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Abstract

Background: Diabetes mellitus is a metabolic disorder that affects hundreds of millions of people worldwide and causes several
million deaths every year. Such a dramatic scenario puts some pressure on administrations, care services, and the scientific
community to seek novel solutions that may help control and deal effectively with this condition and its consequences.

Objective: This study aims to review the literature on the use of modern mobile and wearable technology for monitoring
parameters that condition the development or evolution of diabetes mellitus.

Methods: A systematic review of articles published between January 2010 and July 2020 was performed according to the
PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Manuscripts were identified through
searching the databases Web of Science, Scopus, and PubMed as well as through hand searching. Manuscripts were included if
they involved the measurement of diabetes-related parameters such as blood glucose level, performed physical activity, or feet
condition via wearable or mobile devices. The quality of the included studies was assessed using the Newcastle-Ottawa Scale.

Results: The search yielded 1981 articles. A total of 26 publications met the eligibility criteria and were included in the review.
Studies predominantly used wearable devices to monitor diabetes-related parameters. The accelerometer was by far the most
used sensor, followed by the glucose monitor and heart rate monitor. Most studies applied some type of processing to the collected
data, mainly consisting of statistical analysis or machine learning for activity recognition, finding associations among health
outcomes, and diagnosing conditions related to diabetes. Few studies have focused on type 2 diabetes, even when this is the most
prevalent type and the only preventable one. None of the studies focused on common diabetes complications. Clinical trials were
fairly limited or nonexistent in most of the studies, with a common lack of detail about cohorts and case selection, comparability,
and outcomes. Explicit endorsement by ethics committees or review boards was missing in most studies. Privacy or security
issues were seldom addressed, and even if they were addressed, they were addressed at a rather insufficient level.

Conclusions: The use of mobile and wearable devices for the monitoring of diabetes-related parameters shows early promise.
Its development can benefit patients with diabetes, health care professionals, and researchers. However, this field is still in its
early stages. Future work must pay special attention to privacy and security issues, the use of new emerging sensor technologies,
the combination of mobile and clinical data, and the development of validated clinical trials.
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Introduction

Background
Diabetes mellitus (DM) is a metabolic disorder primarily
characterized by high blood glucose levels (GLs). People with
DM are more likely to have other major health problems.
Therefore, the chances for them to require special medical
attention increases as the patients’ quality of life decreases [1].
Statistics from the International Diabetes Federation show that
463 million people had DM worldwide in 2019, with a total of
4.2 million estimated deaths that year. The projection of these
data is alarming for the next years, and by 2045, an increase of
33.9% is estimated; thus, 700 million people would have DM
[2]. Such a continued increase in the prevalence of DM is mainly
justified by the global rise in obesity, driven foremost by
people’s unwholesome lifestyles and urbanization [3]. According
to the International Diabetes Federation, more people have died
from DM than from other diseases sometimes categorized as
more dangerous or receiving more attention from health agencies
or governments [4].

DM is normally categorized into 3 groups: type 1 diabetes
(T1D), type 2 diabetes (T2D), and gestational diabetes (GD).
T1D affects between 5% and 10% of patients with DM and
most often occurs in young people [5,6]. T1D is fundamentally
characterized by a severe problem of insulin secretion. Patients
are required to use an external source of insulin to balance their
blood GLs. These multiple daily doses can be administered
through injections or continuous insulin pumps. T2D affects
between 90% and 95% of patients with DM, usually adults and
senior citizens [5,6]. In this case, the pathophysiological
mechanism is insulin resistance, and over time, the body loses
the ability to secrete the right amount of this hormone. These
type of patients with DM have several options to treat their
condition.

Irrespective of the type of DM, low or too high GLs in the blood
for long periods can induce several complications in patients,
leading to premature death in worst cases. Critical hypoglycemia
can cause comatose states and induce seizures. Chronic
hyperglycemia can cause vascular damage; affect the heart,
kidneys, eyes, and nerves; and lead to other serious
complications [7,8]. These complications of DM can be
classified into 2 types: microvascular (related to retinopathies,
nephropathies, and neuropathies) and macrovascular (mainly
related to cardiovascular problems) [9,10].

Extensive tests have proven that appropriate metabolic control
in all DM types can delay the onset and evolution of its
complications [10]. In addition, early diagnosis, continuous
health care, and adequate self-monitoring of the disease by
patients are key for preventing or minimizing complications.
Moreover, several studies indicate that T2D can be prevented
by maintaining a healthy lifestyle, attaining adequate nutrition,
performing physical activity, and avoiding obesity [11].

Therefore, some parameters are of special interest to be
monitored by patients with DM, such as body weight, GL,
performed physical activity, blood pressure, low-density
lipoprotein cholesterol, triglycerides, microalbuminuria, glycated
hemoglobin level [12], acquired calories, feet condition, eye
conditions, and stress levels, among others [4,13]. For all issues
related to DM, governments and institutions must urgently
implement new strategies, primarily fostered by the potential
of diabetes technologies, to decrease the risk factors that lead
to T2D and guarantee quality health care for people with DM
[14].

The health community uses the term diabetes technology for
devices and software that patients with DM use to aid their
condition. According to this classification, diabetes technology
has 2 main categories: insulin administration and blood glucose
monitoring. Insulin pumps are the most popular devices used
for insulin administration. Continuous glucose monitors (CGMs)
are most often used for monitoring blood GLs. In recent years,
hybrid devices have been developed, including both functions.
When this technology is used properly, it can improve the
quality of life of patients. However, the complexity and rapid
changes in this field can be an obstacle to their widespread use
by patients [15]. Although diabetes technologies have been
mostly dominated by this type of devices, it is only recently
that the advances in mobile and wearable technologies have
burst in to complement prior diabetes technology with a new
generation of digital solutions at the reach of most people.

The widespread adoption of wearable and mobile technologies
around the world offers new opportunities for researchers to
provide medical care and information in a portable and
affordable way [16]. Smartphones stand out because of their
strong computational features and pervasiveness. As of 2019,
2.5 billion people owned smartphones [17], which is far beyond
the number of desktops or laptop computer ownership in
countries such as the United States [18]. Even among older
adults, smartphone ownership has doubled. By the beginning
of 2019, there were approximately 350.4 million people using
wearable technology [19], namely, devices worn directly on or
loosely attached to a person [20], with a growing trend in the
use of wrist-worn devices [21]. This technology has distinctive
applications in the health care field because of its capacity to
gather, store, and transmit data and sometimes even process it.
Both patients and physicians can leverage these features for the
management, treatment, and assessment of their conditions.
Despite the aforementioned capabilities of mobile and wearable
technology, these devices are not yet extensively used in clinical
settings [20].

Several sensors are readily available on regular smartphones,
such as the accelerometer (ACC), GPS, camera, ambient light,
and microphone, among others. The data collected by these
sensors can be used to determine the user context [22]. For
example, physical activity or calories burned by the user can
normally be measured using a smartphone’s motion sensors
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(ACC and gyroscope) [23]. Wearables have features that
increasingly compare to those of regular smartphones, including,
in some cases, built-in GPS, barometer, heart rate (HR), ACC,
or gyroscope sensors. In addition, wearables outmatch
smartphones while sensing physiological signs, such as HR,
electrocardiogram (ECG), or skin temperature, which are
considered of particular interest for the monitoring of
DM-related parameters. Some of these physiological
measurement capabilities can also be instrumented in
smartphones via external pluggable devices, although only for
occasional use [24]. By processing the collected data generated
by the sensors on smartphones and wearables, it is possible to
monitor many of the relevant parameters for patients with DM,
such as GL, blood pressure, calories, physical activity, feet
condition, eye condition, and stress levels. In addition, one of
the most relevant characteristics of this technology is its capacity
to monitor in a continuous, passive, and unobtrusive way,
without necessarily interfering with people’s regular daily living.

Mobile and wearable devices generate an enormous amount of
data, and their ability to process these data is beyond human
skills [25]. This is why sophisticated mechanisms such as
artificial intelligence (AI) are most often used in combination
with these devices to digest and extract meaningful knowledge
from the gathered data. AI is widely used to support advanced
analytics and provide individualized medical assistance [26].
In addition, a growing number of health care companies are
applying AI algorithms to discover relevant clinical information
from large amounts of data [27]. The main reasons for this
growth include the explosive increase in the amount of data
available, along with the improved performance of intelligent
methodologies capable of handling and processing it. AI is also
attracting great attention to DM, as the amount of data acquired
electronically by patients with DM has grown. Proper
management of these large volumes of data is expected to
increase the quality of life of patients with DM [28]. Thus, AI
may play a key role in the recognition of these systems as
routine therapeutic aids for patients with DM.

Objective
Although several manuscripts have been published on the use
of mobile and wearable technology for monitoring parameters
that condition the development and evolution of DM, hereafter
monitoring of DM-related parameters, this subject has not been
systematically reviewed to the best of the authors’ knowledge.
Therefore, the goal of this study is to review the published
literature on the use of mobile and wearable technology for the
monitoring of DM-related parameters. Three specific research
questions are defined to guide this study: (1) How are
DM-related parameters studied using mobile and wearable
technology? (2) How are the devices and sensors used to monitor
DM-related parameters? and (3) What processing is given to
the collected mobile and wearable data?

Methods

Overview
The PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) guidelines [29] were followed to
perform a systematic review of the literature on mobile and
wearable sensing for the monitoring of DM-related parameters.
Moreover, the Newcastle-Ottawa Scale (NOS) [30] was used
to assess the quality of the studies. The specific methodology
followed is described in the following sections.

Information Source
Studies were identified by searching electronic databases and
scanning publications from a reference list of authors. The
search was performed using 3 reference web-based citation
databases: Web of Science (WoS), Scopus, and PubMed. The
last search was performed on July 28, 2020. The queries used
for the database search are listed in Textbox 1. The terms used
in the queries and the combination thereof aim to match the
title, abstract, or keywords of the manuscripts. In addition, we
handsearched on ResearchGate for authors with skills and
expertise related to the topics of interest by using the query
“diabetes AND (wearable OR mobile).” On the basis of the list
of retrieved authors, we identified their studies within the scope
of wearable and mobile sensing in diabetes.
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Textbox 1. Queries’ results per database.

Scopus

• TITLE-ABS-KEY(diabetes AND ((sensor OR sensing OR accelerometer OR gyroscope OR “proximity sensor” OR “light sensor” OR pedometer
OR barometer OR gps OR camera OR “humidity sensor” OR magnetometer OR compass OR microphone OR mic OR nfc OR Bluetooth OR
Wi-Fi OR fingerprint OR sms OR “phone call” OR “call log”) AND ((wearable OR “smart watch” OR smartwatch OR “fitness band” OR “flexible
band” OR wristband OR “smart insole” OR bracelet) OR (mobile OR smartphone OR “smart phone” OR cellphone OR “cell phone” OR
mobilephone OR “mobile phone”))))

Web of Science

• (ts = (diabetes AND ((sensor$ OR sensing OR accelerometer$ OR gyroscope$ OR “proximity sensor$” OR “light sensor$” OR pedometer$ OR
barometer$ OR gps OR camera$ OR “humidity sensor$” OR magnetometer$ OR compass OR microphone$ OR mic OR nfc OR Bluetooth OR
Wi-Fi OR fingerprint OR sms OR “phone call$” OR “phone$ call” OR “call log$”) AND ( (wearable$ OR “smart watch*” OR smartwatch* OR
“fitness band$” OR “flexible band$” OR wristband$ OR “smart insole$” OR bracelet$) OR (mobile$ OR smartphone$ OR “smart phone$” OR
cellphone$ OR “cell phone$” OR mobilephone$ OR “mobile phone$”)))))

PubMed

• ((diabetes AND ((sensor OR sensing OR accelerometer OR gyroscope OR “proximity sensor” OR “light sensor” OR pedometer OR barometer
OR gps OR camera OR “humidity sensor” OR magnetometer OR compass OR microphone OR mic OR nfc OR Bluetooth OR Wi-Fi OR fingerprint
OR sms OR “phone call” OR “call log”) AND ((wearable OR “smart watch” OR smartwatch OR “fitness band” OR “flexible band” OR wristband
OR “smart insole” OR bracelet) OR (mobile OR smartphone OR “smart phone” OR cellphone OR “cell phone” OR mobilephone OR “mobile
phone”))))[TitleAbstract])

Study Selection
Manuscripts resulting from the database search (WoS, Scopus,
and PubMed) and the hand search (ResearchGate) were
downloaded and merged, and duplicates were removed. A
2-stage process was applied for the analysis of the manuscripts.
In the first stage, 2 of the authors (CR and OB) screened the
manuscripts based on the eligibility criteria, using title and
abstract. In the second stage, the same authors fully reviewed
the manuscripts resulting from the first stage and selected those
meeting the eligibility criteria. During both the initial screening
and full-text screening for eligibility, the 2 authors processed
all the papers independently and discussed their observations
before making a definitive decision. In the event of
disagreement, a third reviewer (CV) was assigned, and a final
decision was made based on the majority vote.

Eligibility Criteria
Studies were included if related to DM and if data were collected
using sensors from wearable devices or smartphones and
transmitted wirelessly. Hence, studies that were not related to
DM were directly excluded. Those related to DM but where
data were not collected using wearables or smartphones or where
data were not transmitted wirelessly were also excluded. The
inclusion criteria for both disease and technology are explained
below.

According to the considered disease, a manuscript was included
if it focused exclusively on DM, meaning that the main clinical
topic of the study was DM; it was related to DM complications,
that is, the main clinical topic of the study was a complication
(or several) resulting from DM; it studied DM in combination
with another disease, in other words, the main clinical topic of
the study was the relation between DM and another condition
such as cardiovascular disease; and patients with DM were used
as a case study, namely, a clinical solution for multiple
conditions was proposed, but the evaluation was performed on
patients with DM.

According to the technology, the definition of wearable used
for the inclusion criteria was “electronic device with
micro-controllers, that can be incorporated into clothing or worn
on the body as implants or accessories” [31]. These devices can
be either commercial, medical, or prototypes. The definition of
smartphone for the inclusion criteria was the given by the
Oxford dictionary: “a mobile phone that performs many of the
functions of a computer, typically having a touchscreen
interface, internet access, and an operating system capable of
running downloaded apps.” Moreover, both wearables and
mobile devices must send the monitored data wirelessly to the
storage endpoint to meet the inclusion criteria.

Studies meeting the disease and technology inclusion criteria
were also excluded if they were oriented to the intervention
without an actual monitoring of DM-related parameters; they
were technology centered, namely, the solution was not applied
to a clinical case study; the proposed solution was not tested;
similar studies under a different title were already considered;
and the manuscript was not available.

Only English manuscripts in engineering and computer science
areas, of article or proceedings type, and published between
January 2010 and July 2020 (both inclusive) were included.

Quality Assessment
The 9-point NOS was used to score the included manuscripts.
Nonrandomized studies, including case-control and cohort
studies, were independently scored by 2 authors (CR and JRR).
Disagreements were discussed and resolved.

Results

Overview
The query used in the Scopus, WoS, and PubMed databases
resulted in 960, 627, and 323 references, respectively. A total
of 71 manuscripts were identified through other sources. After
applying the PRISMA guidelines (Figure 1), 26 publications
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were eventually included in the full review, 4 exclusive from
Scopus [32-35]; 8 from Scopus and WoS [36-43]; 2 from Scopus
and PubMed [44,45]; 1 from WoS and PubMed [46]; 9 from

Scopus, WoS, and PubMed [47-55]; and 2 available in both
Scopus and PubMed and other sources [56,57].

Figure 1. Search and selection of manuscripts using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines.

The process used to achieve the 26 publications included in this
review is as follows. A total of 590 original studies were
obtained after merging the results from the databases and
eliminating duplicates. Up to 79.5% (469/590) of the
manuscripts were excluded after screening the title and abstract.
Of the 469 manuscripts, 243 (51.8%) were not focused on DM,
with a majority of papers where the term diabetes was part of
the subject but most often just used as an exemplary use case;
in 55 (11.7%) manuscripts, no sensing took place; in 4 (0.9%)
of the manuscripts, the sensing device was not considered
mobile or wearable; 97 (20.7%) manuscripts were mainly
focused on interventions without an actual monitoring of
DM-related parameters; 18 (3.9%) manuscripts were exclusively
centered on the technology and did not have a clinical
application; 1 (0.2%) study proposed a solution but simply at
a conceptual level; 4 (0.9%) studies were found to be very

similar to other considered studies despite being entitled
differently; 11 (2.4%) were proceedings reviews; and finally
36 (7.7%) manuscripts were reviews or surveys.

The 121 manuscripts resulting from the previous screening were
fully analyzed. A total of 78.5% (95/121) of the manuscripts
were excluded following the same criteria mentioned above:
5% (5/95) studies were not focused on DM; in 22% (21/95) of
the studies, no sensing was performed; in 27% (26/95) of the
studies, the sensing device was not considered mobile or
wearable; in 3% (3/95) of the studies, the data were not sent
wirelessly; 5% (5/95) of the studies were centered on
technology; 25% (24/95) of the studies were not properly tested,
that is, some studies did not show enough scientific maturity in
their tests and others did not involve patients with DM; 6%
(6/95) of the manuscripts were not available; 4% (4/95) of the
manuscripts were reviews or surveys; and finally, 1% (1/95) of
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the manuscript was a magazine. As a result, 21.5% (26/121) of
the manuscripts were selected to be reviewed in this study.

Of the 26 selected studies, 22 (85%) studies were assessed in
terms of quality (Multimedia Appendix 1
[32-34,36-38,40-43,45-54,56,57]). A total of 19 (73%) studies
were deemed as cohort studies [33,34,36-38,40-42,45-54,57].
Moreover, 12% (3/26) of studies were identified as case-control
studies [32,43,56]. The remaining 15% (4/26) of studies were
not identified as nonrandomized [35,39,44,55]; therefore, they
were not included in the quality assessment. Of the assessed
studies, 41% (9/22) were rated 1 star [36,37,40,43,46-49,51],
55% (12/22) were rated 2 stars [32-34,38,41,42,45,50,52-54,56],
and only 5% (1/22) study was rated 4 stars [57]. None of the
studies obtained any star for the comparability criteria. The
ratings were generally low, which is nevertheless explained by
the fact that the selected studies were not of an intervention
type.

Some general statistics and quality indicators were obtained
from the selected studies. Overall, 62% (16/26) manuscripts
were published in journals, whereas (10/26) manuscripts were
included in conference proceedings. Moreover, 23% (6/26) of
the articles were published in journals ranked in quartile 1, 4%
(1/26) in quartile 2, 8% (2/26) in quartile 3, and 4% (1/26) in
quartile 4% (1/26) according to the Journal Citation Reports
(WoS). In addition, 19% (5/26) of the articles were published
in journals ranked in quartile 1, 23% (6/26) in quartile 2, 4%
(1/26) in quartile 3, and 4% (1/26) in quartile 4 according to
the SCImago Journal Rank (Scopus). It was observed that
cross-national research teams were present on many occasions.
These teams had a European member 14 times, had a member
from the Unites States 11 times, and had an Asian member 8
times. The majority of the studies (21/26, 81%) were published
between 2017 and 2019, as shown in Multimedia Appendix 2.

Close to half of the manuscripts (12/26, 46%) did not focus on
a specific type of DM, almost a third of the studies (8/26, 31%)
were related to T1D, 5 were associated with T2D (5/26, 19%),
and 1 study dealt with GD (1/26, 4%). The majority of the
studies (25/26, 96%) were some type of trial or longitudinal
study, with sample sizes ranging from 1 to 100 participants with
an approximate duration of up to 140 days. Patients with DM
were involved in approximately two-third of these trials (17/26,
65%). More than half of the studies used only wearables to carry
out their objectives (15/26, 58%), approximately one-fifth of
the studies used only smartphones (5/26, 19%), and 6 studies
used both wearables and smartphones in combination (6/26,
23%). The most common sensor used in the studies was the
ACC (19/26, 73%).

In the following sections, we report the findings extracted from
the analysis of all the reviewed studies. The dimensions for
characterization are medical classification, DM type, research
goals, devices, sensors, data processing, privacy and security,
and study’s characteristics. Medical classification refers to
studies that focused exclusively on DM, related to DM
complications, studied DM in combination with another disease,
or used patients with DM as a case study. DM type can be T1D,
T2D, GD, or not specified. Research goals refer to activity
recognition, diagnosis or prediction of the onset or evolution

of DM, finding associations among DM-related variables, or
simply measuring DM-related parameters. Devices can be
wearable, smartphone, wearable and smartphone. Sensors refer
to ACC, glucose monitor (GM), HR monitor, etc. Data
processing is categorized into statistical analysis, machine
learning (ML), ontologies, or none. Privacy and security refer
to mechanisms used to preserve users’ anonymity, ethical
aspects, and data protection. Study’s characteristics refer to
size, length, and subjects’ characteristics.

Medical Classification, DM Type, and Research Goals
More than half of the selected studies, namely, 62% (16/26) of
manuscripts were exclusively focused on DM
[32,34-40,45-47,50,51,53-55]. Other studies addressed some
complications that DM can lead to, specifically, diabetic foot
ulcer (DFU) in 15% (4/26) of articles [33,48,56,57] and diabetic
peripheral neuropathy (DPN) in 4% (1/26) of studies [56]. Three
additional studies (12%) investigated DM in conjunction with
other diseases that were not a complication of DM itself but
were closely related to it. Nguyen et al [41] considered
cardiovascular diseases besides DM, whereas in the study by
Sarda et al [52], the association between DM and depression
was explored. Sevil et al [42] found an association between
acute psychological stress and glucose dynamics in patients
with T1D. Some of the screened manuscripts were not focused
on a specific disease, but their results can be applied to different
health domains, such as obesity, nutrition, hypertension, and
DM. Furthermore, 12% (3/26) of these studies were included
in the final set of selected articles because they used patients
with DM as a case study [43,44,49].

According to the DM type, 4% (1/26) of studies were related
to GD [49], 31% (8/26) of studies were related to T1D
[32,38,42,45,50,51,53,54], 19% (5/26) of studies were related
to T2D [34,39,43,46,55], and 46% (12/26) of studies did not
m e n t i o n  a n y  s p e c i f i c  t y p e  o f  D M
[33,35-37,40,41,44,47,48,52,56,57].

As for the research goals of the selected studies, 15% (4/26) of
manuscripts aimed to detect physical activity patterns relevant
to patients with DM, such as walking, running, or sleeping
[36,37,41,47]. Three studies [36,37,47] focused on recognizing
eating, exercising, and sleeping activities by using body ACC
and HR collected via a smartphone and a chest strap. In addition,
2 studies [37,47] collected sound, location, velocity, and
respiration rate (RR) for a similar purpose. Nguyen et al [41]
also used a chest band and ambient sensors to measure ACC,
continuous GL, body temperature, room temperature, or
humidity data, which are used for fall detection and remote
monitoring of DM-related parameters.

Overall, 23% (6/26) of manuscripts [34,35,38,39,48,53] focused
on diagnosing or predicting affections related to DM from sensor
data. Calbimonte et al [38] predicted glycemic events by
collecting ECG, RR, and ACC from a chest strap. Fraiwan et
al [48] created a mobile thermal imaging system to indicate the
potential development of a DFU. Reddy et al [39] aimed to
create a classification system to identify an individual’s diabetic
status (healthy or diabetic) using photoplethysmogram data
collected from both a smartphone and pulse oximeter. Ramazi
et al [34] predicted the progression of T2D by collecting the
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physical activity and GL from a wristband and a CGM. Garcia
et al [35] diagnosed DM from facial images captured using a
smartphone. Finally, Rodriguez-Rodriguez et al [53] predicted
GL using the CGM data alone.

A total of 38% (10/26) of studies were aimed at finding an
association between variables or diseases related to DM
[32,42,44,45,50-52,54,56,57]. Najafi et al [44] found some links
among biometric variables, postural and balance control, from
the quaternion data collected via a hip-worn strap prototype.
Turksoy et al [50] determined which variable was the most
useful for inclusion in a future artificial pancreas using data
such as ACC, GL, and HR from various wearable devices such
as an armband, a CGM, and a smartwatch. Faccioli et al [45]
studied the relation between physiological information on
physical exercise and glucose models, mainly from ACC and
GL data sensed via an activity tracker and CGM. Similarly,
Merickel et al [32] found a relation between the driver state and
the health and physiological state of patients with T1D using a
wristwatch and a CGM to obtain primarily ACC, GL, and HR.
Likewise, Sarda et al [52] analyzed the relation between some
variables sensed by a smartphone, such as mobility, sleep
patterns, and location, and the symptoms of depression with
DM. Sevil et al [42] found an association between acute
psychological stress and glucose dynamics. Similarly, Sanz et
al [54] sought to find associations between different signals
provided by 3 different wearable devices and the accuracy of a
CGM device during aerobic exercise. Two studies found

associations between diseases. On the one hand, Grewal et al
[56] found a relation between DPN, with no other complications,
and DPN combined with DFU using spatiotemporal parameters
from a lower limb band. On the other hand, Razjouyan et al
[57] found a relation between physiological stress and DFU
healing speed via the monitoring of ACC, HR, and RR from a
chest strap. Finally, Groat et al [51] attempted to correlate
biometric and physiological variables sensed by a CGM and a
wristband through manual entries on a mobile app.

Finally, 23% (6/26) of manuscripts had the principal goal of
simply measuring data relevant to DM [33,40,43,46,49,55].
McLean et al [49] sensed physical proximity, physical activity,
sedentary behavior, location, and orientation from a smartphone.
Bartolic et al [40] primarily used a wristband and a smartphone
to monitor daily activity, sleep duration, and calorie
consumption, among others. McMillan et al [46] collected
physical activity data, sedentary behavior, and continuous GL
using a thigh-worn wearable and a flash glucose monitor (FGM).
Rescio et al [33] sensed the temperature and pressure of the
plantar foot with a smart insole. Zherebtsov et al [43] quantified
changes in the microcirculatory blood flow in tissues using a
wristband. Whelan et al [55] measured the usage, feasibility,
and acceptability of behavioral and physiological
self-monitoring technologies with 2 different wristbands and
an FGM.

All details about medical classification, DM type, and research
goals of the reviewed manuscripts are provided in Table 1.
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Table 1. Summary of medical topics, diabetes types, and research goals, ordered by the year of publication.

Research goalsDiabetes typeMedical classificationManuscript

Find association between posture and balance control among pa-
tients with different DM complications

Not specifiedPatients with DMa used as
case study

Najafi et al (2010) [44]

Find association between DPN and DFUc for gaitNot specifiedDM complication: DPNb

and DPN with diabetic foot

Grewal et al (2013) [56]

Activity recognition of walking, running, cycling, lying, sitting,
and standing

Not specifiedFocused on DMLuštrek et al (2014) [36]

Activity recognition of sleeping, home chores, home leisure, eating,
and exercising

Not specifiedFocused on DMLuštrek et al (2015) [37]

Activity recognition of working, eating, exercising, and home ac-
tivities

Not specifiedFocused on DMCvetković et al (2016) [47]

Predict glycemic eventsT1DdFocused on DMCalbimonte et al (2017) [38]

Diagnose development of DFUNot specifiedDM complication: diabetic
foot

Fraiwan et al (2017) [48]

Measure physical proximity, physical activity, and magnetic field
strength

GDePatients with DM used as
case study

McLean et al (2017) [49]

Find association between physiological stress response and healing
speed among outpatients with active DFU

Not specifiedDM complication: diabetic
foot

Razjouyan et al (2017) [57]

Diagnose individual’s diabetic statusT2DfFocused on DMReddy et al (2017) [39]

Find association between biometric variables and changes in glu-
cose concentration

T1DFocused on DMTurksoy et al (2017) [50]

Measure GLg, insulin dosage, physical activity, daily movement,
and sleep duration and quality

Not specifiedFocused on DMBartolic et al (2018) [40]

Find association between glucose prediction models’performanceT1DFocused on DMFaccioli et al (2018) [45]

Find association between exercise behavior data with the rate of
change in GL

T1DFocused on DMGroat et al (2018) [51]

Measure combined GL data, physical activity, and sedentary be-
havior

T2DFocused on DMMcMillan et al (2018) [46]

Find association between pattern of glucose and at-risk pattern of
vehicle acceleration behavior

T1DFocused on DMMerickel et al (2018) [32]

Activity recognition of fall detection and remote health monitoringNot specifiedDM in conjunction with
other diseases: DM+cardio-
vascular disease

Nguyen Gia et al (2019)
[41]

Measure temperature and pressure of the plantar footNot specifiedDM complication: diabetic
foot

Rescio et al (2019) [33]

Find association between smartphone-sensing parameters and
symptoms of depression

Not specifiedDM in conjunction with
other diseases: DM+depres-
sion

Sarda et al (2019) [52]

Predict the progression of T2DT2DFocused on DMRamazi et al (2019) [34]

Diagnose DM from facial imagesNot specifiedFocused on DMGarcia et al (2019) [35]

Find the association between acute psychological stress and the
glucose dynamics

T1DDM in conjunction with
other diseases: DM+acute
psychological stress

Sevil et al (2019) [42]

Measure the changes in the microcirculatory blood flow of healthy
patients and patients with T2D

T2DPatients with DM used as
case study

Zherebtsov et al (2019) [43]

Predict blood GL for T1D with limited computational and storage

capabilities using only CGMh data

T1DFocused on DMRodriguez-Rodriguez et al
(2019) [53]

Find the association between different signals provided by 3 differ-
ent wearables devices and the accuracy of a CGM device during
aerobic exercises

T1DFocused on DMSanz et al (2019) [54]
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Research goalsDiabetes typeMedical classificationManuscript

Measure the use, feasibility, and acceptability of behavioral and
physiological self-monitoring technologies in individuals at risk
of developing T2D

T2DFocused on DMWhelan et al (2019) [55]

aDM: diabetes mellitus.
bDPN: diabetic peripheral neuropathy.
cDFU: diabetic foot ulcer.
dT1D: type 1 diabetes.
eGD: gestational diabetes.
fT2D: type 2 diabetes.
gGL: glucose level.
hCGM: continuous glucose monitor.

Devices and Sensors
A total of 58% (15/26) of studies used wearable devices for
monitoring tasks [32-34,38,41-44,46,50,53-57], 3 of which were
research prototypes, namely, a hip-worn strap [44], a chest strap
[41], and a smart insole [33]. Of the remaining 12 studies, 5
(42%) used wearable of a commercial type; those were chest
straps (Bioharness 3, Zephyr) [38,57], a lower limb band
(LEGSys, BioSensics LLC) [56], a wristband (AMT-LAZMA
1, Aston Medical Technology Ltd) [43], and an FGM (FreeStyle
Libre, Abbott Diabetes Care) [53]. In 23% (6/26) of studies,
the authors used various commercial wearable devices in
combination: an armband (SenseWear, BodyMedia), 2 CGMs
(Guardian Real-Time, Medtronic, and Dexcom G4 Platinum,
Dexcom, Inc), a chest strap (Bioharness 3, Zephyr), and a
smartwatch (Mio Alpha, MIO Global) [50]; a thigh-worn
(activPAL, PAL Technologies Ltd) and a FGM (FreeStyle Libre,
Abbott Diabetes Care) [46]; a wristwatch (model not specified)
and a CGM (Dexcom G4 Platinum, Dexcom, Inc) [32]; a
wristband (ActiGraph, model not specified, ActiGraph LLC)
and a CGM (Dexcom G4 Platinum, Dexcom, Inc) [34]; a
wristband (Empatica E4, Empatica Inc) and a CGM (Dexcom
G5, Dexcom, Inc) [42]; 3 wristbands (Fitbit Charge HR, Fitbit,
Inc; Microsoft Band 2, Microsoft Corporation; and Polar RCX3,
Polar Electro) and a CGM (Enlite-2, Medtronic Minimed) [54];
and 2 wristbands (Fitbit Charge 2, Fitbit, Inc, and ActiGraph
wGT3x-BT, ActiGraph LLC) and a FGM (FreeStyle Libre,
Abbott Diabetes Care) [55].

Smartphones were used in 19% (5/26) of studies for sensing
purposes: a Samsung Galaxy S6 Edge Plus (Samsung) [48], a
Nexus 5 (LG Corporation & Google, LLC) [39], an iPhone 7
(Apple Inc) [35], and no specific details were found for the other
2 studies [49,52]. A total of 6 studies used both wearables and
smartphones to acquire data [36,37,40,45,47,51]. In 3 studies

[36,37,47], a smartphone (model not specified) and a chest strap
(model not specified) were used. Bartolic et al [40] used a
smartphone (model not specified) with a wristband (Fitbit fitness
bracelet, Fitbit, Inc). Faccioli et al [45] used a smartphone
(model not specified), an activity tracker (model not specified),
and a CGM (model not specified). Groat et al [51] used a
smartphone (model not specified), a wristband (Fitbit Charge
HR, Fitbit, Inc), and a CGM (Enlite, Medtronic) to perform the
monitoring task.

A total of 30 different types of sensors were used to acquire
data from the reviewed studies. The ACC stands out as the
sensor most widely used across studies, namely, in 73% (19/26)
of studies [32,34,36-38,40-42,44-47,49,50,52,54-57]. This
sensor has been primarily used for the automatic recognition of
activities such as motion, walking, running, exercise, cycling,
standing, sitting, sleep, step count, and fall detection. The second
most used sensor is the GM, which was used to monitor glucose
in 46% (12/26) of the most recently published studies
[32,34,40-42,45,46,50,51,53-55]. The subject’s glucose was
measured using different types of GM sensors: continuously
with a CGM [32,34,41,42,45,50,51,54], with an FGM
[46,53,55], and manually with a Bluetooth glucometer [40] and
with a glucose and L-lactate analyzer [54]. Moreover, HR
monitor was included in 27% (7/26) studies
[32,36,40,50,51,54,55] to measure the HR of the subjects and
infer mainly exercise intensity, calorie consumption, and activity
recognition. Some apps can also be considered as sensors when
used to encode data manually. For example, Groat et al [51]
used an app to be operated by the subjects involved in the trials
to self-track exercise behavior and rate of change in GLs.

All details about the devices and sensors used in the reviewed
manuscripts are provided in Table 2. A summary of the sensor
use for each study is available in Multimedia Appendix 3
[32-57].
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Table 2. Summary of devices used, ordered by the year of publication.

PurposeDevices, sensors, measurementStudies and devices

Recognize the motion of ankle and hip
joints in 3 dimensions

Wearable: hip-worn strap (prototypea)Najafi et al (2010) [44]

• Triaxial ACCb (quaternions)
• Triaxial gyroscope (quaternions)
• Triaxial magnetometer (quaternions)

Complementary: pressure platform (Emed-x system, Novel Inc)

• Pressure sensor (area of sway)

Gait detectionWearable: lower limb band (LEGSys, BioSensics LLC)Grewal et al (2013) [56]

• ACC (acceleration)
• Gyroscope (angular velocity)

Smartphone location detection; activity
recognition: walking, running, cycling, ly-

Smartphone (model not specified)Luštrek et al (2014) [36]

• ACC (acceleration)
ing, sitting, and standing; and energy expen-
diture estimationWearable: chest strap (model not specified)

• ACC (acceleration)
• HRMc (HRd)

Activity recognition: sleep, exercise, work,
transport, eating, home, and outdoor

Smartphone (model not specified)Luštrek et al (2015) [37]

• ACC (acceleration, location, HR, and RRe)
• Microphone (sound)
• GPS (location and velocity)
• Wi-Fi (location)

Wearable: chest strap (model not specified)

• ACC (acceleration)
• ECGf (HR and RR)

Activity recognition: sleep, exercise, work,
transport, eating, home, and out

Smartphone (model not specified)Cvetković et al (2016) [47]

• ACC (acceleration)
• Microphone (sound)
• GPS (location and velocity)
• Wi-Fi (location)

Wearable: chest strap (model not specified)

• ACC (acceleration)
• ECG (HR and RR)

Generate 2 semantic models: physiological
and energy expenditure for classifying hy-
poglycemic events

Wearable: chest strap (Bioharness 3, Zephyr)Calbimonte et al (2017) [38]

• ACC (acceleration)
• ECG (HBg fiducial points location, STh segment shape, QTci interval,

HR, and RR)

Recognize change of temperature on the
feet

Smartphone (Samsung Galaxy S6 Edge Plus, Samsung)

Complementary: infrared thermal camera (FLIR ONE, FLIR Systems, Inc)

Fraiwan et al (2017) [48]

• Infrared sensor (thermal images)
• Camera (standard image)

Quantify physical proximity, sedentary be-
havior, vehicle use, and location

Smartphone (model not specified)McLean et al (2017) [49]

• ACCs (acceleration)
• GPS (location)
• Wi-Fi (location)
• Camera (photo)
• Magnetometer (magnetic field strength)
• Bluetooth (physical proximity)

Detection of physiological stress of the pa-
tient

Wearable: chest strap (Bioharness 3, Zephyr)Razjouyan et al (2017) [57]

• ACC (acceleration)
• ECG (HR, RR, and core body temperature)
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PurposeDevices, sensors, measurementStudies and devices

Discriminate between diabetic and healthy
individuals

Smartphone (Nexus 5, LG Corporation and Google, LLC)

• Camera and flash (PPGj)

Complementary: peripheral pulse oximeter (model not specified)

• Pulse oximeter (PPG)

Reddy et al (2017) [39]

Find a correlation between biometric
changes and glucose concentrations during
exercise

Wearable: armband (SenseWear, BodyMedia)

• ACC (acceleration)
• Thermometer (skin temperature and near-body temperature)
• Galvanometer (galvanic skin response)
• Heat flux (rate of heat dissipating from the body)

Wearable: CGM (Guardian Real-Time, Medtronic)

• GMk (GLl)

Wearable: CGM (Dexcom G4 Platinum, Dexcom, Inc)

• GM (GL)

Wearable: chest strap (Bioharness 3, Zephyr)

• ACC (acceleration)
• ECG (HR)

Wearable: smartwatch (Mio Alpha, MIO Global)

• HRM (HR)

Complementary: open-circuit spirometry metabolic cart system (True One,
Parvo Medics)

• Expired gases (O2 and CO2)

Turksoy et al (2017) [50]

Quantify physical activity, daily movement,
sleep duration and quality, calorie consump-
tion, insulin dosages, and continuous GL

Smartphone (model not specified)

• App (insulin doses)

Wearable: wristband (Fitbit fitness bracelet, Fitbit, Inc)

• ACC (acceleration)
• HRM (HR)

Complementary: glucometer (Contour Next One, Ascensia Diabetes Care)

• GM (GL)

Bartolic et al (2018) [40]

Quantify step count, continuous GL, and
carbohydrate intake

Smartphone (model not specified)

• App (carbohydrates count)

Wearable: activity tracker (model not specified)

• ACC (acceleration)

Wearable: CGM (model not specified)

• GM (continuous GL)

Faccioli et al (2018) [45]

Quantify exercise behavior measured via a
wristband and an app to compare with the
rate of change in GL recorded by a CGM

Smartphone (model not specified)

• App (exercise behavior)

Wearable: wristband (Fitbit Charge HR, Fitbit, Inc)

• HRM (HR)

Wearable: CGM (Enlite, Medtronic)

• GM (continuous GL)

Groat et al (2018) [51]

Quantify step count, cadence and postural
transitions and energy expenditure esti-
mates, and continuous GL

Wearable: thigh-worn (activPAL, PAL Technologies Ltd)

• ACC (acceleration)
• Inclinometer (acceleration)

Wearable: FGM (FreeStyle Libre, Abbott Diabetes Care)

• GM (continuous GL)

McMillan et al (2018) [46]

Merickel et al (2018) [32]
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PurposeDevices, sensors, measurementStudies and devices

Compare the driving behavior from drivers

with and without T1Dn
Wearable: wristwatch (model not specified)

• ACC (acceleration)
• HRM (HR)

Wearable: CGM (Dexcom G4 Platinum, Dexcom, Inc)

• GM (continuous GL)

Complementary: vehicle sensor instrumentation packages (model not
specified)

• Camera (video)
• GPS (vehicle acceleration and speed)
• OBDm sensor (vehicle acceleration and speed)

Monitor DMp and ECG, and report abnor-
malities: fall, very low or high GL, and ab-
normal HR in real time without interfering
with the patient’s daily activities

Wearable: chest strap (prototype)

• ACC (acceleration)
• Gyroscope (angular velocity)
• Magnetometer (magnetic field)
• ECG (QTo intervals and HR)
• GM (continuous GL)
• Thermometer (body temperature)

Complementary: ambient sensors (prototype)

• Ambient sensor (room temperature, humidity, and air quality)

Nguyen Gia et al (2019)
[41]

Monitor temperature and pressure of the
plantar foot

Wearable: smart insole (prototype)

• Infrared thermometer (plantar temperature)
• Pressure sensor (pressure)

Rescio et al (2019) [33]

Activity recognition: mobility, sleep, and
social interaction 

Smartphone (model not specified)

• ACC (acceleration)
• Call logs (communication)
• GPS (location)
• Ambient light sensor (ambient light)

Sarda et al (2019) [52]

Quantify GL, traveled steps, and physical
activity: sitting, standing, and lying

Wearable: CGM (DexcomG4 Platinum, Dexcom, Inc)

• GM (continuous GL)

Wearable: wristband (model not specified; ActiGraph, ActiGraph LLC)

• ACC (acceleration)

Ramazi et al (2019) [34]

Capture facial imagesSmartphone (iPhone 7, Apple Inc)

• Camera (standard image)

Garcia et al (2019) [35]

Estimate acute psychological stress effect
index and GL

Wearable: wristband (Empatica E4, Empatica Inc)

• ACC (acceleration)
• PPG (blood volume pulse)
• Galvanometer (galvanic skin response)
• Infrared thermopile (skin temperature)

Wearable: CGM (Dexcom G5, Dexcom, Inc)

• GM (continuous GL)

Sevil et al (2019) [42]

Quantify changes in the microcirculatory
blood flow in tissues

Wearable: wristband (AMT-LAZMA 1, Aston Medical Technology Ltd)

• Laser Doppler flowmetry (Doppler shift)

Zherebtsov et al (2019) [43]

Quantify GL for the creation of a database
for further processing by the prediction
models

Wearable: FGM (FreeStyle Libre, Abbott Diabetes Care)

• GM (continuous GL)

Rodriguez-Rodriguez et al
(2019) [53]

Quantify number of steps walked, number
of floors of stairs climbed, exercise intensi-
ty, calories burned, and skin electrodermal
activity

Sanz et al (2019) [54]
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PurposeDevices, sensors, measurementStudies and devices

Wearable: wristband (Fitbit Charge HR, Fitbit, Inc)

• ACC (acceleration)
• HRM (HR)
• Altimeter (altitude)

Wearable: wristband (Microsoft Band 2, Microsoft Corporation)

• HRM (HR)
• Skin temperature (skin temperature)
• Galvanometer (galvanic skin response)
• ACC (acceleration)

Wearable: wristband (Polar RCX3, Polar Electro)

• HRM (HR)

Wearable: CGM (Enlite-2, Medtronic Minimed)

• GM (continuous GL)

Complementary: glucose and L-lactate analyzer (YSI 2300 Stat Plus Glu-
cose Analyzer, YSI Incorporated Life Sciences)

• GM (GL)

Quantify number of steps walked, distance
traveled, HR, calories expended, flights of
stairs climbed, and GL

Wearable: wristband (Fitbit Charge 2, Fitbit, Inc)

• ACC (acceleration)
• Altimeter (altitude)
• HRM (HR)

Wearable: wristband (ActiGraph wGT3x-BT, ActiGraph LLC)

• ACC (acceleration)

Wearable: FGM (FreeStyle Libre, Abbott Diabetes Care)

• GM (continuous GL)

Whelan et al (2019) [55]

aText in italic represents model and company of each devices in that order. In the cases of no specification on the correspondent manuscript “Model
not specified” it is stated.
bACC: accelerometer.
cHRM: heart rate monitor.
dHR: heart rate.
eRR: respiration rate.
fECG: electrocardiogram.
gHB: heartbeat.
hST: electrocardiogram measurement ST interval.
iQTc: corrected electrocardiogram measurement QT interval.
jPPG: photoplethysmogram.
kGM: glucose monitor.
lGL: glucose level.
mOBD: on-board diagnostics device.
nT1D: type 1 diabetes.
oQT: electrocardiogram measurement QT interval.
pDM: diabetes mellitus.

Data Processing
Except for 12% (3/26) of studies [33,46,49], most manuscripts
included some type of processing to the collected data. In 42%
(11/26) of studies, the processing mainly consisted of statistical
analysis [32,40,43-45,50,51,54-57]; in 23% (6/26) of studies,
the authors used ML techniques [35-37,39,41,47], and in 15%
(4/26) of studies [34,42,52,53], both statistical analysis and ML
were used. Fraiwan et al [48] used image processing to detect
areas with varying body temperature, and Calbimonte et al [38]
used ontologies for diagnosing glycemic events.

The studies without specific data processing were rather oriented
to simply collect data. ML was primarily used in the reviewed
investigations for activity recognition and diagnosis tasks.
Statistical analyses were predominantly aimed at finding
associations between behavioral and physiological variables
with DM conditions.

Some authors created their own algorithm to attain the study
objective. Cvetković et al [47] developed 4 new methods to
recognize human activity: person-dependent,
person-independent, person-independent with person-specific
data, and person-independent and person-specific models

JMIR Mhealth Uhealth 2021 | vol. 9 | iss. 6 | e25138 | p. 13https://mhealth.jmir.org/2021/6/e25138
(page number not for citation purposes)

Rodriguez-León et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


combined with heuristics and multiclassifier adaptive training.
Merickel et al [32] developed their own procedure to eliminate
the spurious values of GLs and to discretize them. Nguyen et
al [41] created new algorithms for HR and the QT interval
extraction from the ECG for activity status categorization and
for fall detection. Finally, Ramazi et al [34] developed a new
algorithm for different sensor signal synchronization.

Some studies used additional data, not collected passively from
mobile or wearable devices, to achieve their goal. One example
is the study by Razjouyan et al [57], where the authors collected
clinical information such as depression scale, numeric pain
scale, and glycated hemoglobin level by using questionnaires,
in addition to demographic information. Similarly, Ramazi et
al [34] used clinical information, such as triglycerides,
low-density lipoprotein cholesterol, high-density lipoprotein

cholesterol, and very low-density lipoprotein cholesterol, and
demographic information to improve the prediction of T2D
progression in patients. Furthermore, in the study by Turksoy
et al [50], the diet and physical activity of the subjects were
documented manually throughout the remainder of the study
period. Sarda et al [52] collected sociodemographic information,
such as gender, marital status, occupation, or education, to
perform descriptive analysis to understand the societal
representation of the participants. Finally, Sevil et al [42]
recorded, besides sensor data, nutrition data (carbohydrate
ingestion times, content, and amount); demographic information;
and other information, such as mood, sleep information, and
feelings of anxiety or depression, using questionnaires.

All details about data processing for the reviewed manuscripts
are provided in Table 3.
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Table 3. Summary of processing techniques, privacy, and security ordered by the year of publication.

SecurityPrivacyMachine learning methodsStatistical methodsManuscript

Not describedStudy approved by the
local ethics committee

NonePearson correlation
coefficient, paired t
test, and intraclass

Najafi et al (2010)
[44]

correlation coeffi-
cient

Not describedStudy approved by the
local ethics committee.

NoneStatistical fluctua-
tion, SD, and coeffi-
cient of variation

Grewal et al (2013)
[56]

All participants signed
an informed consent
form before participat-
ing in the study

Not describedNot describedRFa and support vector regression algorithmNoneLuštrek et al (2014)
[36]

Not describedSound from the smart-
phone microphone is

Spectral centroid, zerocrossing, mel frequency cepstral
coefficient, linear predictive coding, and method of mo-

NoneLuštrek et al (2015)
[37]

recorded in fractions of
100 ms per second

ments values of the sound signals; clustering of Wi-Fi and
GPS data; new algorithm of acceleration data; naive bayes,

logistic regression, SVMb, RF, RIPPERc, adaboost, and
bagging for activity recognition tasks; and event calculus
for interpreting recognized activities

Not describedSound from the smart-
phone microphone is

Spectral centroid, zerocrossing, mel frequency cepstral
coefficient, linear predictive coding, and method of mo-

NoneCvetković et al
(2016) [47]

recorded in fractions of
100 ms per second

ments values of the sound signals; clustering of Wi-Fi and
GPS data; new algorithm of acceleration data; 5 new algo-
rithms for activity recognition task; and symbolic rules to
refine confused predictions

Not describedNot describedNormalized least mean squares, ontology, and RDFd stream

processing engine (CQELSe continuous evaluation)

NoneCalbimonte et al
(2017) [38]

Not describedAuthors referred to
“Ethics approval and

Otsu thresholding technique and point-to-point mean dif-
ference technique

NoneFraiwan et al (2017)
[48]

consent to participate”
as “Not applicable”

Data are stored
on the phone and

Not describedNoneNoneMcLean et al (2017)
[49]

uploaded in an
encrypted form

Not describedNot describedNoneAnalysis of vari-
ance, root mean

Razjouyan et al
(2017) [57]

square of successive
R-wave to R-wave
intervals, power
spectrum density of
time series represent-
ing R-wave to-R-
wave intervals, re-
ceiver operating
characteristic, and
area under the curve

Not describedNot describedSVM, artificial neural network, and classification and re-
gression trees

NoneReddy et al (2017)
[39]

Not describedNot describedNonePartial least squares,
regression, and vari-

Turksoy et al (2017)
[50]

able importance in
projection

Not describedNot describedNoneTrading view and
minimum and maxi-
mum values

Bartolic et al (2018)
[40]
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SecurityPrivacyMachine learning methodsStatistical methodsManuscript

Not describedThe trial study and all
experimental proce-
dures were approved by
the institution’s ethical
review board

NoneBlack-box linear
model, prediction
error method, coeffi-
cient of determina-

tion, and RMSEf

Faccioli et al (2018)
[45]

Not describedStudy approved by the
local institutional re-
view board

NoneCohen κGroat et al (2018)
[51]

Not describedNot describedNoneNoneMcMillan et al
(2018) [46]

Not describedAll subjects gave in-
formed consent to study
participation according
to the University of Ne-
braska Medical Cen-
ter’s institutional re-
view board’s protocols

NoneTheir own proce-
dures and β regres-
sion model

Merickel et al
(2018) [32]

Lightweight
cryptography

Not describedHeart rate and the QTg interval extraction, activity status
categorization, and fall detection

NoneNguyen Gia et al
(2019) [41]

Not describedNot describedNoneNoneRescio et al (2019)
[33]

All transmissions
were in an en-
crypted form us-

ing the HTTPSh

secure sockets
layer protocol

Not describedSVM, RF, adaboost, extreme gradient boosting, and cross-
validation

Descriptive analysis
and univariate analy-
sis

Sarda et al (2019)
[52]

Not describedStudy approved by the
local institutional re-
view board

New algorithm for different sensor signal synchronization
and long short-term memory deep neural network

RMSERamazi et al (2019)
[34]

Not describedNot describedKNNi and SVMNoneGarcia et al (2019)
[35]

Not describedStudy approved by the
local institutional re-
view board

SVM, KNN, linear discriminant, decision tree, and logistic
regression

Mean, SD, kurtosis,
and mean absolute
error

Sevil et al (2019)
[42]

Not describedStudy approved by the
local institutional re-
view board. Each volun-
teer gave a voluntary
informed written con-
sent to participate in the
experiment

NoneStatistical signifi-
cance

Zherebtsov et al
(2019) [43]

Not describedStudy conducted in ac-
cordance with the
Helsinki Declaration.
Study approved by the
local ethics committee.
Data storage complied
with the stricter data
protection rules for pro-
tecting personal infor-
mation. All participants
were fully informed
about the purpose of the
experiment and provid-
ed written informed
consent and assent ac-
cording to the national
regulations

Autoregressive integrated moving average, RF, and SVMRMSERodriguez-Ro-
driguez et al (2019)
[53]
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SecurityPrivacyMachine learning methodsStatistical methodsManuscript

Not describedStudy approved by the
local ethics committee

NoneMedian, linear re-
gression, and cross-
validation

Sanz et al (2019)
[54]

Not describedAll participants provid-
ed written informed
consent. Study ap-
proved by the local
ethics advisory commit-
tee

NoneMean, SD, and fre-
quency

Whelan et al (2019)
[55]

aRF: random forest.
bSVM: support vector machine.
cRIPPER: repeated incremental pruning to produce error reduction.
dRDF: resource description framework.
eCQELS: continuous query evaluation over linked stream.
fRMSE: root mean square error.
gQT: electrocardiogram measurement QT interval.
hHTTPS: Hypertext Transfer Protocol Secure.
iKNN: k-nearest neighbors.

Privacy and Security
A total of 62% (16/26) of studies addressed privacy or security
issues [32,34,37,41-45,47,49,51-56]. Of the 13 studies dealt
with privacy aspects to some extent: 10 (77%) studies were
approved by a local ethics committee or review boards
[34,42-45,51,53-56]; in the study by Merickel et al [32], the
authors included informed consent for participants; and in 2
(15%) studies [37,47], the sound from the smartphone
microphone was downsampled to 100 ms out of every second
to preserve the user’s privacy. Finally, the study by Fraiwan et
al [48] was not included in the above 16 studies because it was
mentioned that the intervention of an ethics committee was not
applicable.

Overall, 19% (3/16) of studies considered security aspects.
McLean et al [49] stored the data on the phone and then
uploaded the data to a server in an encrypted manner. Nguyen
et al [41] used lightweight cryptography to deal with security
in the mobile monitoring system, and Sarda et al [52] stated
that all transmissions were in an encrypted form using the
Hypertext Transfer Protocol Secure (HTTPS) secure sockets
layer protocol.

The remaining 35% (19/26) of studies did not mention anything
about privacy or security [33,35,36,38-40,46,50,57].

All details about privacy and security of the reviewed
manuscripts are provided in Table 3.

Study’s Characteristics
The number of participants involved differed significantly
among the studies. The average number of participants was 29
(SD 28.2), calculated from 88% (23/26) of studies that indicated
the number of participants [32-37,39,41-47,49-57]. The

minimum sample size was 1 subject [46], and the maximum
sample size was 100 subjects [35,39]. Furthermore, 12% (3/26)
of papers did not specify this number [32,38,48]. The duration
of the test phase was standardized to days, namely, an average
of 21.5 (SD 35.1) days of duration as computed from the 58%
(15/26) of studies that specified this value
[32,34,37,39,42,43,45-47,50-53,55,57]. One day was the
minimum duration of the study [42,46], and 140 days was the
maximum duration of the study [52]. In 13% (2/15) studies
[39,43], the duration remained in the order of minutes for a
better understanding, and 42% (11/26) of studies did not specify
this value at all [33,35,36,38,40,41,44,48,49,54,56].

As for the health status distribution for the 26 studies, 11 (42%)
studies involved patients with DM [34,42,45,46,49-54,57], 5
(19%) included healthy subjects [36,41,47,48,55], and 6 (23%)
involved both healthy subjects and patients with DM
[32,35,39,43,44,56]. Moreover, 12% (3/26) of studies did not
precisely describe the health status of the subjects [33,37,40],
and 4% (1/26) of studies used an existing data set to test their
solution [38].

A total of 31% (8/26) of studies involved subjects of both
genders [35,37,47,50-53,55], and 4% (1/26) of studies only
involved a male [46]. The remaining 65% (17/26) of studies
did not specify the gender of the participants
[32-34,36,38-45,48,49,54,56,57]. With respect to the age of the
involved subjects, 65% (17/26) of studies provided this value
[32-35,39,41,43,46,47,50-57], resulting in an average age of
44.5 (SD 12.2) years. The other 35% (9/26) of studies did not
mention any age distribution [36-38,40,42,44,45,48,49].

All details about the study’s characteristics for the reviewed
manuscripts are provided in Table 4.
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Table 4. Summary of study topic ordered by the year of publication.

DurationSample typeSample sizeManuscript

Not described17 diabetic and 21 healthy; gender undefined; and age undefined38Najafi et al (2010) [44]

Not described31 diabetic and 8 healthy; gender undefined; and aged 56.9 (SD 8.2) years39Grewal et al (2013) [56]

Not described0 diabetic and 10 healthy; gender undefined; and age undefined10Luštrek et al (2014) [36]

14 daysHealth status undefined; 1 female and 4 males; and age undefined5Luštrek et al (2015) [37]

14 days0 diabetic and 9 healthy; 1 female and 8 males; and aged 24-36 years9Cvetković et al (2016) [47]

Not describedExternal data setNot describedCalbimonte et al (2017) [38]

Not describedHealthy; gender undefined; and age undefinedNot describedFraiwan et al (2017) [48]

Not described22 diabetic and 0 healthy; gender undefined; and age undefined22McLean et al (2017) [49]

21 (SD 4) days25 diabetic and 0 healthy; gender undefined; aged 59.3 (SD 8.3) years25Razjouyan et al (2017) [57]

5 mnin50 diabetic and 50 healthy; gender undefined; and aged 34 (SD 10) years (diabetic)
and 41 (SD 13) years (healthy)

100Reddy et al (2017) [39]

6 days26 diabetic and 0 healthy; 14 females and 12 males; and aged 24.2 (SD 5.41) years26Turksoy et al (2017) [50]

Not describedHealth status undefined; gender undefined; and age undefinedNot describedBartolic et al (2018) [40]

5 days6 diabetic and 0 healthy; gender undefined; and age undefined6Faccioli et al (2018) [45]

30 days12 diabetic and 0 healthy; 8 females and 4 males; and aged 48 (SD 13.4) years12Groat et al (2018) [51]

1 day1 diabetic and 0 healthy; 0 female and 1 male; and aged 68 years1McMillan et al (2018) [46]

28 days20 diabetic and 16 healthy; gender undefined; and aged 21-59 years36Merickel et al (2018) [32]

Not described0 diabetic and 4 healthy; gender undefined; aged 30 years4Nguyen Gia et al (2019)
[41]

Not describedHealth status undefined; gender undefined; and aged 47.2 (SD 12.3) years5Rescio et al (2019) [33]

140 days46 diabetic and 0 healthy; 17 females and 29 males; and aged 35 (SD 12) years46Sarda et al (2019) [52]

7 days50 diabetic and 0 healthy; gender undefined; and aged 33-78 years50Ramazi et al (2019) [34]

Not described50 diabetic and 50 healthy; 58 females and 42 males; and aged 20-87 years100Garcia et al (2019) [35]

1 day2 diabetic and 0 healthy; gender undefined; and age undefined2Sevil et al (2019) [42]

10 min18 diabetic and 37 healthy; gender undefined; and aged 53.2 (SD 11.4) years (dia-
betic), 19.6 (SD 0.6) years (16 healthy), and 53.2 (SD 11.4) years (21 healthy)

55Zherebtsov et al (2019) [43]

14 days25 diabetic and 0 healthy; 11 females and 14 males; and aged 18-56 years25Rodriguez-Rodriguez et al
(2019) [53]

Not described6 diabetic and 0 healthy; gender undefined; and aged 36.7 (SD 8.9) years6Sanz et al (2019) [54]

42 days0 diabetic and 45 healthy; 27 females and 18 males; and aged 56 (SD 9) years45Whelan et al (2019) [55]

Discussion

Principal Findings
The reviewed studies revealed the potential of mobile and
wearable technologies in health areas. These technologies can
significantly improve the management of conditions for both
patients and clinicians for a variety of diseases. DM is not an
exception, and growing attention has been paid to the use of
these technologies in the recent years. Obtaining objective and
continuous measurements is an important advantage of using
this technology for patient monitoring. Data are sensed
automatically by electronic sensors when the subject is
interacting with the mobile or wearable devices both explicitly
and implicitly, such as phone calls or step counts, respectively.
These technologies most often enable the seamless collection
of data, even when the patient is out of the clinic. This is a
relevant feature to overcome the drawbacks of classical clinical

trials in which subjects are required to stay in labs or clinics,
set specific appointments, commute to the doctor’s office, etc.
This technology adds a level of objectivity in the monitoring
of patients with DM and people in general with respect to
traditional clinical questionnaires, which are more dependent
on users’ willingness and capacity to answer correctly. In
addition, the patient may not remember everything accurately
in between doctor visits and hospitalization times. In view of
such limitations, the opportunities for the monitoring of
DM-related parameters are unprecedented. Nonetheless, it is
clear from this review that mobile and wearable technologies
have been scarcely exploited for this purpose.

Several studies have not indicated the type of DM. In such
studies, the authors refer to the condition simply as diabetes or
diabetes mellitus. We assume that in those cases, the results of
the research are generic and can be applied to any type of
diabetic. However, there was generally a lack of clinical
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specifications, perhaps because the majority of studies were
published in technological journals and proceedings and, in
part, because of the recency of this new field. In either case,
such a level of specification is considered of utmost importance
because of the differences among the types of diabetes and their
decompensations, risk factors, age of onset, and treatment among
several others. Complications of the disease may result in both
types of DM, but few studies have focused on this subject. DPN
was the only complication found in the reviewed studies and in
almost all cases related to diabetic foot disease. Some important
complications such as retinopathy; nephropathy; and other types
of neuropathies, such as autonomic, focal, and proximal, were
not considered in any of the selected studies. Few studies have
elaborated on T2D, the type encompassing between 90% and
95% of the cases of DM in the world and the only preventable
one.

Clinical trials were quite limited or even nonexistent in many
of the reviewed studies. In fact, the majority of analyzed
contributions had a predominant technological focus, prioritizing
systems’ performance or robustness over the impact or
applicability of potential clinical outcomes. This explains the
remarkably low scores achieved by most of the selected studies
in the NOS quality assessment. Most of the reviewed cohort
studies did not have a sufficiently representative cohort. Most
often, a distinction between exposed and nonexposed cohorts
was not clearly made, or even worse, no description of the
derivation of the cohort was provided. This lack of detail was
also observed for cases and controls. Comparability was also
found to be quite limited, as exposed and nonexposed
individuals, if any, were not matched in the design, and
confounders were either missing or not adjusted for in the
analysis. Although outcomes were assessed in a majority of
studies, follow-ups were mostly nonexistent or no information
was provided whatsoever. Therefore, one of the major
weaknesses detected in the reviewed studies is the limited
dedication to the clinical validation of the proposed technical
solutions.

Mobile and wearable data can shed new light on behavioral and
physiological aspects that are difficult to approach in a
continuous and unobtrusive manner via standard clinical tests.
However, ignoring clinical data is certainly a big mistake.
Therefore, combining passive mobile data with clinical data,
such as laboratory test results, drug information, or patient
demographics, is key for a holistic understanding of the patient’s
current and future health status. Thus, it is recommended to
perform more extensive clinical tests and validations involving
the collection of new data sets. Existing data sets in this area
show important flaws such as noninclusion of patients with DM,
noninclusion of complementary clinical data, lack of gender
diversity, or age variety. Moreover, public sharing of data sets
is also considered essential to facilitate the replicability and
reproducibility of the studies. Hence, data transparency and
openness are encouraged, as in other similar disciplines.

None of the reviewed studies focused on the prevention of DM.
This matter is especially important in the case of T2D, the only
type of DM that can be prevented. Therefore, developing studies
with outcomes that help to detect the disease in the early stages
or even before it occurs can result in great progress.

Approaching this subject from a holistic perspective could also
be key for making new successful findings. This is closely
related to the idea of using different data sources to generate
more powerful medical models. Combining demographics,
nutrition data, medication data, and passive sensor data among
other heterogeneous data types can certainly help to realize
more impactful and personalized solutions.

Activity recognition is one of the most important areas from
which the monitoring of DM-related parameters could benefit.
Thus, the research conducted in this new field may not only
leverage the results from previous studies but also help in
developing and testing new activity detection models. For
example, improvements in the recognition of eating activities
are needed to calculate food intake automatically.

Most of the studies had technological test phases, but in some
cases, their quality was rather questionable. The description
was often incomplete, lacked characteristics of the subjects, and
did not mention the duration of the tests in several cases. These
seem to be characteristics deemed in studies in the early stages.
However, many of these studies stated that improvements would
be made regarding this aspect in future research.

The studies analyzed in this review applied a variety of devices
and sensors. Some case studies only used smartphones, others
used only wearables, and others used a combination of them.
This shows the ways in which these devices can be used to
improve DM control and its complications. However, there is
generally a poor description of the devices used in terms of their
brand, model, manufacturer, main features, operating system,
etc. This is an especially sensitive barrier for the replication of
studies and development of follow-up research. Likewise, on
some occasions, the sensors embedded in these devices were
not explicitly described. Some studies included complementary
devices such as a pressure platform, a glucometer, or an ambient
sensor, not necessarily wearables, which helped to obtain more
complete data and better characterize the patient’s environment.
Most often, all devices were merely used to collect data for
creating ML models and to find an association among variables
or diseases, but in very few cases, the proposed solution was
implemented in a realistic use case with long-lasting clinical
applications.

The predominant sensor was the ACC, possibly because it is
one of the most common sensors available on both wearables
and mobile devices. In addition, its applications are closely
related to energy expenditure and activity recognition tasks,
which are very useful in DM problems. Other sensors such as
GPS, thermometer, microphone, and ambient light are less
commonly used in the reviewed studies. This may be because
some of these sensors, such as GPS and microphone, are
considered to be more privacy-intrusive by users. Nonetheless,
these sensors were shown to be helpful as complements to other
sensors for the monitoring of DM-related parameters.
Furthermore, it is worth noting that none of the studies used
commercial smart insoles but one prototype, especially given
the fact that most important complications of DM translate into
foot issues.

Diabetes technology has grown in the recent years, with CGM
being at the forefront of the devices used. CGM is primarily
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used to monitor patients with T1D, with increasing use for
patients with T2D. However, the use of CGM does not replace
the traditional finger-stick test because patients still need to do
a meter reading for accuracy, and in most cases, insurance
companies do not cover the use of CGM. The fact that mobile
and wearable technologies are at the reach of a majority of the
population makes the reviewed solutions particularly
cost-effective.

The power consumption of the hardware available in both
mobiles and wearables has decreased with the latest advances.
However, there is still much to be done to reduce it even further.
The 5G technology promises to do so by lowering network
energy use by almost 90% and increasing battery life, especially
for low-power devices [58]. Allowing patients to use wearable
devices for prolonged periods without recharging could help
foster their use in the diabetic community. The 5G technology
will also increase the connection speed and bandwidth in a unit
area and will have a very low latency. This will provide higher
real-time monitoring capabilities, an increase in the amount of
data sent by time unit, and the possibility of having more
wearable devices connected to the cloud without requiring the
use of smartphones as gateways. All this provides more
self-sufficiency to these devices.

Data collected using mobile and wearable devices for continuous
monitoring can be mined using AI techniques such as ML. As
shown in this review, some authors used ML to extract
information from the collected data, where large and
heterogeneous data sets generally improve the performance of
these techniques. Data from mobile and wearable sensors can,
in principle, be used in combination with conventional clinical
data to develop more relevant knowledge outcomes. The time
and effort required to collect a data set that can be used to apply
ML techniques is reduced by the use of mobile and wearable
devices. Classical approaches are generally constrained by the
number of samples or data points, as these are measured during
clinic appointments, thus leading to lengthier collection phases.

The most common ML techniques used in these studies were
decision trees and support vector machines, whereas other
popular algorithms such as k-nearest neighbors, artificial neural
networks, ensemble methods, and deep learning techniques are
used less frequently. These techniques, especially when it comes
to deep learning, can significantly boost the performance of the
results, normally at the expense of having large data sets, a
condition that is normally attained when using passive sensing.

In general, experimentation with ML algorithms was performed
using a small number of methods, whereas the use of a large
variety of these techniques normally leads to higher robustness.
Very few studies have used complementary clinical data in
addition to sensor data, resulting in better models and more
relevant outcomes.

Many manuscripts did not mention the endorsement of their
studies from an ethics committee or review board. This is
especially important because in several cases, people were used
to test the proposed solutions. It is even more important to
highlight that in very few occasions, the studies described that
informed consent was requested from the participants in the
trials. This occurs even when sensitive information is recorded
from users during monitoring, such as location, video, or call
logs. A reason for this could be linked to the rather emerging
nature of this field or the lack of realistic clinical studies around
which technical solutions have been developed.

Privacy and security issues were weak aspects of the reviewed
studies. Researchers should devote more attention to both
realizing and explaining proper procedures to ensure that
security and privacy are properly addressed in clinical studies.
Otherwise, the quality and applicability of the results are
compromised. An effort must be made to put into practice the
protocols in the trial involving the ethics committee or review
boards in the authorization of the studies. Creating proper
informed consents forms and using them in the trials should be
a major concern for research in this area, especially in lieu of
regulations such as the European General Data Protection
Regulation. Similarly, information on data management plans
can provide further details on how the research has been
undertaken.

A summary of the principal findings described previously is
provided in Figure 2. The diagram shows the strengths and
weaknesses of the reviewed studies on the monitoring of
DM-related parameters as well as the challenges and
recommendations for the research community. Strengths are
the aspects that these studies have performed well on and could
be reproduced in future investigations. Weaknesses are matters
that went wrong in these studies and could be improved in future
research. Challenges are the elements that the scientific
community needs to address successfully to boost the
investigation of this topic. Recommendations are the suggestions
for the research community working on the monitoring of
DM-related parameters.
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Figure 2. Summary of the principal findings of the reviewed manuscripts. DM: diabetes mellitus; ECG: electrocardiogram; GL: glucose level; HR:
heart rate; ML: machine learning; RR: respiration rate; T2D: type 2 diabetes.

Limitations
The monitoring of DM-related parameters using mobile and
wearable technology is an emerging field of study. As for any
other review, despite having listed a wide variety of terms
referring to sensors, wearable devices, and smartphones, new
keywords emerge quite often in this rather dynamic
technological area, which may have left out some interesting
studies from our analysis. Although the search areas of this
systematic review (computer science and engineering) are quite
large, it is also possible that some relevant studies indexed in
other related categories may have been filtered out. We
conducted a preliminary check for other domains such as
endocrinology metabolism, general internal medicine, or health
care sciences services, and we did not find relevant studies that
would meet the defined criteria. Other sources of digital data,
such as social network interactions, have not been considered

in this study, as they can be realized via different technologies
besides mobiles and wearables. Nevertheless, it could be
interesting to explore the potential of these interactions to
explain some relevant behaviors of the patient, such as their
mood. The lack of details in some studies also made it difficult
to judge whether the authors were using commercial devices or
their own prototype. Thus, it is possible that some relevant
studies were excluded, although this is in line with the PRISMA
guidelines followed in this systematic review.

Conclusions
As demonstrated in this systematic review, the field of mobile
and wearable monitoring of DM-related parameters shows early
promise, despite its recent development. Several actors may
benefit at the maturation of this field: (1) patients with DM,
who may have a better quality of life while improving the
management and self-control of the disease or its complications
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in a continuous, passive, and unobtrusive way; (2) health care
professionals and institutions, who may develop the ability to
provide medical care and information in a portable and
affordable way; and (3) researchers, who may have access to a
large and varied amount of data sets to extract relevant
information. The aforementioned 3 actors may work in synergy,
which motivates a greater and faster evolution of the field.
However, some gaps remain to accomplish this view, such as
the creation or modification of relevant sensors to be less
privacy-intrusive; decreasing the devices’ power consumption;

using the advantages of the 5G technology; and, perhaps the
most important one, combining passive mobile data with clinical
data for a holistic understanding of the patient’s health status.
Accomplishing these challenges requires interdisciplinary teams’
collaboration and the appropriate funding of governments and
institutions to design and develop the required technologies for
sensing the data, designing new and better processing
techniques, and creating realistic solutions with long-lasting
clinical applications.
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