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Abstract

Background: Research has shown the feasibility of human activity recognition using wearable accelerometer devices. Different
studies have used varying numbers and placements for data collection using sensors.

Objective: This study aims to compare accuracy performance between multiple and variable placements of accelerometer
devices in categorizing the type of physical activity and corresponding energy expenditure in older adults.

Methods: In total, 93 participants (mean age 72.2 years, SD 7.1) completed a total of 32 activities of daily life in a laboratory
setting. Activities were classified as sedentary versus nonsedentary, locomotion versus nonlocomotion, and lifestyle versus
nonlifestyle activities (eg, leisure walk vs computer work). A portable metabolic unit was worn during each activity to measure
metabolic equivalents (METs). Accelerometers were placed on 5 different body positions: wrist, hip, ankle, upper arm, and thigh.
Accelerometer data from each body position and combinations of positions were used to develop random forest models to assess
activity category recognition accuracy and MET estimation.

Results: Model performance for both MET estimation and activity category recognition were strengthened with the use of
additional accelerometer devices. However, a single accelerometer on the ankle, upper arm, hip, thigh, or wrist had only a 0.03-0.09
MET increase in prediction error compared with wearing all 5 devices. Balanced accuracy showed similar trends with slight
decreases in balanced accuracy for the detection of locomotion (balanced accuracy decrease range 0-0.01), sedentary (balanced
accuracy decrease range 0.05-0.13), and lifestyle activities (balanced accuracy decrease range 0.04-0.08) compared with all 5
placements. The accuracy of recognizing activity categories increased with additional placements (accuracy decrease range
0.15-0.29). Notably, the hip was the best single body position for MET estimation and activity category recognition.

Conclusions: Additional accelerometer devices slightly enhance activity recognition accuracy and MET estimation in older
adults. However, given the extra burden of wearing additional devices, single accelerometers with appropriate placement appear
to be sufficient for estimating energy expenditure and activity category recognition in older adults.

(JMIR Mhealth Uhealth 2021;9(5):e23681) doi: 10.2196/23681
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Introduction

Background
Over the past 30 years, accelerometer devices have been widely
used for measuring movements, physical activity categories,
and energy expenditure [1]. This work has also carried forward
into characterizing the activity patterns of patients with chronic
diseases such as obesity, cardiovascular disease, schizophrenia,
bipolar disorder, and cancer [2-6]. Despite its growing use in
both clinical and research settings, the optimal body position
for sensor placement that would provide the most accurate
activity category recognition and the corresponding estimate of
energy expenditure in older adults remains uncertain. For
example, previous studies have used various sensor placements
on the body, including the wrist [7-9], thigh [10,11], hip [12-14],
arm [15,16] or ankle [17,18], or a combination of multiple
placements [19,20]. However, such studies have often been
conducted on relatively small samples of young and middle-aged
adults. There continues to be a gap in knowledge regarding
body placement for older adults (>60 years). Such knowledge
is important for considering older age as a factor for estimating
activity types and energy expenditure.

There is a lack of a comprehensive evaluation that directly
compares individual and combinations of accelerometers placed
on different body positions. Historically, the hip position was
chosen in both research and public settings for tracking steps
(ie, steps per day). The hip position is close to the body’s center
of the mass and provides an acceleration change because of the
foot fall action-reaction when ambulating. As such, the hip
position offers a convenient and accurate approach for capturing
ambulatory activity [21]. The ankle position is also accurate in
assessing step counts and other gait-related features [22-25].
Recently, however, the wrist position has become popular for
collecting accelerometer data because of the increased
prevalence of smartwatches. This is due to their convenience,
ability to capture sleep quality, determination of 24-hour activity
rhythms, and enhanced compliance [26-30].

Objectives
A systemic evaluation of body placements will help optimize
energy expenditure estimation and activity recognition. It would
also help resolve controversies related to the balance between
the accuracy and convenience of different body placements
[31]. Given the paucity of information about the role of
accelerometer placement on older adults, we aimed to compare
and contrast energy expenditure estimation, individual activity,
and activity category recognition with 5 sensor body positions
and their combinations during 32 activities that included
sedentary, locomotion, and lifestyle categories. We hypothesized

that combined data from 5 accelerometer positions on the body
would provide optimal energy expenditure estimation, individual
activity recognition, and activity category recognition, but this
improvement will be incremental compared with a single or
combination of body placements.

Methods

Study Design
This study was approved by the University of Florida
Institutional Review Board, and written informed consent was
obtained from all participants. The inclusion criteria were
designed to optimize safety while ensuring population
representation. It included older adults, aged ≥60 years [32],
with stratified enrollment for both high and low function
according to scores on the standardized Short Physical
Performance Battery [33]. The study pre-planned to enroll and
complete testing in 90 participants with 30% (27/90) of the
participants scoring in the lowest quartile of physical function.
Recruitment focused on enrolling community-dwelling adults
without significant health issues that could impact the safety of
participants. Additional inclusion criteria included willingness
to undergo all testing procedures, stable weight for at least 3
months, and ability to understand and speak English. Participants
were excluded if they met any of the following criteria: failure
to provide informed consent, use of a walker, lower extremity
amputation, history of chest pain or severe shortness of breath
during physical stress, poststroke syndrome causing ambulatory
deficits, and requiring assistance with basic activities of daily
living or living in a complete care nursing home. A complete
list of the exclusion criteria can be found elsewhere [34].

Accelerometers and Energy Expenditure During
Activities
Participants were asked to perform 32 scripted activities listed
in Multimedia Appendix 1. These activities were chosen because
they are common among most Americans and are consistent
with the average time spent in the 2010 American Time Use
Survey [35]. Activities were performed for 6 to 8 minutes with
5 to 10 minutes of rest between each activity. Assessments were
completed over 4 separate visits. The participants received
instructions from the research staff before each activity.
Participants wore 5 ActiGraph GT3X triaxial accelerometers
[36], one on their ankle, upper arm, hip, thigh, and wrist. All
monitors were worn on the right side for the duration of data
collection, as shown in Figure 1. Of note, Buchan et al [37] and
Dieu et al [38] demonstrated strong agreement between
accelerometer data collected on the dominant and nondominant
sides. Accelerometers were initialized simultaneously and
programmed to collect data at 100 Hz.
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Figure 1. Sensor placement on the body.

Participants wore a COSMED K4b2 [39] portable gas analysis
system while performing the 32 scripted activities. Before data
collection, the oxygen (O2) and carbon dioxide (CO2) sensors
were calibrated using a gas mixture sample of 16.0% O2 and
5.0% CO2 and room air calibration. The turbine flow meter was
calibrated using a 3.0-L syringe. A flexible facemask was
positioned over the participant’s mouth and nose and attached
to the flow meter. Oxygen consumption (VO2; measured in mL

min-1 kg-1) was measured breath-by-breath, and data were
subsequently smoothed with a 30-second running average
window. VO2 data were displayed and manually evaluated to
determine when steady-state VO2 was reached. A steady state
was defined as a plateau in VO2, which typically occurs 2
minutes after the start of the activity. Data were expressed as
metabolic equivalents (METs) after dividing the VO2 values by

the traditional standard of 3.5 mL min-1 kg-1 [40]. A dedicated
study smartphone with a custom-built app was synchronized to
server time and used to record the start and stop times for each
activity (shown in blue in Figure 1). This ensured that time
windows could be accurately identified from accelerometer data
that was also initialized to server time.

Analysis
Data were first processed to extract relevant summary features
from each contiguous 16-second window. The features described
in Table 1 represent both the time and frequency domains
[41,42]. These features were included in the analytic models,
as illustrated in the analysis flow in Figure 2. There were a total
of 31 different wrist, hip, ankle, upper arm, and thigh body
position combinations. The analyses compared the performance
of single placement and combinations of device placements for
estimating METs and for labeling activities as individual and
when they were categorized as sedentary, locomotion, or

lifestyle (Multimedia Appendix 1). We used random forest as
our primary analysis approach, which is a frequently used
machine learning algorithm, to recognize human activity from
accelerometer data [41-45]. Random forest is an ensemble
learning algorithm that builds a large number of decision trees
from random sub–data sets of the training data set. The predicted
class is determined by aggregating the predicted classes (votes)
from the individual decision trees and selecting the majority
class in case of classification or by averaging the predicted
values in case of regression [46]. This procedure was first
performed to evaluate the accuracy of detecting activity
categories based on sedentary versus nonsedentary, locomotion
versus nonlocomotion, and lifestyle versus nonlifestyle activities
as well as to evaluate the accuracy of classifying each of the 32
individual activities against a 3.1% random chance of matching
correctly. We used a regression random forest for continuous
MET estimation and classification of random forest for activity
recognition. To reduce bias, the data were split randomly into
development and testing data sets using participant identification
numbers. Participants were included in either the development
or testing data sets but not both. The development data set was
further randomly split into training and validating data sets to
tune the model parameters. Nested cross-validation was used;
in each outer fold, we kept five-sixths of the participants for
model development and one-sixth of the participants for testing.
In each inner fold, four-fifths of the participants in the
development data set were assigned to the training data set, and
one-fifth of the participants were assigned to the validating data
set. All model estimates were reported for the testing data sets.
In supplementary analyses, a confusion matrix of actual versus
predicted activities (32×32 matrix) from the hip and wrist
positions, respectively, was generated to help interpret the
accuracy and F1 score results. We chose to examine these
positions because they are the most used in the literature.
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Table 1. Description of features extracted from the raw data.

DescriptionFeature

Time

Sample mean of the VMa in the windowMean of vector magnitude

SD of VM in the windowSD of vector magnitude

Sample mean of the angle between x-axis and VM in the windowMean angle of acceleration relative to vertical on the deice

Sample SD of the angles in the windowSD of the angle of acceleration relative to vertical on the
device

Covariance of the VM in the windowCovariance

Skewness of the VM in the windowSkewness

Kurtosis of the VM in the windowKurtosis

Entropy of the VM in the windowEntropy

SD of VM in the window divided by the mean, multiplied by 100Coefficient of variation

Correlation between x-axis and y-axisCorr(x,y)

Correlation between y-axis and z-axisCorr(y,z)

Correlation between x-axis and z-axisCorr(x,z)

Frequency

Sum of moduli corresponding to frequency in this range divided by sum of moduli
of all frequencies

Percentage of the power of the VM that is in 0.6-2.5 Hz

Frequency corresponding to the largest modulusDominant frequency of VM

Modulus of the dominant frequency or sum of moduli at each frequencyFraction of power in VM at dominant frequency

aVM: vector magnitude.

Figure 2. Analysis flow steps. After accelerometer data were downloaded using the ActiLife (ActiGraph) toolbox, preprocessing steps and feature
extraction steps were completed to prepare the data set to be used in prediction models for each task. MET: metabolic equivalent.

Model Evaluation
We calculated the performance metrics of the models by
comparing the model-based predicted values with the measured
values. For the performance of the individual activity recognition
model, we calculated the total accuracy of the model. For
activity category recognition, we used the balanced accuracy
metric to report model performance because of the class
imbalance (ratio of the majority class to minority class being
much smaller than 1) across activities. Balanced accuracy is
defined as the mean of sensitivity and specificity metrics [47,48].
For MET estimation, we used the predicted and measured values
to calculate the root mean square error (RMSE). The results

were summarized into 3 major categories: the most accurate
combination, the most accurate placement performance, and
the most efficient combination. The latter was defined as the
fewest number of sensors that provide a similar performance to
the most accurate combination, with less than a 10% decrease
in performance compared with the most accurate combination.
For visualization purposes, the difference in the balanced
accuracy of body placement/s compared with the accuracy
derived from all 5 sensors was plotted. They were grouped by
the number of body placements and ranked to simplify the visual
comparisons. To compare across figures, the absolute value of
the individual balanced accuracy was also added to the
illustration.
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Results

The study enrolled 93 older adults (mean age 72.2, SD 7.1
years). The sample was balanced across gender, was mostly
non-Hispanic White, and had comorbidities similar to those of
the general population. Table 2 presents the descriptive
characteristics of the participants. The participants completed

2013 tasks. The median number of tasks completed was 26 out
of 32 tasks (Multimedia Appendix 1). Stair ascent had the lowest
amount of complete data (n=43) and leisure walk had the most
complete data (n=82). The reasons for missing information
included not reaching a steady-state metabolic rate, invalid data
from one or more monitors, unable to complete the task for at
least 4 minutes, missed visits, or provided only partial data
because the participant withdrew from the study.

Table 2. Participant characteristics (n=93).

ValuesCharacteristics

72.17 (7.02)Age (years), mean (SD)

47 (51)Female, n (%)

28.18 (4.92)BMI (kg/m2), mean (SD)

Race or ethnicity, n (%)

83 (89)Non-Hispanic White

8 (9)Non-Hispanic Black

1 (1)Non-Hispanic Asian

2 (2)Hispanic

15 (16)Education (≥16 years), n (%)

52 (56)Married or in a relationship, n (%)

30 (32)Live alone, n (%)

66 (71)Household income (≥US $15,000), n (%)

87 (94)Self-rated health (≥good), n (%)

Self-reported conditions, n (%)

37 (40)Former or current smoker

45 (48)Hypertension

39 (42)Hypercholesterolemia

19 (20)Diabetes

10 (11)Chronic pulmonary disease

8 (9)Heart attack, myocardial infarction

27 (29)Cancer

10 (11)Depression

4 (4)Stroke

11 (12)Osteoarthritis

93.50Total moderate physical activity (min/week)a

Walking speed (min per second), mean (SD)

1.29 (0.26)Leisure paceb

1.41 (0.25)Rapid pacec

aData included for 77 participants.
bData included for 91 participants.
cData included for 85 participants.

Models were also tested for categorizing sedentary, locomotion,
and lifestyle activities (Figures 3-5). For sedentary behavior
recognition, the combination of all accelerometers resulted in
the best performance (balanced accuracy 0.78). Hip-worn

placement provided the best performance among the
single-placement models (balanced accuracy 0.73). The
ankle-worn placement resulted in the worst performance
(balanced accuracy 0.65). Multimedia Appendices 2 and 3
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illustrate confusion matrices of the hip and wrist positions
revealing that strength exercise and yoga, both partially done

in a sitting position, were mislabeled as being sedentary
activities, which caused significant overall misclassification.

Figure 3. Balanced accuracy performance of sedentary activity classification models based on the device placement combinations. Models were grouped
by the number of devices used and, in each group, were sorted by decreasing balanced accuracy (rounded). Y-axis shows the difference between the
balanced accuracies of the different combinations and the five-placement combination. Numbers in the plot show the balanced accuracies of each
placement combination. A: ankle; B: upper arm; C: hip; D: thigh; E: wrist.

For locomotion activity recognition, the combination of all
placements resulted in the best performance (balanced accuracy
0.98). Hip-worn placement provided the best performance
among the single-placement models (balanced accuracy 0.98).

Classifiers trained separately on data from ankle-worn,
wrist-worn, arm-worn, and thigh-worn placement also resulted
in high performance (balanced accuracy 0.97-0.98; Figure 4).
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Figure 4. Balanced accuracy performance of locomotion activity classification models based on the device placement combinations. Models were
grouped by the number of devices used and, in each group, were sorted in decreasing balanced accuracy (rounded). Y-axis shows the difference between
the balanced accuracies of the different combinations and the five-placement combination. Numbers in the plot show the balanced accuracies of each
placement combination. A: ankle; B: upper arm; C: hip; D: thigh; E: wrist.

For lifestyle activity recognition, the combination of data from
ankle-worn, arm-worn, hip-worn, and wrist-worn placements
resulted in the best performance (balanced accuracy 0.92). The
combination of data from all placements resulted in high
performance (balanced accuracy 0.91). Classifiers trained on

data from arm-worn placements, similar to hip-worn and
wrist-worn placements, provided the best performance among
the single-placement models (balanced accuracy 0.87), whereas
ankle-worn placement resulted in the lowest performance
(balanced accuracy 0.83; Figure 5).

Figure 5. Balanced accuracy performance of lifestyle activity classification models based on the device placement combinations. Models were grouped
by the number of devices used and, in each group, were sorted in decreasing balanced accuracy (rounded). Y-axis shows the difference between the
balanced accuracies of the different combinations and the five-placement combination. Numbers in the plot show the balanced accuracies of each
placement combination. A: ankle; B: upper arm; C: hip; D: thigh; E: wrist.
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The individual activity recognition models with all placements
resulted in a relatively low accuracy of 0.57 (Figure 6).
Wrist-worn placement provided the best performance among
the single-placement models (accuracy 0.42). Classifiers trained

separately on data from the ankle-worn placement, similar to
thigh-worn placement, resulted in the worst performance
(accuracy 0.28; Figure 6).

Figure 6. Accuracy performance of individual activity classification models based on the device placement combinations. Models were grouped by
the number of devices used and, in each group, were sorted in decreasing accuracy (rounded). Y-axis shows the difference between the accuracies of
the different combinations and the five-placement combination. Numbers in the plot show the accuracy of each placement combination. A: ankle; B:
upper arm; C: hip; D: thigh; E: wrist.

Energy expenditure accuracy was evaluated using the MET
RMSE of the predicted versus measured values (Figure 7). In
general, models trained using the combination of data from all
5 placements resulted in an RMSE of 0.88 METs. Hip-worn

and thigh-worn placements provided the lowest RMSE of 0.91
METs among the single body placements. Overall, there was a
slight reduction in RMSE when additional accelerometer
placement was added to the model.
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Figure 7. Root mean square error (RMSE) score performance of met value estimation models based on the device placement combinations. Models
were grouped by the number of devices used and, in each group, were sorted in increasing RMSE (rounded). Y-axis shows the difference between the
RMSE values of the different combinations and the five-placement combination. A: ankle; B: upper arm; C: hip; D: thigh; E: wrist; MET: metabolic
equivalent; RMSE: root mean square error.

Table 3 summarizes the results according to the positions
deemed most accurate, best single placement, and most efficient
combination. In general, the most accurate combination
contained data from all 5 body positions, but the most accurate

placement was often very similar and sometimes better than
combinations. The hip and wrist positions appeared to be the
most efficient combinations, but models were able to recognize
individual activities only with chance probability.

Table 3. Guideline table to determine the needed number and placement of the wearable accelerometer for each task.

Most efficient combinationaMost accurate single placementMost accurate combinationTask

Hip (0.73)Hip (0.73)All 5 placements (0.78)Sedentary activity detection (bal-
anced accuracy)

Hip (0.98)Hip (0.98); ankle (0.98)All 5 placements (0.98)Locomotion activity detection (bal-
anced accuracy)

Wrist (0.87)Upper arm (0.87); wrist (0.87);
hip (0.87)

Ankle+upper arm+hip+wrist (0.92)Lifestyle activity detection (bal-
anced accuracy)

Hip+wrist (0.51)Wrist (0.42)All 5 placements (0.57)Individual activity recognition (ac-
curacy)

Hip+wrist (0.89)Hip (0.91); thigh (0.91)Ankle+upper arm+hip+thighb (0.87)MET value estimation (root mean
square error)

aThe most efficient combination was defined as the fewest number of sensors that provide a similar performance to the most accurate combination while
considering usability. Similar performance was defined as a difference ≤10% of the most accurate combination. We considered the most-to-least usable
placements to be wrist>hip>ankle>arm>thigh. Thus, if the performance difference was less than 10%, then the most usable placement was chosen as
the most efficient. Best and worst performance refer to best and worst performance according to their balanced accuracy (best: highest balanced accuracy;
worst: lowest balanced accuracy).
bThe performance of the combination with the best performance (0.87) was very close to that of the combination with all 5 placements (0.88).

Discussion

Principal Findings
We compared the performance of activity recognition models
based on different combinations of 5 accelerometer placements

on 32 activities of daily life. We considered single-sensor and
multisensor placement on the wrist, hip, ankle, upper arm, and
thigh. Our results show that the models achieved the best
performance in the classification of locomotion activities and
lifestyle activities (balanced accuracies 0.98 and 0.91 for the
all five-sensor combination, respectively), followed by the
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classification of sedentary activity (balanced accuracy 0.78).
The correct labeling of individual activities was low (accuracy
0.57). Interestingly, increasing the number of accelerometer
placements had very limited improvement in the classification
accuracy of locomotion and lifestyle activities as well as
estimating MET values.

There are also noteworthy results from locomotion and sedentary
tasks. The accuracy of locomotion activity recognition was
similar across all the placements, and only minor differences
were found between the combinations (approximately 1%). It
is worth mentioning that the wrist-worn accelerometer had
relatively lower performance, which is potentially due to the
locomotor-like hand movements observed in other nonlocomotor
tasks (eg, washing windows and yard work). Nonetheless, even
a single body placement would likely suffice for locomotion
activities. Detecting sedentary tasks had low accuracies,
although the five-sensor combination provided a 7%-20%
increase in balanced accuracy compared with several single
placements. Additional analyses demonstrated that the
misclassification rate was higher for sedentary activities than
for nonsedentary activities. This may be caused by an imbalance
in the data collected; sedentary tasks comprise only 4 out of 32
activities and result in only 6% of the total epochs. Another
potential reason might be the similarity of some of the
nonsedentary and sedentary activities. Confusion matrices of
individual activity recognition models show that strength
exercise and some stretching and some yoga, which were
performed in a sitting position for a significant amount of time,
contained most of the error (approximately 25%-76% for the
hip and 40%-50% for the wrist). These activities are not
traditionally considered to be sedentary behavior but are often
performed in a sitting position (confusion matrices presented
in Multimedia Appendices 2 and 3).

Historically, the hip position has been the most common and
well-validated accelerometer placement. Some studies have
investigated the performance of classifiers using data from other
sensor placements, such as the ankle and wrist [22,25,49].
However, few studies have systematically examined the
accuracy differences between individuals and combinations of
different body placements [50,51]. The results published by
Arif and Kattan [50] demonstrated in a cohort of 9 young adults
that body placement differences between the wrist, chest, and
ankle were relatively small in terms of overall accuracy when
classifying 12 activities (best overall F-measure for wrist
placement: 93.9%, for ankle placement: 92.2%, and for chest
placement: 93.9% vs for combined placements: 98.2%). Similar
findings have been reported by Gao et al [51], where the
following 4 placement positions were compared: chest,
underarm, waist, and thigh to identify 5 different activities
performed by 8 older adults. They reported accuracies ranging
from 81.9% to 92.8% for single-placement classifiers and
83.2%-96.4% for multisensor classifiers. These 2 studies were
consistent with the finding that additional accelerometers
improve performance in detecting the physical activity type.
This study increases this initial knowledge with a much larger
sample size of older adults who performed an ample number of
activities with and without overlapping movement patterns.
Although more generalizable, the large sample size likely

introduced more variability in movement patterns, making it
more challenging to find a single common classifier appropriate
for all people. As such, the lower performance for activity
recognition observed in this study might test the limits of the
predictive capacity for machine learning models, such as random
forest, when applied across a diverse population.

A MET RMSE of 0.88 was achieved across all activities.
Previous studies using data from accelerometer devices worn
on the hip and wrist have shown similar results for the prediction
of METs, with RMSE values of 1.00-1.22 [45,52,53]. For a
single placement, the hip and thigh positions provided the lowest
RMSE values. Increasing the number of placements only slightly
enhanced the RMSE (from 3% to 9%). Our results also show
that adding 2 or more accelerometers provides a small
enhancement in prediction. Previous studies with a smaller
number of activities had similar performance in MET
estimation—1.0 METs and 1.2 METs using data collected from
wrist and hip placements [42,45]. Our slightly better
performance might be because of a large range of activities that
enhanced MET distribution.

We believe that our work constitutes one of the largest
accelerometer-based validation studies in older adults. Data
were collected at a high resolution, and there were a large
number of activities included and 5 body placements. This
resulted in a large number of pairwise (location and sensor)
combinations. A limitation of this study is that data were
collected in controlled laboratory settings, which is an
appropriate initial step in a validation framework [54]. The next
step is to collect data in free-living settings with more fluid
transitions between tasks, which is more reflective of actual
movement. Another limitation of the study was that not all
activities were performed by all participants (Multimedia
Appendix 1). However, the final number of participants with
complete data for each activity was sufficient to assess the
accuracy of individual body positions and their combinations.
Another limitation of the study was that the performance ranking
and conclusions were based on random forest models and might
change when using other machine learning models. We used
the random forest model because it was found to be the best
performing in our previous study [41]. A subsequent analysis
is required to validate whether the choice of machine learning
model will affect the classification performance. Finally, our
population included community-dwelling older volunteers to
generalize to this population. Although this sample had common
comorbidities such as diabetes, hypertension, and cancer history,
we did not actively recruit people who had specific ambulatory
deficits that would likely impact the results. Existing work in
these specialized populations shows that knowledge from
nonambulatory, impaired (eg, healthier) adults transfers with
poor accuracy [55]. Thus, this study is limited to
community-dwelling older adults without overt ambulatory
deficits.

Conclusions
The results from this work suggest that additional accelerometer
devices only slightly enhance activity recognition accuracy and
MET estimation in older adults. However, no single or
combination of accelerometer placement appeared to be
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significantly better than the others. Therefore, using a single
accelerometer placement appears to provide sufficient
performance for labeling general activity categories and
estimating energy expenditure. Researchers and practitioners

should consider performance accuracy in the context of
participant burden and the potential extra benefits gained in
particular positions.
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