mean absolute percentage error.
nIA: index of agreement.
oBP-ANN: backpropagation artificial neural network.
pPCA: principal component analysis.
QLLS: linear list squares.
rBAA: Bland-Altman analysis.
sANN: artificial neural network.

MLR
With a similar strategy of more than one simple linear
regression, MLR aims to model the relationship between two
or more explanatory variables and a response variable. The
simple linear regression estimates the relationship between a
dependent variable Y and an explanatory variable X using the
equation Yi=β0+β1Xi+εi, where β0 is the intercept and β1 is the
slope of the line, and the error εi is considered to have a mean
value of 0. By contrast, MLR has p explanatory variables. In

this case, the relationship between Y and X is represented by
the following equation:

Yi = β0 + β1X1i + β2X2i + β3X3i +...+ βpXpi + εi,

where β1 to βp are the coefficients. Using this equation, MLR
uses the features of a signal as an observation (row) of X and
the target value. For example, the clinically measured Hb level
is stored in Y to build an Hb prediction model [35].
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PLSR
Multiple factors, greater than the number of observations, have
been analyzed by PLSR in several studies for Hb level
estimation [120,121]. PLSR calculates a few latent factors
among other factors that may be responsible for most of the
variation in the target or response variable. PLSR names the
latent variable as T or X scores and defines the response
variables as U or Y scores. The X scores with a direction in the
factor space explain the factor variation, even when a strong
relationship with Y scores is lacking. In PLSR, the Y scores
maintain the variation of predicted Y and provide data regarding
the change in U. The greatest advantage of PLSR is that both
X and Y scores are used to determine a correlation, which helps
to build a reliable prediction model [122].

SVR
SVR is a well-known regression technique for the
dimensionality problem, which finds the best hyperplane that
separates a class/group with maximum distance using support
vectors as a set of critical points. The optimization function is
given as follows [123]:

1/2 ||w||2

Subject to,

yi – (wixi) – b < e

(wixi) + b – yi < e

SVR uses kernels, linear or nonlinear, to create a hyperplane
that preserves maximum margins among the data. One of the
popular kernel functions is the radial basis function, which has
been used to estimate noninvasive Hb levels [35,66,124].

Measurement Techniques
An Hb prediction model developed by applying a
machine-learning algorithm from estimated Hb levels requires
a performance test with a gold-standard (clinically measured)
Hb value. Performance measurement, based on comparison of
estimated with clinically measured values, is generally achieved

by calculating the goodness of fit (R2), correlation coefficient
(r), mean absolute percentage error (MAPE), Bland-Altman
plot, mean absolute error, and mean squared error (MSE) in
data analysis, as follows.

MAPE: 

where At is the actual value or gold-standard measurement, Et

is the estimated value, and n is the number of measurements or
observations. MAPE is used in the majority of performance
measurements because it is easy to explain and understand and
does not depend on scale.

If Yi denotes the ith target value and Ŷi denotes the estimated
value of Yi, then the formula for the MSE considering the
dependent variable Y with n elements is:

The correlation coefficient (r) demonstrates how strongly two
measurement methods are linearly related. The value of r is
between –1.0 and +1.0; if r is +1.0 or –1.0, then strong linear
relationships are indicated. The formula for Pearson correlation
is given by [125]:

where n is the sample size, xi, yi are the sample points, 

is the sample mean, and is the target mean value.

The Bland-Altman plot is used to estimate a limit of agreement
(LOA) between two quantitative measurements. In general, it
is common to compute the 95% LOA between two measurement
processes. The Bland-Altman plot thus represents the difference
between the two measurement methods against the mean value.

Discussion

Summary
We investigated several invasive, minimally invasive, and
noninvasive methodologies involving a smartphone for data
collection, presentation, and transmission processes toward the
development of a noninvasive Hb measurement tool. The diverse
methodologies across studies included data collection processes,
signal processing techniques, feature selection processes,
prediction model development algorithms, and performance
measurement techniques. Based on these insights, we provide
a list of recommendations to develop a smartphone-based
noninvasive Hb level estimation tool, which are organized below
to answer the research questions on how to capture a signal
using a smartphone camera from a body site, address several
issues that add noise in the smartphone-captured signal, calculate
the features of a signal following a fundamental theory, and
apply machine-learning algorithms for the development of an
Hb prediction model.

Body Site Selection for Signal Acquisition
The recommended optimal data collection sites on the body are
the palpebral conjunctiva, because of easy access to the
microvasculature, and the fingertip, because of the ease of
control and access. In the eyelid area, most data collection
processes involve digital photography [77,84,126] or reflectance
spectroscopy [127,128]. Although most studies demonstrate
how to capture an image accurately, perform spectral
measurement, and maintain the data collection site motionless
during data collection, there is a chance that some of the
measurements may include noise from other unintentional
activities such as eye blinking, eye sensitivity to the light,
breathing, loss of control of the eyelid, or a limited exposed eye
area. While using the smartphone camera or external camera to
capture an eyelid image, the user can attach a fixed object to
the smartphone (eg, mirror) and the image can be captured with
a mobile app, in which the boundary of the eyelid area must be
visible so that users capture the eyelid image from a fixed
distance. In this case, the secondary camera (or the camera on
the screen side) of the smartphone is a good option since the
user can see the app screen and the eyelid area on the
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smartphone’s screen, which may allow capturing an eyelid
image without additional assistance.

The fingertip has several advantages as a data collection site.
Fingertips are easily accessible, less sensitive to minor
manipulations, and are generally easy to control. The
approximate thickness from the dorsal to the ventral pad side
of a finger is about 14 mm for adults. Fingernails with a
translucent protein (keratin) can transfer NIR light, which can
penetrate more than 1-2 cm [73,75]. Thus, NIR light in the
finger tissue can work in both reflective and transmissive mode.
Owing to the greater flexibility, we recommend a fingertip-based
study over an eyelid-based approach.

Response Calculation
Fingertip tissues with arterial and venous blood contain
light-absorbing components that can be recorded by PPG, an
optical device that can be used to observe blood volume changes
noninvasively. A PPG system is built with a light source to
illuminate the tissue area (eg, finger) and a photodetector to
capture the variation of light intensity. The intensity variations
are observed due to the systole and diastole parts of the
heartbeat. Thus, a PPG signal is derived from two parts: the
dynamic part, defined as the AC signal, and the static part,
defined as the DC signal (Figure 5).

Figure 5. Light absorption changes for pulse, arterial, and venous blood, and living tissue. AC: alternating current; DC: direct current.

The absorption of light by melanin and fat in the skin exhibits
a significant response in the shorter wavelengths of light [129].
NIR light, with a wavelength range from 700 to 2500 nm, can
penetrate the finger more efficiently than visible light. In this
range, light can penetrate 1-2 cm in tissues. As suggested by
the foregoing discussion, we recommend light sources of 850
nm or 940 nm, and camera (visible) light to assess the Hb
response from a fingertip video. Since water starts showing a
response at greater than 950 nm, we recommend using 1070-nm
wavelength light to capture the plasma response from a video.
The PPG signal captured under an NIR LED light source should
be used for further processing. Since the low SNR may reduce
the possibility of better PPG generation, selection, and feature
extraction, we recommend utilization of laser diodes as a light
source and developing a PPG generation algorithm using the
dynamic spectrum method [89], ratio of the superimposition
averaging template and pulse wave [130], optimized differential
extraction method [131], and spectral difference coefficient and
dynamic spectrum [132].

Signal Preprocessing
Because the pressure of the fingertip pad on the smartphone
camera and finger movement can alter the waveform of the PPG
signal, a well-designed hardware system for securing the imaged

finger needs to be developed [133,134]. Noise and artifacts can
be further reduced with the use of filters such as moving average
and adaptive filters that work with a reference signal [135]. The
reference signals can be obtained from an additional transducer
to identify finger movement [136]. Most physiological signals
are nonstationary and change their properties over time. In this
case, a wavelet transformation and the smoothed
pseudo-Wigner-Ville distribution are recommended to improve
the PPG signals [135]. The wavelet transform has been used as
a common method of movement artifact reduction for PPG
signals [137].

To identify the region of interest, HemaApp uses the center
section of an image [66], Scully et al [58] used 50×50-sized
image pixel intensities on the green channel, and Jonathan and
Leahy [138] took a central region with a mean intensity value
from 10×10 pixels for smartphone-based PPG generation. Based
on these findings, we recommend subdividing an image into a
10×10 image block, generate a PPG signal on each block against
all frames, and identify the best location to obtain the strongest
PPG signal.

Theoretical Foundations
The transmissive or reflective process captures the properties
of a living tissue noninvasively [139]. The variation of this
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transmitted or reflected light depends on the shape, volume,
and refractive index of Hb, and the angular distribution of
scattered light, which characterizes the absorption properties of
blood and tissue [140]. By analyzing these changes in optical
scattering properties in tissues, a noninvasive solution for Hb
estimation can be achieved.

According to the Beer-Lambert law, Io=Ie−αCD, where Io is the
output light intensity, I is the incident light intensity, α is the
light absorption coefficient, C is the concentration of a blood
component, and D is the light path; the absorption of light is
proportional to the concentration of a medium and the path
length. A finger has three different absorptions for a given
wavelength of light (λ) due to Hb, plasma (P), and the tissue
(T). Therefore, the light absorption (under a given λ) by a finger
is

Io,λ = Ie(αHb[Hb]+αP[P]+αT[T])(−D)

Following the above equation, the light response for the AC
and DC value of a PPG can be given as:

ACλ = Ie(αHb[Hb]+αP[P])(−d1)+(αT[T])(−DT)

DCλ = Ie(αHb[Hb]+αP[P])(−d2)+(αT[T])(−DT),

where d1 is the path length for Hb and plasma during the AC
signal, d2 is the path length for Hb and plasma during the DC
signal, d=d1−d2, and DT is the path length for the tissue. We
assume that the tissue has a stable response, and the ratio of the
magnitude of AC and DC removes the effect of the tissue. Then,
we can express the ratio between the AC and DC values as:

ACλ/ DCλ=e(αHb[Hb]+αP[P])(–d)

where d is the path length that affects only the Hb and plasma
for λ wavelength of light. Taking the log of both sides of the
equation, we can write:

lnACλ/ DCλ=(αHb[Hb]+αP[P])(–d)

The empirically measured absorption coefficient for each
wavelength of light can help to solve the above equation.
However, the system setup for fingertip video recording, lighting
conditions, PPG generation from fingertip videos, and complex
reflection properties of tissue require machine-learning
regression techniques to calculate the ratio of Hb and plasma
[54,66]. By incorporating multiple wavelengths of light and the
respective responses, several studies have demonstrated reliable
Hb prediction models, reducing the number of wavelengths to
two with one Hb-sensitive wavelength and another
plasma-sensitive wavelength. We recommend this
dual-wavelength approach, in which the ratio of the responses
captured by two different wavelengths of NIR lights has been
applied in different investigations such as for blood Hb [35],
skin blood supply assessment [141], oxygenation level [142],
and glucose level [143] estimation. The CCD camera sensors
can capture PPG signals similar to a pulse oximeter using a
photodetector in the NIR range, with a light wavelength around
1000 nm [144]. Modern smartphone cameras have strong
sensing capabilities for PPG imaging and volumetric changes
in the arterial blood, which enable them to capture PPG signals
using reflective or transmissive oximetry from the finger. After
generating the PPG signal from the smartphone-based fingertip
videos, the features can be calculated from each signal.

PPG Feature Generation
Since a PPG signal reflects the movement of blood from the
heart to the fingertip through the blood vessels, the characteristic
parameters of a PPG signal may provide information on blood
constituent levels. PPG features have been used in several
studies, including those of hematocrit, oxygen saturation, pulse,
and respiration [35,145-147]. Based on these insights, we
recommend investigating multiple features from the PPG signal
(Figure 6), including the systolic and diastolic peak, PPG rise
time, pulse transit time, pulse shape, and amplitude [148].
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Figure 6. Multiple features collection from a photoplethysmogram signal.

The systolic peak, an indicator of the pulsatile changes in blood
volume caused by arterial blood flow, is generated by the direct
pressure wave coming from the left ventricle to the periphery
of the body. The diastolic peak is a result of reflections of the
pressure wave by arteries of the lower body [147]. The dicrotic
notch is a small downward deflection between the systolic and
diastolic point of a PPG cycle [149]. The pulse interval
represents the relationship between the contribution that the
wave reflection makes to the systolic arterial pressure and the
reflected wave coming from the center [148]. The PPG shows
blood movement, whereas the first derivative of the PPG signal
indicates the velocity of blood in the finger [150]. Finally, the
ratio of a peak value and the sample rate is denoted as the peak
time.

The systolic amplitude, representing pulsatile changes in blood
volume, can lead a machine-learning algorithm to correlate the
pulsatile changes with blood constituent levels [151]. Delle et
al [152] confirmed the inverse relationship between the middle
cerebral artery peak systolic velocity and Hb levels. With the
incoming arterial pulse in the systolic phase, the total light
absorbance rises with the increase in arterial blood volume. The
systolic increase can then be measured by subtracting the
diastolic baseline absorbance from the systolic peak absorbance
[153]. The relative augmentation allows us to capture these
variations [66], and the inflection points can determine the
minimum and maximum values of the PPG waveform [154].
By calculating the first and second derivatives of the PPG
signals, the informative inflection points can be more accurately
studied. The change in blood volume can be tracked by
calculating the pulse interval and the ratio of different peak
arrival times [155].

Finally, we recommend calculating the ratio of two PPG features
captured under two different wavelengths of light (λH and λP).
The ratio of two PPG signals’ feature values can be presented
as follows:

Rλ1 (λ2)=PPGλ1/PPGλ2,

where, Rλ1(λ2) is the ratio of the two PPG signals’ features,
PPGλ1 is a PPG generated under the Hb-responsive light source,
and PPGλ2 is a PPG calculated under a plasma-responsive light
source. The ratio of the two PPG feature values represents the
individual ratio between each feature value, which can then be
applied to Hb level estimation.

Dataset Balancing
In medical research, an imbalanced learning problem frequently
occurs while solving a classification problem due to insufficient
data of certain classes [12]. The imbalance condition can affect
the prediction model. Therefore, suitable solutions are required
to solve this problem. One strategy might be to alter the class
distribution through data resampling (eg, oversampling with
sample replacement). The newly generated data can remove the
overfitting issues and improve the generalization ability. Class
balancing can be achieved through the ROSE algorithm [156],
which helps to relieve the severity of the effects of an
imbalanced distribution of classes. SMOTE [157], which is
based on an oversampling approach, can also be applied to solve
this issue.

Patient Evaluation Strategy
There are different types of users or patients worldwide of a
smartphone-based POC solution for blood component
measurement. Based on the availability of smartphones and the
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expertise of the user, two strategies can be adopted. The first
strategy is for users living in low-resource settings, who can
obtain the smartphone from a local clinic, pharmacy, village
shop, or government office such as a municipality. Since the
users are not experts in using the mobile app and face challenges
in understanding the output of the blood report, a trained person
can help the patient collect the fingertip video or capture an
eyelid image to transfer to a cloud for further processing. In this
case, the smartphone is safe to use without the risk of losing a
device, sending wrong data, and obtaining misleading feedback
from the cloud. This option is also cost-effective since many
people can access the smartphone with minimum payment. The
second strategy is for smartphone users who have some degree
of mobile health literacy, confidence to capture data, and a better
understanding of mobile apps. In these settings, the users capture
data from fingertip videos or eyelid images by themselves and
submit the data through the internet. In both contexts, users are
also allowed to send their clinical blood test results through the
mobile app to the cloud. These strategies will help researchers
to build an updated prediction model based on the data stored
on the cloud.

These recommendations can provide guidance for researchers
in the area of noninvasive blood component measurement to
develop smartphone-based POC tools with the support of mobile
app development (user interface), cloud computers, and software
and prediction model developers. The data collected by a
smartphone can be transferred to a cloud via the internet where
several steps are to be accomplished, such as authentication,
schedule data to a job manager [158], apply an existing

prediction model, update the model, and give feedback to the
users with an estimated Hb level.

Conclusions
As an increasingly widely available computing platform, the
smartphone offers an alternative, noninvasive POC tool to
traditional measurements of blood Hb. We recommend the
fingertip as the data collection site for the optimal development
of an accurate Hb prediction model due to its easy access, use
of three different NIR lighting sources, specific signal processing
techniques and feature selection methods, and region of interest
selection methods. For fingertip-based data collection, a covered
external NIR light source (ie, fully covered PPG device) can
provide the best PPG signal from a smartphone video. The video
should be captured with minimum presence of ambient light,
as demonstrated by Hasan et al [159] (Figure 7, left). In addition,
an eyelid conjunctiva image can be captured using a smartphone
app installed on a head-mounted plastic passive viewer (Figure
7, right) [12,78]. These two data collection methods can provide
practical applications because of their reliability, ease of use,
and sustainable cost for a patient. Investigators need to consider
the following issues before developing such a smartphone-based
POC tool: (1) cost of the smartphone, external device, reagents
if needed, training, internet, and cloud implementation; (2) other
physiological features of the patient; (3) enabling multiple
checks with a minimal cognitive load for the user; (4) storing
the user’s location, sex, and age in the record; (5) keeping the
external device as optional so that a user can run a diagnostic
without the device; and (6) creating an external device that is
cost-effective, easily attachable, properly fit with the finger,
and user-friendly.

Figure 7. Recommended data collection tool design for (left) fingertip video capture and (right) an eyelid conjunctiva image.
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