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Abstract

Background: Maximal oxygen consumption (VO2max) is one of the most predictive biometrics for cardiovascular health and
overall mortality. However, VO2max is rarely measured in large-scale research studies or routine clinical care because of the
high cost, participant burden, and requirement for specialized equipment and staff.

Objective: To overcome the limitations of clinical VO2max measurement, we aim to develop a digital VO2max estimation
protocol that can be self-administered remotely using only the sensors within a smartphone. We also aim to validate this measure
within a broadly representative population across a spectrum of smartphone devices.

Methods: Two smartphone-based VO2max estimation protocols were developed: a 12-minute run test (12-MRT) based on
distance measured by GPS and a 3-minute step test (3-MST) based on heart rate recovery measured by a camera. In a 101-person
cohort, balanced across age deciles and sex, participants completed a gold standard treadmill-based VO2max measurement, two
silver standard clinical protocols, and the smartphone-based 12-MRT and 3-MST protocols in the clinic and at home. In a separate
120-participant cohort, the video-based heart rate measurement underlying the 3-MST was measured for accuracy in individuals
across the spectrum skin tones while using 8 different smartphones ranging in cost from US $99 to US $999.

Results: When compared with gold standard VO2max testing, Lin concordance was pc=0.66 for 12-MRT and pc=0.61 for
3-MST. However, in remote settings, the 12-MRT was significantly less concordant with the gold standard (pc=0.25) compared
with the 3-MST (pc=0.61), although both had high test-retest reliability (12-MRT intraclass correlation coefficient=0.88; 3-MST
intraclass correlation coefficient=0.86). On the basis of the finding that 3-MST concordance was generalizable to remote settings
whereas 12-MRT was not, the video-based heart rate measure within the 3-MST was selected for further investigation. Heart rate
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measurements in any of the combinations of the six Fitzpatrick skin tones and 8 smartphones resulted in a concordance of pc≥0.81.
Performance did not correlate with device cost, with all phones selling under US $200 performing better than pc>0.92.

Conclusions: These findings demonstrate the importance of validating mobile health measures in the real world across a diverse
cohort and spectrum of hardware. The 3-MST protocol, termed as heart snapshot, measured VO2max with similar accuracy to
supervised in-clinic tests such as the Tecumseh (pc=0.94) protocol, while also generalizing to remote and unsupervised
measurements. Heart snapshot measurements demonstrated fidelity across demographic variation in age and sex, across diverse
skin pigmentation, and between various iOS and Android phone configurations. This software is freely available for all validation
data and analysis code.

(JMIR Mhealth Uhealth 2021;9(6):e26006) doi: 10.2196/26006
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Introduction

Background
Expanding access to precision medicine will increasingly require
patient biometrics to be measured in remote care settings.
Traditionally, cardiovascular health has been assessed using
risk scores such as the Framingham Risk Score [1], Reynolds
Risk Score [2], Qrisk [3], and others, which integrate multiple
factors including demographic data, comorbidities, and
biometrics paired with imaging-based assessments measuring
vascular blockage and blood flow in higher-risk and
symptomatic individuals. Although these factors have a clear
correlation with cardiovascular health, their inclusion in
integrative risk calculations was promoted in part because they
can be rapidly evaluated across many individuals. However,
one of the most predictive biometrics for cardiovascular health
[4] and overall mortality [5], maximal oxygen consumption
(VO2max), is typically not incorporated in these risk calculators
because of the high cost, participant burden, and specialized
equipment and staff needed to obtain this measurement [6,7].

Cardiorespiratory fitness, as measured by VO2max, represents
the integrated function of physiological systems involved in
transporting oxygen from the atmosphere to the skeletal muscles
to perform physical work. Existing gold standard techniques
for measuring VO2max are based on protocols that use exercise
on a treadmill or stationary bicycle paired with the direct
measurement of oxygen consumption at various workloads,
including maximal exertion [8,9]. However, the requirement to
exercise at the maximal aerobic threshold limits deployment in
some populations for safety reasons, and the need for specialized
equipment and personnel has prohibited widespread adoption
of VO2max testing in research and clinical settings.

Objectives
Limitations of gold standard VO2max measurements have led
to the development of numerous ”silver standard” [10] VO2max
estimation protocols that rely on simpler equipment or
submaximal levels of exertion. These protocols trade off
measurement accuracy for ease of deployment in a wider range
of settings and for populations with differing levels of capacity
[11]. However, these protocols were typically developed and
validated in small, homogeneous populations, and some

subsequent validation studies have been criticized for
demonstrating participant selection bias [12]. To overcome
these limitations, we aim to develop a digital VO2max estimation
protocol that could be self-administered remotely using only
the sensors within a smartphone, and we also aim to validate
this measure within a broadly representative population.
Previous efforts have used a smartphone-based approach to
measure VO2max, but these validation studies are rarely
conducted outside of clinical settings [13]. Therefore, we aim
to validate our measurements in remote, unsupervised real-world
settings.

Methods

Development of Smartphone Sensor–Based
Measurements of VO2max

Two silver standard VO2max estimation protocols were chosen
as the basis for developing the smartphone tests. The first is the
Cooper protocol [14], comprising a 12-minute run test
(12-MRT), where individuals cover as much distance as possible
in 12 minutes on a flat course. The Cooper protocol estimates
VO2max from the total distance traveled during the 12 minutes.
The other is the Tecumseh protocol [15], which comprises a
3-minute step test (3-MST), where individuals step up and down
an 8-inch step at a constant rate for 3 minutes. In the 3-MST
protocol, VO2max was estimated from the heart rate
measurements during the recovery period. In adopting these
protocols for smartphones, we developed self-guided instructions
with GPS to record distance during the 12-MRT and a
smartphone camera to record heart rate during recovery for the
3-MST (Multimedia Appendix 1).

VO2max Validation Cohort Procedures and Measures

All study procedures were approved by the University of
California, San Diego (UCSD) Institutional Review Board
(approval number 171815). All participants provided written
informed consent and attended two in-person study visits at the
Exercise and Physical Activity Resource Center (EPARC).

A convenience sample of 101 adults aged between 20 and 79
years was recruited, largely balanced across age deciles and sex
(Multimedia Appendix 2). Potential participants were contacted
by trained EPARC staff via email or telephone and they
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underwent a screening to ascertain their eligibility. Participants
were included if they were (1) able to consent and participate
in the study using English; (2) aged between 20 and 79 years;
(3) willing and able to attend two in-person study visits that
included either a VO2max test or a 12-MRT and a 3-MST within
a 2-week period; (4) willing and able to undertake up to three
12-MRT and 3-MST at home over a 2-week period; (5) willing
and able to download the smartphone app developed to measure
cardiorespiratory fitness on a compatible Android or iOS device
and use it during all tests over a 2-week period; and (6) willing
and able to download the Fitbit smartphone app on a compatible
Android or iOS device and connect and wear a study-provided
Fitbit Charge 2 during all tests over a 2-week period. Participants
were excluded if they (1) were >12 weeks pregnant; (2) had a
heart or cardiovascular condition, including coronary artery
disease, congestive heart failure, diagnosed abnormality of heart
rhythm, atrial fibrillation, and/or a history of myocardial
infarction; (3) required the use of an external device to assist
heart rhythm (eg, a pacemaker); (4) had a serious respiratory
disease, including chronic obstructive pulmonary disease,
exercise-induced asthma, and/or pulmonary high blood pressure;
(5) required use of supplemental oxygen; (6) required use of a
beta-blocker or other medications known to alter heart rate; and
(7) answered “yes” to one or more questions in the American
College of Sports Medicine’s Physical Activity Readiness
Questionnaire and/or reported two or more risk factors for
exercise testing and did not receive subsequent medical
clearance. The Physical Activity Readiness Questionnaire is a
widely accepted tool used to assess an individual’s fitness for
tests involving cardiovascular exercise [16].

Upon completion of the telephone screening (and, if necessary,
receipt of medical clearance), potential participants were
scheduled to attend the first testing session at the UCSD. They
were asked to report to the testing session well hydrated and in
an athletic attire. Participants were guided through the process
of downloading and installing the smartphone app developed
to measure cardiorespiratory fitness, as well as the Fitbit
smartphone app, and they were fitted with a wrist-worn Fitbit
Charge 2 according to the manufacturer’s recommendations.
Participants were asked to provide their age, sex at birth,
ethnicity, and race. Weight (to the nearest 0.1 kg) and height
(to the nearest 0.1 cm) were measured using a calibrated digital
scale and stadiometer (Seca 703, Seca GmbH & Co. KG). Both
weight and height were measured with participants wearing
lightweight clothes without shoes, and two separate
measurements were averaged (if weight or height measurements
differed by more than 1%, then a third measure was taken, and
the average of the two measures that differed by less than 0.2
kg or 0.5 cm, respectively, was used).

At the first testing session, participants either undertook a
VO2max test or an in-clinic 3-MST and 12-MRT. A
randomization procedure implemented before the scheduling
of the first testing session determined which test procedure
participants undertook during the first testing session. The
participants were then expected to complete the other test
procedures during the second testing session.

Treadmill-Based Gold Standard VO2max
Measurement
Participants completed a maximal graded exercise test on a
Woodway 4Front treadmill (Woodway) calibrated monthly for
accuracy of speed and grade. The maximal graded exercise test
protocol began with a warm-up at a self-selected pace on a
treadmill for 5 to 10 minutes. During the warm-up, EPARC
staff explained how to use the Borg Rating of Perceived Exertion
scale and reminded participants that they were expected to
achieve their maximal level of exertion [17].

The participants were then equipped with a breath mask that
covered the nose and mouth (KORR Medical Technologies)
and a Bluetooth-enabled heart rate monitor worn on the chest
(Garmin). The preprogrammed treadmill protocol began with
the participants running at 5 mph with a 0% incline for 3
minutes. The workload was then increased by approximately
0.75, which is the metabolic equivalent of tasks every minute.
This was achieved via an increase in speed (0.5 mph per min)
each minute until the participant was 0.5 mph above their
self-determined comfortable speed or until a maximal speed of
9 mph was reached. If the participant’s capacity allowed them
to continue beyond this upper speed limit before reaching
volitional fatigue, then the treadmill speed was kept constant,
but the grade (ie, incline) of the treadmill was increased by 1%
each minute until volitional fatigue was reached. The Borg
Rating of Perceived Exertion scale was assessed during the final
10 seconds of each minute, and the protocol continued until the
participant signaled to stop (ie, indication of volitional fatigue).
Upon indication of volitional fatigue, the treadmill was
immediately slowed to 2 mph, and participants were encouraged
to walk until completely recovered. Breath-by-breath oxygen
uptake (VO2) was continuously measured using an indirect
calorimeter (COSMED) that was calibrated for gas volume and
fractional composition immediately (ie, <30 min) before the
start of the maximal graded exercise test protocol.

Tecumseh Test (3-MST) and Cooper Test (12-MRT)
In-Clinic Procedure
All participants were fitted with a chest-worn heart rate monitor
(Polar) that was used for real-time monitoring by trained EPARC
staff throughout both the 12-MRT and 3-MST. For the 3-MST,
participants were instructed to step up and down from a single
step 8 inches in height at a rate of 24 steps per minute for 3
minutes [18]. The cadence of stepping was monitored by trained
EPARC staff. The radial pulse was measured from the 31st
second to the 60th second after 3 minutes of stepping. Upon
completion of the test, the participants were asked to sit in a
chair and rest. After a minimum of 10 minutes of rest,
participants completed a 5-minute self-determined light intensity
warm-up. They were then instructed to cover as much distance
as possible on a flat 400-m track for 12 minutes. The distance
traveled was measured after 12 minutes [14].

Distance Estimation Using Privacy-Preserving GPS
Data
The distance recorded by the smartphone during the 12-MRT
was validated against the actual distance. The smartphone
recorded displacement information sampled at 1 Hz, which
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consists of relative location measurements, that is, the change
in location with regard to the last recorded measurement. The
iPhones (Apple Inc) measured displacement in meters whereas
the Android smartphones measured relative changes in latitude
and longitude, requiring an estimate of the absolute latitude and
longitude to be added back into the measurements to obtain an
accurate estimate of distance.

The first distance estimation method entailed summing the
Euclidean distances between subsequent GPS points. As GPS
measurements have a range error dependent on atmospheric
effects and numerical errors, a second method was used to
compute the distance after smoothing the trajectory of the GPS
path using a Savitzky-Golay smoothing filter.

Camera-Based Heart Rate Estimation
Blood flow through the fingertip was measured through video
with a rear-facing camera while the flash was on. The resting
heart rate was captured with 20 seconds of recording, whereas
the 3-MST required 60 seconds of recording. During the capture,
we found it was important to fix the focal length to infinity, turn
off any high dynamic range settings (if applicable), and set the
frame rate to 60 Hz if possible, and if not, the default highest
allowed by the phone. We did not record the video in order to
preserve privacy associated with the inadvertent capture of
identifiable objects in the frame before covering the lens with
the finger, but instead summarized each video frame to the mean
of all pixel intensities per color channel in the red, green, blue
space.

These intensities yielded three time series, one for each color.
These time series were filtered and mean-centered before being
split into shorter 10-second windows. By assuming a periodic
signal for these windows, the autocorrelation function (ACF)
was used to estimate the period by finding the peaks and their
corresponding lags. The relative magnitude of the peaks to the
maxima of the ACF was used to generate a confidence score,
which quantifies the extent to which the signal is periodic or if
the peak at the fundamental frequency (ie, the peak with the
highest magnitude) is a spurious peak. The ACF is calculated
over a 10-second window, as this provides sufficient heart beat
observations postprocessing to estimate heart rates ranging from
45 to 210 bpm.

To filter potentially spurious peaks, a magnitude threshold
relative to the magnitude of the peak at zero lag was used. The
confidence score was calculated as the ratio of the magnitude
of the peak corresponding to the fundamental frequency to the
next peak. The confidence score is an indicator of the periodicity
of the signal, a property indicative of the heart rate signal in a
short finite time window. The different color channels were
merged by choosing the heart rate estimate from the channel
(red or green) that had the maximum confidence score within
a given window.

Estimation of VO2max

3-Minute Step Test
Multiple formulas for predicting VO2max from the Tecumseh
step test and its variations have been developed [15]; here, we
used the following established by Milligan [19]:

where HB3060 is the number of beats between 30 and 60
seconds after the step test, age is the age of the subject, and sex
is 0 if male and 1 if female.

12-Minute Run Test
VO2max for the 12-MRT is estimated from the following
formula, where d12 is the distance covered in meters [14]:

Heart Rate Calibration Study Procedures and
Measures
All study procedures were approved by the UCSD Institutional
Review Board (approval number 181820). All participants
provided written informed consent and attended one in-person
study visit at the EPARC.

A convenience sample of 120 adults, aged 18-65 years, of six
different skin types were asked to participate in this study. We
aimed to recruit an equal ratio of male and female participants,
as well as an equal number of participants with each skin type,
as determined by the Fitzpatrick scale. Participants were
included if they were (1) able to consent and participate in the
study in English and (2) aged between 18 and 65 years.
Participants were excluded if they had (1) peripheral neuropathy
or (2) tattoos or scarring at the measurement site (index finger
and/or wrist). Potential participants were contacted by trained
EPARC staff via email or telephone, and they were asked to
complete the screening to ascertain their eligibility.

To establish the Fitzpatrick skin type of the cohort during
recruitment, participants were asked to self-assess their
Fitzpatrick skin type based on visual comparison with images
of well-known celebrities with diverse pigmentation levels. As
self-assessment of skin type can have variable accuracy [20,21],
spectrocolorimetry was also used as an objective standard [22].
Spectrocolorimetry measurements were performed on the
underside of the jaw using Pantone RM200QC. To calculate
pigmentation in the individual typology angle color space, the

L* and b* parameters from the spectrocolorimetry measurements
were used according to the formula:

individual typology angle = [arctan((L*−50)/b*)] ×
180/3.14159 (1)

Using this formula, skin color types can be classified into six
groups, ranging from very light to dark skin: very
light>55°>light>41°>intermediate>28°>tan>10°>brown>−30°>dark
[22].

Upon completion of the telephone screening, potential
participants were scheduled to attend the first testing session at
the UCSD. Participants were asked to provide their age, sex at
birth, ethnicity, and race. All participants were fitted with a
chest-worn heart rate monitor that was used for real-time
monitoring by trained EPARC staff throughout testing. Heart
rate was also monitored using a finger-based pulse oximeter
(Nonin Medical, Inc). The finger-based pulse oximeter was
attached to the participants’ index finger, and the time was
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synchronized between the computer and the device. Trained
research staff visually confirmed that the photoplethysmograph
was reading accurately before starting measurements on
smartphone devices.

Participants were then given the first of 8 smartphones: Huawei
Mate SE, LG Stylo 4, Moto G6 Play, Samsung Galaxy J7,
Samsung Galaxy S9+, iPhone8+, iPhoneSE, and iPhoneXS.
They were instructed by trained research staff to stand still and
gently cover the camera and flash on the back of the smartphone
with their fingertip, as their heart rate was captured by our
preloaded smartphone app. The time on the Polar app was
recorded at the time the measurement began on the smartphone
app. Measurements with each smartphone lasted 60 seconds in
duration. Processed data from the finger-based pulse oximeter
were parsed and transformed with custom scripts to generate
continuous photoplethysmography data in a format suitable for
comparison with the heart rates from the phones.

Statistical Analysis
Demographic data were described using univariate summary
statistics (eg, proportions, means, and SDs). Test validity for

heart rate estimates and VO2max was visualized using
Bland-Altman plots [23] and compared using the Lin
concordance index [24]. The heart rate errors were also
compared using percent error. Analyses were performed in both
R and Python.

iOS and Android Heart Snapshot Software Modules
The code for the heart snapshot modules and sample Android
[25] and iOS [26] apps are available under an open-source
license.

Results

Validation in a Clinical Setting
To assess the validity of the 3-MST and 12-MRT smartphone
measurements, gold standard VO2max treadmill testing was
performed with 101 participants distributed across age deciles
20-80 years. Every participant also performed the silver standard
and smartphone 12-MRT and 3-MST protocols in the clinic,
with three instances of each smartphone protocol performed
over 2 weeks without supervision in the participant’s home
environment (Figure 1).
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Figure 1. Validation protocol and primary results of validation. (A) Participants in the study were randomized into two groups. The first group (denoted
by the downward-facing arrow at top) performed a gold standard VO2max protocol and received training on day 1. The second group performed the
two silver standard protocols concurrently with the smartphone protocols on day 1 (denoted by the upward-facing arrow at bottom). Both groups then
performed the two smartphone protocols remotely up to three times during a 2-week period. (B) to (E) show Bland-Altman plots comparing the gold
standard VO2max with smartphone measures from: (B) 12-MRT performed in clinic, (C) 12-MRT performed remotely (up to 3 repeats per participant),
(D) 3-MST in clinic, and (E) 3-MST remotely. VO2max: maximal oxygen consumption; 3-MST: 3-minute step test; 12-MRT: 12-minute run test.

The in-clinic 12-MRT distance was measured on a 400-m track
and by the smartphone GPS. The in-clinic heart rate was
measured via radial pulse by trained research staff, a chest-worn
Polar heart monitor, a wrist-worn Fitbit Charge 2, and a
smartphone camera with the flash activated. Comparisons
between the gold standard, silver standard, and
smartphone-based protocols for VO2max estimation were
performed using Bland-Altman analysis [23] and the Lin
concordance index (pc). The concordance between gold standard
VO2max and the silver standard Cooper protocol (pc=0.61;
Figure 2) and the silver standard Tecumseh protocol (pc=0.70;

Figure 2) were in line with previously published results [27-29].
Concordance of smartphone-based protocols with gold standard
VO2max testing was pc=0.66 for the 12-MRT (Figure 1) and
pc=0.61 for the 3-MST (Figure 1). The concordance of
smartphone-based protocols with silver standard protocols was
pc=0.96 for the 12-MRT and pc=0.94 for the 3-MST. These
results demonstrate that the smartphone-based protocols fall
short of recapitulating gold standard VO2max testing but are
highly concordant with validated silver standard VO2max
estimation protocols in a laboratory setting.
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Figure 2. Comparison of in-clinic performance of silver standard protocols relative to the gold standard for (A) 12-minute run test (12-MRT) and (B)
3-minute step test. For each plot, we are showing the difference between the ground truth maximal oxygen consumption measurement and measurements
obtained using the distance run around a track (for A) and heart rate via radial pulse measured by trained research staff (for B) as per Tecumseh protocol.
This distance was also measured using GPS and heart rate was measured using a chest strap and Fitbit. The concordance between distance measured
around the track and measured using the GPS in the phone was 0.96. (C) to (F) show the concordance of the 12-MRT test for different values of
self-reported effort. VO2max: maximal oxygen consumption.

Validation in a Remote Setting
To investigate whether the concordance of in-clinic
measurements would generalize to remote and unsupervised
settings, the smartphone protocols were also performed up to
three times at home by each participant. We observed an
approximately equal test-retest reliability between the two tests
(3-MST intraclass correlation coefficient=0.86; 12-MRT
intraclass correlation coefficient=0.88). However, although the
3-MST translated well to an unsupervised setting (pc=0.61;
Figure 1), the 12-MRT demonstrated a pronounced drop in
concordance (pc=0.25; Figure 1), despite a highly accurate
distance measurement from the smartphone (pc=0.96) based on
comparisons made in a clinical setting.

As the 12-MRT is dependent on maximal effort, participants
were surveyed directly after their run about their performance.
In 63.4% (137/216) of runs performed remotely, participants
reported the run to be “their best effort.” Therefore, only 137
runs were used to estimate VO2max in our analysis. Figure 2
captures the results of all 216 runs subdivided by self-reported
effort. Although the context-dependent failure of the 12-MRT
in remote settings may be attributable to many factors, this result

highlights the importance of both clinical and unsupervised
real-world evidence for the validation of novel digital health
measurement modalities.

Calibration of the Heart Snapshot Measurement for
a Diverse Audience
The smartphone-based 3-MST protocol, hereafter referred to
as heart snapshot, was generalizable between clinical and remote
assessments and was robust over a large range of fitness levels.
Maintaining high concordance during unsupervised
measurements is necessary to achieve the scale intended for the
targeted 1 million participants in the All of Us Research Program
(AoURP) [30], which will use a “bring-your-own-device”
strategy for remote self-measurement of VO2max. AoURP also
aims to recruit a study population matching the full demographic
diversity of the United States, emphasizing the inclusion of
groups often underrepresented in biomedical research, such as
ethnic and racial minorities. As prior studies have shown
differing results as to whether optical techniques for heart rate
detection (photoplethysmography) can be demographically
biased [31,32], we aimed to investigate any differences in heart
snapshot accuracy across variations in skin tone. A follow-up
calibration study for heart rate measurements was conducted
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with 120 participants distributed approximately evenly across
defined Fitzpatrick skin types [33], using 8 different
smartphones (3 iPhones and 5 Android smartphones ranging in
cost from US $99 to US $999 at the time of writing). These
phones were chosen to be representative of different operating
systems, quality of sensors, processing speed, and camera

configuration. Importantly, we observed no significant
difference in heart rate measurement accuracy between
categorical Fitzpatrick skin types or systematic measurement
error proportional to skin color at either end of the spectrum
(Figure 3).

Figure 3. Validation of heart rate measurements across different skin tones and hardware configurations in the calibration study. (A) Percent error in
heart rate estimation from ground truth as a function of different colors captured by spectrocolorimetry under the jaw. Each dot represents a 10 second
window of heart rate in one individual. (B) Distribution of concordance between heart rate using pulse oximetry and smartphone as the confidence
cutoff is changed. Red line represents the chosen cutoff used for analysis. (C) Concordance as a function of smartphone models and Fitzpatrick skin
tones. ITA: individual typology angle.

Internal Quality Control Procedures for Heart
Snapshot
To facilitate quality control of the measurements across different
smartphones, a confidence score was developed to provide a
readout of the quality of the heart rate measurements. This
confidence score is derived from the ACF of the heart rate signal
across 10-second measurement windows. Using the calibration
study results, a balance between the quality of measurements
was weighed against the loss of data by choosing a filtration
cutoff at a confidence level of ≥0.5. This resulted in a pc=0.95,

in the calibration cohort between a pulse oximetry pulse
measurement and the camera-estimated heart rate (Figure 3).
In selecting this confidence score as a cutoff, we observed that
80.41% (28,032/34,859) of all measurement windows were
retained in this calibration cohort (Figure 4). The same cutoff
was used in the validation of heart snapshot against gold
standard VO2max, where the heart rate concordance with a
chest-worn Polar heart monitor was pc=0.95 and pc=0.83 when
compared with a wrist-worn Fitbit Charge 2, both at home and
in the clinic. This can be compared with pc=0.92 between Polar
and Fitbit Charge 2 (Figure 5).
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Figure 4. Effect of different confidence cutoff on the amount of missing data from the calibration study. (A) Distribution of best confidence across red
and green channels in the calibrations study and (B) percent of the 10 second windows that are filtered out at different cutoffs of the confidence score.
The cutoff used in the analysis is 0.5 marked by the red line.

Figure 5. Bland-Altman analysis comparing heart rate measurements in the validation study using data collected during the Tecumseh tests. In the
validation cohort, participants used multiple ways of collecting heart rate. The method being tested, the smartphone camera, was compared to: (A) a
Polar chest strap (considered a gold standard) while in the clinic when both were used and (B) a Fitbit worn during the entirety of the study. (C) We
also compared the Polar strap to the Fitbit for all time that both were worn. HR: heart rate.

Taken together, heart snapshot heart rate measurements in any
of the combinations of the Fitzpatrick skin tones and 8
smartphones used in the calibration study resulted in a
concordance greater than or equal to pc=0.84 (Figure 3), which
is in line with previous smartphone-based modalities for heart
rate monitoring [34]. Importantly, performance did not correlate
with device cost, with all phones selling for under US $200
performing better than pc>0.92 for any skin tone.

Discussion

Principal Findings
In summary, heart snapshot measured VO2max with similar
accuracy to supervised, in-clinic tests such as the Tecumseh or
Cooper protocols, while also generalizing to remote and
unsupervised measurements. Heart snapshot measurements
demonstrated fidelity across demographic variation in age and
sex, across diverse skin pigmentation, and between various iOS
and Android phone configurations.

The results from our validation study performed in unsupervised,
remote environments showed that heart snapshot, which is based
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on a 3-MST protocol, generalized to real-world settings but the
12-MRT protocol did not. Although it is difficult to definitively
determine the reason for the poor concordance of 12-MRT, we
suspect that this might be attributed to the Hawthorne effect,
where people perform better when they are under constant
observation at a track. It could also be purely environmental,
where traffic, hills, and distractions impede uninterrupted
running. This indicates the importance of testing and validating
digital health measures in a representative setting.

Limitations
An important limitation of this study is that we did not include
any individuals in our cohort with a known irregular heart
rhythm, so we cannot extend our claims of validity to that
population. Similarly, although we made efforts to include
individuals across different age deciles, we focused solely on
adults (aged over 18 years) and our age decile from 60 to 70
years did not include participants older than 65 years. This work
was limited to the biometrics of resting heart rate and VO2max,
but using the same technology could also be extended to
measure heart rate recovery in minute intervals after exertion,
which would provide a valuable biometric that has been
associated with prediction of overall mortality [30]. Heart
snapshot attempts to maximize concordance with gold standard
methods for estimating VO2max, but it is worth noting that this
analysis used an existing validated algorithm [27] that was based
on in-clinic procedures and measurement tools. Heart snapshot
could become more personalized than traditional protocols, for
example, adapting to a participant’s maximum step cadence as
measured by smartphone accelerometry. Further concordance
with gold standard measures may be achieved by optimizing
the parameters of the traditional algorithm or including new
variables, but this will require a distinct cohort to test any
models that have been trained on this data set.

Comparison With Prior Work
Although multiple devices can estimate VO2max, including
several currently marketed consumer devices [35], the
underlying data and algorithms are usually not published. The
lack of data and method transparency limits the utility of these
approaches for discovery-based research, where reproducibility
is paramount. In contrast, an open approach to method validation
can also serve as a foundation for downstream research in
different conditions or populations to generate normative data
for interpreting results [36].

As many dedicated hardware devices for digital health in the
consumer sphere have experienced short half-lives of
availability, we believe that the dependency only on a
smartphone with a flash and camera may provide a greater
degree of future-proofing for heart snapshot. This will be
important for consistent, longitudinal measurements that may
uncover patterns of VO2max variance over time, especially in
large-scale studies such as the AoURP.

Conclusions
The emerging development of consumer technology provides
unprecedented opportunities to evaluate the use of additional
digital biomarkers to improve risk management strategies for
population health and for precision health at the level of an
individual. Paired with access to large population studies, such
as the AoURP [30] that collects health questionnaires, electronic
health records, physical measurements, biospecimens, and digital
health technology data, we can rapidly test emerging digital
health measures for their potential to advance precision
medicine. The heart snapshot software is freely available with
all validation data and analysis code [37].
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