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Abstract

Background: The World Health Organization has projected that by 2030, chronic obstructive pulmonary disease (COPD) will
be the third-leading cause of mortality and the seventh-leading cause of morbidity worldwide. Acute exacerbations of chronic
obstructive pulmonary disease (AECOPD) are associated with an accelerated decline in lung function, diminished quality of life,
and higher mortality. Accurate early detection of acute exacerbations will enable early management and reduce mortality.

Objective: The aim of this study was to develop a prediction system using lifestyle data, environmental factors, and patient
symptoms for the early detection of AECOPD in the upcoming 7 days.

Methods: This prospective study was performed at National Taiwan University Hospital. Patients with COPD that did not have
a pacemaker and were not pregnant were invited for enrollment. Data on lifestyle, temperature, humidity, and fine particulate
matter were collected using wearable devices (Fitbit Versa), a home air quality–sensing device (EDIMAX Airbox), and a
smartphone app. AECOPD episodes were evaluated via standardized questionnaires. With these input features, we evaluated the
prediction performance of machine learning models, including random forest, decision trees, k-nearest neighbor, linear discriminant
analysis, and adaptive boosting, and a deep neural network model.

Results: The continuous real-time monitoring of lifestyle and indoor environment factors was implemented by integrating home
air quality–sensing devices, a smartphone app, and wearable devices. All data from 67 COPD patients were collected prospectively
during a mean 4-month follow-up period, resulting in the detection of 25 AECOPD episodes. For 7-day AECOPD prediction,
the proposed AECOPD predictive model achieved an accuracy of 92.1%, sensitivity of 94%, and specificity of 90.4%. Receiver
operating characteristic curve analysis showed that the area under the curve of the model in predicting AECOPD was greater
than 0.9. The most important variables in the model were daily steps walked, stairs climbed, and daily distance moved.

Conclusions: Using wearable devices, home air quality–sensing devices, a smartphone app, and supervised prediction algorithms,
we achieved excellent power to predict whether a patient would experience AECOPD within the upcoming 7 days. The AECOPD
prediction system provided an effective way to collect lifestyle and environmental data, and yielded reliable predictions of future
AECOPD events. Compared with previous studies, we have comprehensively improved the performance of the AECOPD
prediction model by adding objective lifestyle and environmental data. This model could yield more accurate prediction results
for COPD patients than using only questionnaire data.
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Introduction

With rapid progress of medicine, many treatments and
medications have been developed, and relationships between
lifestyle and disease have been elucidated. Precision medicine
involves determining the best treatment plan for individual
patients. Currently, research on precision medicine primarily
involves developing related apps based on historical data from
electronic medical records. When a patient is discharged from
the hospital, lifestyle and environmental risks affect disease
control. However, such factors are difficult to collect and use
for analysis.

The World Health Organization includes chronic respiratory
diseases among the four major human chronic diseases; in
particular, lung disease accounts for an estimated 7.5 million
deaths per year, or approximately 14% of annual deaths
worldwide. These diseases are a major economic burden, and
contribute to gender and social inequalities within and between
countries. In descending frequency, the most frequent diseases
include chronic obstructive pulmonary disease (COPD), lung
cancer, tuberculosis, lung infections, asthma, and interstitial
lung diseases [1]. COPD is a highly prevalent lung disease
characterized by persistent airflow limitation due to a mixture
of obstructive bronchiolitis and emphysema. The morbidity and
mortality of COPD are high and continue to increase [2], such
that COPD is projected to become the third-leading cause of
death worldwide by 2030.

Acute exacerbation of COPD (AECOPD) decreases the patient’s
quality of life, accelerates decline in lung function, and is
significantly associated with mortality [3]. COPD is a
heterogeneous disorder with large variations in the risk of
exacerbation across patients. In clinical practice, a history of
two or more exacerbations and one severe exacerbation per year
is used to guide therapeutic choices for exacerbation prevention
[3]. However, this approach is clinically limited owing to
significant heterogeneity in risk even among those who have
frequent exacerbation episodes. Although these outcomes may
be avoided with early detection and treatment, increasing
evidence shows that environmental and lifestyle factors may
affect the development of COPD.

Lifestyle modification is considered to be one of the most
cost-effective strategies in the self-management and secondary
prevention of COPD [4]. Nevertheless, there is limited evidence
demonstrating the relationship between lifestyle factors and
COPD development. Several studies have developed predictive
models for AECOPD [5]; however, there is no prediction tool
incorporating both lifestyle data and medical questionnaires.
Moreover, some researchers have argued that remote monitoring
is a promising alternative—or an adjunct—to traditional health
care services in COPD management [6]. Nonetheless, some
studies have shown that inefficient systems, poor patient

compliance, and poor performance of prediction tools may
decrease the effects of health care interventions [7-9].

Hence, the objectives of this study were to (1) develop a lifestyle
observation platform based on wearable devices and a
smartphone app to observe lifestyle and environmental factors
for patients with COPD, and to (2) construct an AECOPD
prediction tool for the early prediction of COPD exacerbations
using lifestyle factors, indoor environmental factors, and medical
questionnaires.

Methods

Data Collection
Eligible participants were adult patients with COPD (20 years
of age or older) who were not implanted with a pacemaker and
who were not pregnant. Participants were recruited from the
pulmonologist clinics at National Taiwan University Hospital
between March 2019 and February 2020. The study protocol
was approved by the institutional review board of National
Taiwan University Hospital (201710066RINB). During the
study period, we enrolled 67 patients with a confirmed diagnosis
of COPD according to the Global Initiative for Chronic
Obstructive Lung Disease (GOLD) criteria [3], as defined by
the ratio of <70% postbronchodilator forced expiratory volume
in 1 second to the forced vital capacity.

Data collection was based on clinical questionnaires,
environmental data, and physiological data. Data on patient
symptoms were prospectively evaluated by the modified Medical
Research Council (mMRC) dyspnea scale and the COPD
assessment test (CAT) upon enrollment and every month during
follow-up. The mMRC scale is used to assess functional
impairment due to dyspnea attributable to respiratory disease,
and the CAT is a patient-completed questionnaire that is used
globally to assess the impact of COPD (cough, sputum, dyspnea,
chest tightness) on health status. Both are widely used clinical
tests for COPD, and some studies [4,10] have also used these
clinical tools to evaluate the health condition of COPD patients.
According to the GOLD guidelines, COPD exacerbations are
defined as the acute worsening of respiratory symptoms,
resulting in additional therapy [11].

Environmental data and physiological data were collected as
time-series data by home air quality–sensing devices and
wearable devices that were provided to all participants. Although
most medical research [4,10,12] tends to use medical devices
as data sources, patient compliance could be reduced by the
inconvenience and difficulty in operating such devices.
Physiological data included walking steps, climbing stairs,
distances, consumption in calories, heart rate, and sleep status.
Environmental data comprised temperature, humidity, and fine
particulate matter (PM2.5) levels. All data were synchronized
with the database every 15 minutes to ensure that any subtle
changes were not neglected.
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System Architecture
Figure 1 shows the architecture of the AECOPD prediction
system. The system consists of four components: a wearable
device (Fitbit Versa), home air quality–sensing device
(EDIMAX Airbox), lifestyle observation platform, and the
personal health advice app. Wearable devices automatically
collected lifestyle data (physical activities, heart rate, and sleep
patterns) via Bluetooth to the original customized apps and were
further connected to the lifestyle observation platform via the
OAuth 2.0 protocol. Environmental data in the patient’s living
environment (ie, temperature, humidity, and PM2.5 levels) were

collected from the home air quality–sensing device and open
environmental application programming interface (API). We
also developed a health self-management smartphone app for
patients and a lifestyle observation platform for medical staff,
which together facilitate the continuous monitoring of lifestyle
data and instant care advice. To assist physicians in organizing
key information more effectively, data are visualized by
combining trend charts, as shown in Figure 2. In addition to
these trend charts, the daily prediction results are also used as
a reference for decision support to help physicians better
understand the status of their patients.

Figure 1. System architecture of the acute exacerbation of chronic obstructive pulmonary disease (AECOPD) prediction system. API: application
programming interface; COPD: chronic obstructive pulmonary disease; mMRC: modified Medical Research Council dyspnea scale.
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Figure 2. Data visualization from the lifestyle observation platform. Pm2.5: fine particulate matter.

Figure 3 shows an example system scenario: when the prediction
probability exceeds 0.7, a red icon is displayed to prompt the
case manager to intervene and take care of the patient. To protect
patient privacy, the system transmits data via the HTTPS
protocol, and personal information is encrypted. Figure 4 shows
the data management workflow. Only verified medical service

providers can access their patients’ information, which ensures
the confidentiality and integrity of the data. The mobile app
was designed to record symptoms and produce trend charts to
help patients better understand their health status, as shown in
Figure 5. With appropriate expert advice, they are thus able to
better manage their own health.

Figure 3. Daily prediction of acute exacerbation of chronic obstructive pulmonary disease.
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Figure 4. Data hierarchy workflow. PI: principal investigator.

Figure 5. Screenshots of NTU-med-good health advice app.

Data Processing
The combination of clinical questionnaire data, environmental
data, and physiological data was the main dataset used in our
training model. To explore the influence of changes in
environmental and lifestyle factors on AECOPD, first- and
second-order differentiation models were applied to the
environmental and physiological data to understand trends and
serve as additional input features. Random downsampling was
used to account for data imbalance, resulting in 5600 data points,

one-third of which were used as the validation set and the
remainder were used as the training set. We used forward-filling
to pad missing and questionnaire data, as illustrated in Figure
6. The complete data selection rules are shown in Figure 7. Note
that missing values is a common problem in data mining. A
correlation analysis (Figure 8) was performed between
physiological and environmental features to ensure that their
interactions did not affect the prediction results. Finally, as
shown in Textbox 1, 45 features were selected to predict the
probability of AECOPD.

JMIR Mhealth Uhealth 2021 | vol. 9 | iss. 5 | e22591 | p. 5https://mhealth.jmir.org/2021/5/e22591
(page number not for citation purposes)

Wu et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 6. Forward padding for questionnaire data. AE: acute exacerbation.

Figure 7. Decision rules for data selection. COPD: chronic obstructive pulmonary disease; AE: acute exacerbation.
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Figure 8. Correlation matrix of physiological and environmental data.

Textbox 1. Input data features of machine-learning and deep-learning models.

• Environmental factors

Temperature, humidity, fine particulate matter, first-order differentiation (diff1)_temperature, diff1_humidity, diff1_fine particulate matter, second-order
differentiation (diff2)_temperature, diff2_humidity, diff2_fine particulate

• Physiological factors

Heart rate, walking steps, calories consumption, deep sleep time, light sleep time, rapid eye movement time, awake time, diff1_heart rate, diff1_
walking steps, diff1_calories consumption, diff1_deep sleep time, diff1_light sleep time, diff1_rapid eye movement time, diff1_awake time, diff2_heart
rate, diff2_ walking steps, diff2_calories consumption, diff2_deep sleep time, diff2_light sleep time, diff2_rapid eye movement time, diff2_awake
time

• Clinical questionnaires

Chronic obstructive pulmonary disease (COPD) assessment test (9 answers), modified Medical Research Council (mMRC) dyspnea scale (1 answer),
life quality questionnaire (5 answers)

Classification Models
Classification algorithms for this study were selected according
to previously published studies on COPD such as those of Wang
et al [13] and Rahman et al [14]. The former group developed
AECOPD identification models to reduce patient mortality and
financial burdens, and the latter group attempted to identify
relations between discriminatory heart rate variability features
and disease severity in patients with pulmonary diseases and
COPD. For model comparison with machine learning–based
classification, we selected the following classifiers: decision
trees [15], random forests [16], k-nearest neighbor clustering
[17], linear discriminant analysis, and adaptive boosting [18].
We also propose a deep neural network (DNN) architecture for
use in comparing the performance between machine-learning
and deep-learning approaches on AECOPD prediction.

Supervised learning was performed using AECOPD events and
51 features obtained from the lifestyle observation platform.
Models were implemented using python libraries such as
scikit-learn and Pytorch.

DNN Classification
The DNN classification model was constructed using fully
connected layers, which connect each neuron in one layer to
every neuron in another layer, mapping feature representations
to the target vector space. Hyperparameters for the two fully
connected layers are presented in Table 1. Batch normalization
was applied to input data sequences to reduce the internal
covariate shift and gradient dependence [19]. For the activation
function we used parametric rectified linear unit (PReLU), which
combines the characteristics of ReLU and leaky ReLU, with
the introduction of a variable slope α, randomly selected from
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the uniform distribution during the training process to negative
values [20]. The complete DNN architecture is shown in Figure

9.

Table 1. Hyperparameters of the machine-learning and deep-learning models.

ValueModel and hyperparameters

Decision trees

1min_samples_leaf

2min_samples_split

45AdaBoost: n_estimators

Random forests

1min_samples_leaf

2min_samples_split

100n_estimators

k-nearest neighbor

3n_neighbors

30leaf_size

2p

Deep neural network

45fully connected layer 1

45fully connected layer 2

Figure 9. Deep neural network model architecture. PReLU: parametric rectified linear unit.

Validation and Model Assessment
We use 3-fold cross-validation to evaluate the stability of the
prediction models. The workflow is shown in Figure 10. We
used two metrics to evaluate the performance of the

identification models based on the test set: the area under the
receiver operating characteristic curve (AUROC) and the F1
score. We also used sensitivity, specificity, precision, and
accuracy as assessment metrics.
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Figure 10. Workflow of 3-fold cross-validation.

Results

Patient Characteristics
A total of 67 patients were registered for this study. Most of the
patients were middle-aged (mean 66.62, SD 11.38 years) and

were men. Eighteen percent had never smoked and the
remainder were either current smokers or exsmokers. Detailed
demographic information of the study participants is shown in
Table 2.
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Table 2. Demographics of study participants (N=67).

ValueCharacteristic

66.62 (11.38)Age (years), mean (SD)

Gender, n (%)

59 (88)Male

8 (12)Female

Smoking history, n (%)

18 (27)Never smoker

9 (13)Current smoker

40 (60)Exsmoker

Comorbidities

12 (18)Diabetes mellitus

25 (37)Hypertension

1 (1)Myocardial infarction

2 (3)Heart failure

11 (16)Peripheral vascular disease

15 (22)Bronchiectasis

6 (9)Postnasal drip syndrome

5 (7)Nasal septum deviation

19 (28)Allergic rhinitis

24 (36)Others

FEV1a(% predicted), n (%)

14 (21)≥80

24 (36)50-79

20 (30)30-49

9 (13)<30

aFEV1: postbronchodilator forced expiratory volume in 1 second.

Distribution of Physiological and Environmental
Factors
Figure 11 illustrates the AECOPD probabilities versus the
distributions of physiological and environmental features, among

which average heart rate, PM2.5, steps walked, and calorie
consumption were significantly different between those with
and without AECOPD. This shows that physiological and
environmental factors are useful for predicting AECOPD.
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Figure 11. Acute exacerbation of chronic obstructive pulmonary disorder probability trends versus normalized distributions of physiological and
environmental factors. HR: heart rate; AE: acute exacerbation: PM2.5: fine particulate matter.

AECOPD Prediction Model
Table 3 and Figure 12 demonstrate the performance of the
implemented models. The DNN model yielded the best
performance with 6 metrics higher than 90%.

To determine which model best fits diverse scenarios, we trained
the model using various combinations of data features, as shown
in Table 4: the prediction including all of the features yielded
the best performance. These results further confirmed that
physiological and environmental data features are more
predictive of AECOPD than conventional clinical
questionnaires.
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Table 3. Performance of each model with all features input.

F1PrecisionSpecificitySensitivityAUCROCaAccuracyModel

0.9140.9550.9550.8770.9860.914Random forests

0.7820.8670.8810.7120.7960.792Decision trees

0.7430.7760.7760.7120.7790.743kNNb

0.8260.8770.8810.7810.8820.829LDAc

0.8820.9520.9550.8220.9690.886AdaBoostd

0.9230.9430.9400.9040.9640.921DNNe

aAUROC: area under the receiver operating characteristic curve.
bkNN: k-nearest neighbor.
cLDA: linear discriminant analysis.
dAdaBoost: adaptive boosting.
eDNN: deep neural network.

Figure 12. Receiver operating characteristic (ROC) curve and area under the receiver operating characteristic curve of all models. AE: acute exacerbation;
KNN: k-nearest neighbor; LDA: linear discriminant analysis.
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Table 4. Performance given different feature sets.

F1PrecisionSpecificitySensitivityAUROCaAccuracyModelFeature

0.93230.93930.92530.94520.96990.9357DNNbAll features

0.83580.91800.76710.92530.91950.8428Random forestsLifestyle

0.79100.86880.72600.88050.81850.8000Decision treesEnvc

0.83450.87870.79450.88050.92560.8357Random forestsEnv+Lifestyle

0.74070.76920.71420.66660.68250.6956AdaBoostdClinical questionnaire

aAUROC: area under the receiver operating characteristic curve.
bDNN: deep neural network.
cEnv: environmental.
dAdaBoost: adaptive boosting.

AECOPD Prediction System
To account for incomplete data, which is typical in real-world
apps, the prediction system supports AECOPD prediction via
optional features. When only lifestyle or environmental data
are automatically uploaded daily, the system still predicts

whether AECOPD will occur within the next 7 days. Therefore,
multiple AECOPD prediction models were deployed on the
server. Through the process shown in Figure 13, daily prediction
results are provided to support physicians in making decisions.
Different color signs displayed on the system indicate different
risk levels.

Figure 13. Acute exacerbation of chronic obstructive pulmonary disease prediction system.

Feature Importance
Figure 14 shows the importance scores of model features as
evaluated by a random forest algorithm. Feature importance is
a measure of the ability to improve the purity of the random
forest model’s leaf nodes. Daily activity–related features such
as average heart rate, calorie consumption, and steps walked

yielded higher importance scores, which indicates that these
features have greater potential to improve the performance of
the random forest model. As average heart rate had the highest
importance score, and is thus likely the most influential predictor
of AECOPD, we used a warning sign for abnormal heart rates
in the AECOPD prediction system to alert physicians when the
patient’s average heart rate was abnormal.
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Figure 14. Feature importance scores as evaluated by random forest.

Discussion

Principal Findings
We implemented an AECOPD prediction system by integrating
wearable devices, Internet-of-Things environment sensors, a
smartphone app, machine learning, and deep learning. We
present six models for AECOPD identification. Additionally,
we selected features to determine the optimal feature set for this
task. The performance of each model is demonstrated according
to sensitivity, specificity, F1-score, accuracy, precision, and
AUROC metrics obtained based on 3-fold cross-validation. To
the best of our knowledge, this is the most comprehensive study
that used machine-learning models to predict AECOPDs.

Clinical questionnaires tend to be more subjective, which can
affect clinical decisions. The AECOPD prediction model with
all data features achieved the best performance. These results
showed that physiological and environmental data are more
powerful predictors than questionnaire data. Compared with
clinical questionnaire data alone, lifestyle and environmental
data yielded improvements of 10% in accuracy and 20% in
AUROC.

Comparison With Prior Work
In the 2010s, researchers began to attempt to predict COPD
exacerbation. One study used demographic features, vital signs,
and electronic medical records to predict COPD exacerbations
in the emergency department [21]. Another used 28 features,
including vital signs, medical history, inflammatory indicators,
and tree-based machine learning, to predict the prognosis of
hospitalized patients with COPD [22]. In contrast, in this study,
we focused on exacerbation risk prediction for discharged COPD
patients, because their health condition is likely to be less
accessible. Another study remotely monitored AECOPD in
patients via questionnaire data. They demonstrated an accuracy
of 100% for event-based prediction and up to 80.5% for
symptom-based prediction [23]. In addition, Shah et al [24]
used pulse oximetry and three vital signs to predict AECOPD,
reaching a mean AUROC of 68%. In comparison to these
studies, we used daily activities and environmental information
as predictors to trace the health conditions of patients with
COPD and achieved higher performance. With wearable devices
and smartphone apps, all relevant COPD information can be
collected instantly. Such a system will be helpful for achieving
the goal of personalized health management in the future. Thus,
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overall, our study constitutes a novel solution making use of
various data sources for superior AECOPD prediction
performance.

Limitations
Because of limitations in the air quality–sensing device,
environmental data collection was restricted to the user’s
bedroom, which degrades the prediction results. To account for
this, in the future we plan to use GPS functions to trace the
user’s movements to capture the corresponding environmental
data published via governmental open APIs.

In contrast to assumptions of physicians, Figure 10 shows that
patients with AECOPD engaged in more physical activity than
those without AECOPD. After reviewing the personal lifestyle
of each patient, we found that some engaged in intense exercise
even if they were uncomfortable, which goes against the
accepted knowledge of the medical profession. In the future,
more data could help to shed light on this apparent paradox.

Conclusions
Patients with COPD generally must return to the hospital
monthly for numerous clinical tests, which is a time-consuming
procedure. At the same time, it is impractical for discharged
patients or those under home care to continuously observe their
health conditions. They thus run the risk of AECOPDs between
routine visits.

In this study, we attempted to predict whether a patient with
COPD will experience acute exacerbation of their condition
within the next 7 days. In general, lifestyle and environmental
data of patients are difficult to collect effectively. However,
with the proposed system, all COPD-related data are uploaded
automatically. Our results indicate that lifestyle and
environmental data facilitate the precise management of users’
health conditions, and can even produce early warnings of
AECOPD. The experimental results confirmed that such lifestyle
and environmental data are highly correlated to user health
conditions. In the future, we will enhance the prediction system
and perform external validation to ensure that the model can be
applied to other regions.

Acknowledgments
This research is supported by the Ministry of Science and Technology, Taiwan (grant MOST 110-2634-F-002-032-).

Conflicts of Interest
None declared.

References

1. Qureshi H, Sharafkhaneh A, Hanania NA. Chronic obstructive pulmonary disease exacerbations: latest evidence and clinical
implications. Ther Adv Chronic Dis 2014 Sep 14;5(5):212-227 [FREE Full text] [doi: 10.1177/2040622314532862]
[Medline: 25177479]

2. Yan R, Wang Y, Bo J, Li W. Healthy lifestyle behaviors among individuals with chronic obstructive pulmonary disease in
urban and rural communities in China: a large community-based epidemiological study. Int J Chron Obstruct Pulmon Dis
2017;12:3311-3321. [doi: 10.2147/COPD.S144978] [Medline: 29180861]

3. Global Initiative for Chronic Obstructive Lung Disease. URL: https://goldcopd.org/ [accessed 2021-03-23]
4. Ambrosino N, Bertella E. Lifestyle interventions in prevention and comprehensive management of COPD. Breathe (Sheff)

2018 Sep 31;14(3):186-194 [FREE Full text] [doi: 10.1183/20734735.018618] [Medline: 30186516]
5. Adibi A, Sin DD, Safari A, Johnson KM, Aaron SD, FitzGerald JM, et al. The Acute COPD Exacerbation Prediction Tool

(ACCEPT): a modelling study. Lancet Respir Med 2020 Oct;8(10):1013-1021. [doi: 10.1016/S2213-2600(19)30397-2]
[Medline: 32178776]

6. Sanchez-Morillo D, Fernandez-Granero MA, Leon-Jimenez A. Use of predictive algorithms in-home monitoring of chronic
obstructive pulmonary disease and asthma: A systematic review. Chron Respir Dis 2016 Aug;13(3):264-283 [FREE Full
text] [doi: 10.1177/1479972316642365] [Medline: 27097638]

7. Hurst JR, Donaldson GC, Quint JK, Goldring JJ, Patel AR, Wedzicha JA. Domiciliary pulse-oximetry at exacerbation of
chronic obstructive pulmonary disease: prospective pilot study. BMC Pulm Med 2010 Oct 20;10:52 [FREE Full text] [doi:
10.1186/1471-2466-10-52] [Medline: 20961450]

8. Sánchez-Morillo D, Crespo M, León A, Crespo Foix LF. A novel multimodal tool for telemonitoring patients with COPD.
Inform Health Soc Care 2015 Jan 31;40(1):1-22. [doi: 10.3109/17538157.2013.872114] [Medline: 24380372]

9. Sanders C, Rogers A, Bowen R, Bower P, Hirani S, Cartwright M, et al. Exploring barriers to participation and adoption
of telehealth and telecare within the Whole System Demonstrator trial: a qualitative study. BMC Health Serv Res 2012 Jul
26;12:220 [FREE Full text] [doi: 10.1186/1472-6963-12-220] [Medline: 22834978]

10. Saleh L, Mcheick H, Ajami H, Mili H, Dargham J. Comparison of machine learning algorithms to increase prediction
accuracy of COPD domain. In: Mokhtari M, Abdulrazak B, Aloulou H, editors. Enhanced Quality of Life and Smart Living.
ICOST 2017. Lecture Notes in Computer Science. Cham: Springer; 2017:247-254.

11. Anthonisen NR, Manfreda J, Warren CP, Hershfield ES, Harding GK, Nelson NA. Antibiotic therapy in exacerbations of
chronic obstructive pulmonary disease. Ann Intern Med 1987 Feb;106(2):196-204. [doi: 10.7326/0003-4819-106-2-196]
[Medline: 3492164]

JMIR Mhealth Uhealth 2021 | vol. 9 | iss. 5 | e22591 | p. 15https://mhealth.jmir.org/2021/5/e22591
(page number not for citation purposes)

Wu et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

https://journals.sagepub.com/doi/10.1177/2040622314532862?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
http://dx.doi.org/10.1177/2040622314532862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25177479&dopt=Abstract
http://dx.doi.org/10.2147/COPD.S144978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29180861&dopt=Abstract
https://goldcopd.org/
http://europepmc.org/abstract/MED/30186516
http://dx.doi.org/10.1183/20734735.018618
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30186516&dopt=Abstract
http://dx.doi.org/10.1016/S2213-2600(19)30397-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32178776&dopt=Abstract
https://journals.sagepub.com/doi/10.1177/1479972316642365?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
https://journals.sagepub.com/doi/10.1177/1479972316642365?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
http://dx.doi.org/10.1177/1479972316642365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27097638&dopt=Abstract
https://bmcpulmmed.biomedcentral.com/articles/10.1186/1471-2466-10-52
http://dx.doi.org/10.1186/1471-2466-10-52
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20961450&dopt=Abstract
http://dx.doi.org/10.3109/17538157.2013.872114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24380372&dopt=Abstract
https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-12-220
http://dx.doi.org/10.1186/1472-6963-12-220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22834978&dopt=Abstract
http://dx.doi.org/10.7326/0003-4819-106-2-196
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3492164&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


12. Riis HC, Jensen MH, Cichosz SL, Hejlesen OK. Prediction of exacerbation onset in chronic obstructive pulmonary disease
patients. J Med Eng Technol 2016;40(1):1-7. [doi: 10.3109/03091902.2015.1105317] [Medline: 26745746]

13. Wang C, Chen X, Du L, Zhan Q, Yang T, Fang Z. Comparison of machine learning algorithms for the identification of
acute exacerbations in chronic obstructive pulmonary disease. Comput Methods Programs Biomed 2020 May;188:105267.
[doi: 10.1016/j.cmpb.2019.105267] [Medline: 31841787]

14. Rahman MJ, Nemati E, Rahman MM, Nathan V, Vatanparvar K, Kuang J. Automated assessment of pulmonary patients
using heart rate variability from everyday wearables. Smart Health 2020 Mar;15:100081. [doi: 10.1016/j.smhl.2019.100081]

15. Himani S, Sunil K. A survey on decision tree algorithms of classification in data mining. Int J Sci Res 2016 Apr
05;5(4):2094-2097 [FREE Full text] [doi: 10.21275/v5i4.nov162954]

16. Ho TK. A data complexity analysis of comparative advantages of decision forest constructors. Pattern Anal Appl 2002 Jun
7;5(2):102-112. [doi: 10.1007/s100440200009]

17. Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. Amer Statist 1992 Aug;46(3):175-185.
[doi: 10.1080/00031305.1992.10475879]

18. Cristóbal E, Javier M, Fernando S, Myriam A, Amaia A, Begona G, et al. Machine learning for COPD exacerbation
prediction. Eur Resp J 2015;46(Suppl 59):OA3282. [doi: 10.1183/13993003.congress-2015.OA3282]

19. Sergey I, Christian S. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv.
2015. URL: https://arxiv.org/abs/1502.03167 [accessed 2021-04-11]

20. He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification.
2015 Presented at: IEEE International Conference on Computer Vision; 2015; Santiago, Chile URL: https://www.
cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf

21. Goto T, Camargo CA, Faridi MK, Yun BJ, Hasegawa K. Machine learning approaches for predicting disposition of asthma
and COPD exacerbations in the ED. Am J Emerg Med 2018 Sep;36(9):1650-1654. [doi: 10.1016/j.ajem.2018.06.062]
[Medline: 29970272]

22. Peng J, Chen C, Zhou M, Xie X, Zhou Y, Luo CH. A machine-learning approach to forecast aggravation risk in patients
with acute exacerbation of chronic obstructive pulmonary disease with clinical indicators. Sci Rep 2020 Feb 20;10(1):3118.
[doi: 10.1038/s41598-020-60042-1] [Medline: 32080330]

23. Fernandez-Granero MA, Sanchez-Morillo D, Lopez-Gordo MA, Leon A. A machine learning approach to prediction of
exacerbations of chronic obstructive pulmonary disease. In: Artificial Computation in Biology and Medicine. Lecture Notes
in Computer Science Volume 9107. Cham: Springer; 2015 Presented at: International Work-Conference on the Interplay
Between Natural and Artificial Computation (IWINAC 2015); June 1-5, 2015; Elche, Spain p. 305-311. [doi:
10.1007/978-3-319-18914-7_32]

24. Shah SA, Velardo C, Farmer A, Tarassenko L. Exacerbations in chronic obstructive pulmonary disease: identification and
prediction using a digital health system. J Med Internet Res 2017 Mar 07;19(3):e69 [FREE Full text] [doi: 10.2196/jmir.7207]
[Medline: 28270380]

Abbreviations
AECOPD: acute exacerbation of chronic obstructive pulmonary disease
API: application programming interface
AUROC: area under the receiver operating characteristic curve
CAT: chronic obstructive pulmonary disease assessment test
COPD: chronic obstructive pulmonary disease
DNN: deep neural network
GOLD: Global initiative for chronic obstructive lung disease
mMRC: modified Medical Research Council dyspnea scale
PM2.5: fine particulate matter

Edited by L Buis; submitted 17.07.20; peer-reviewed by D Ruttens, X Li; comments to author 13.10.20; revised version received
30.01.21; accepted 23.03.21; published 06.05.21

Please cite as:
Wu CT, Li GH, Huang CT, Cheng YC, Chen CH, Chien JY, Kuo PH, Kuo LC, Lai F
Acute Exacerbation of a Chronic Obstructive Pulmonary Disease Prediction System Using Wearable Device Data, Machine Learning,
and Deep Learning: Development and Cohort Study
JMIR Mhealth Uhealth 2021;9(5):e22591
URL: https://mhealth.jmir.org/2021/5/e22591
doi: 10.2196/22591
PMID:

JMIR Mhealth Uhealth 2021 | vol. 9 | iss. 5 | e22591 | p. 16https://mhealth.jmir.org/2021/5/e22591
(page number not for citation purposes)

Wu et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://dx.doi.org/10.3109/03091902.2015.1105317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26745746&dopt=Abstract
http://dx.doi.org/10.1016/j.cmpb.2019.105267
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31841787&dopt=Abstract
http://dx.doi.org/10.1016/j.smhl.2019.100081
https://www.ijsr.net/archive/v5i4/NOV162954.pdf
http://dx.doi.org/10.21275/v5i4.nov162954
http://dx.doi.org/10.1007/s100440200009
http://dx.doi.org/10.1080/00031305.1992.10475879
http://dx.doi.org/10.1183/13993003.congress-2015.OA3282
https://arxiv.org/abs/1502.03167
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
http://dx.doi.org/10.1016/j.ajem.2018.06.062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29970272&dopt=Abstract
http://dx.doi.org/10.1038/s41598-020-60042-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32080330&dopt=Abstract
http://dx.doi.org/10.1007/978-3-319-18914-7_32
https://www.jmir.org/2017/3/e69/
http://dx.doi.org/10.2196/jmir.7207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28270380&dopt=Abstract
https://mhealth.jmir.org/2021/5/e22591
http://dx.doi.org/10.2196/22591
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


©Chia-Tung Wu, Guo-Hung Li, Chun-Ta Huang, Yu-Chieh Cheng, Chi-Hsien Chen, Jung-Yien Chien, Ping-Hung Kuo, Lu-Cheng
Kuo, Feipei Lai. Originally published in JMIR mHealth and uHealth (https://mhealth.jmir.org), 06.05.2021. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR
mHealth and uHealth, is properly cited. The complete bibliographic information, a link to the original publication on
https://mhealth.jmir.org/, as well as this copyright and license information must be included.

JMIR Mhealth Uhealth 2021 | vol. 9 | iss. 5 | e22591 | p. 17https://mhealth.jmir.org/2021/5/e22591
(page number not for citation purposes)

Wu et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

