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Abstract

Background: Sleep is essential for one’s health and quality of life. Wearable technologies that use motion and temperature
sensors have made it possible to self-monitor sleep. Although there is a growing body of research on sleep monitoring using
wearable devices for healthy young-to-middle-aged adults, few studies have focused on older adults, including those living with
dementia.

Objective: This study aims to investigate the impact of age and dementia on sleep detection through movement and wrist
temperature.

Methods: A total of 10 younger adults, 10 healthy older adults, and 8 older adults living with dementia (OAWD) were recruited.
Each participant wore a Mi Band 2 (accemetry-based sleep detection) and our custom-built wristband (actigraphy and wrist
temperature) 24 hours a day for 2 weeks and was asked to keep a daily sleep journal. Sleep parameters detected by the Mi Band
2 were compared with sleep journals, and visual analysis of actigraphy and temperature data was performed.

Results: The absolute differences in sleep onset and offset between the sleep journals and Mi Band 2 were 39 (SD 51) minutes
and 31 (SD 52) minutes for younger adults, 49 (SD 58) minutes and 33 (SD 58) minutes for older adults, and 253 (SD 104)
minutes and 161 (SD 94) minutes for OAWD. The Mi Band 2 was unable to accurately detect sleep in 3 healthy older adults and
all OAWDs. The average sleep and wake temperature difference of OAWD (1.26 °C, SD 0.82 °C) was significantly lower than
that of healthy older adults (2.04 °C, SD 0.70 °C) and healthy younger adults (2.48 °C, SD 0.88 °C). Actigraphy data showed
that older adults had more movement during sleep compared with younger adults and that this trend appears to increase for those
with dementia.

Conclusions: The Mi Band 2 did not accurately detect sleep in older adults who had greater levels of nighttime movement. As
more nighttime movement appears to be a phenomenon that increases in prevalence with age and even more so with dementia,
further research needs to be conducted with a larger sample size and greater diversity of commercially available wearable devices
to explore these trends more conclusively. All participants, including older adults and OAWD, had a distinct sleep and wake
wrist temperature contrast, which suggests that wrist temperature could be leveraged to create more robust and broadly applicable
sleep detection algorithms.
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Introduction

On average, we spend one-third of our lives asleep [1]. Quality
and quantity of sleep regulate daytime behaviors and functions
as well as significantly impact health and well-being. Sleep has
been shown to affect day-to-day memory and concentration
[2-4]. Lifetime sleep habits appear to correlate with one’s
likelihood of having conditions, such as Alzheimer disease [5-7]
and cardiovascular diseases [8,9]. Although the benefits of
getting a good night’s rest have received extensive research,
there is still much we do not know about the differences between
how people sleep and what can be done to support better sleep.

Understanding sleep patterns is a complex undertaking, as sleep
is impacted by conscious and subconscious control by the
individual as well as environmental factors. Standard clinical
sleep evaluation typically uses polysomnography (PSG), which
is considered the gold standard in sleep studies [10]. PSG
requires the person being assessed to sleep in a laboratory with
devices attached to the body in single or infrequent sessions.
Although the data collected by PSG can be used to diagnose
many medical conditions, its intrusive, unnatural nature might

not reflect people’s usual sleep quality and is not appropriate
for long-term or frequent monitoring of sleep [11].

Actigraphy (ie, accelerometer sensors and gyroscopes) is being
increasingly used to measure people’s sleep and activities by
estimating related parameters, such as sleep onset and offset
[12,13]. Many clinical studies have adopted actigraphy to
measure circadian rhythm, which is a major factor in regulating
people’s sleep and wake rhythms [14,15]. Driven by circadian
rhythms, many biological processes, including core body
temperature (CBT), have 24-hour diurnal variations. During
sleep, people’s CBT drops about 1 °C [16]. Thermal regulation
inside the human body causes wrist temperature to exhibit an
opposite pattern to CBT [17]; wrist temperature increases before
people fall asleep, remains at a relatively high level when people
are asleep, and then drops in the morning when people wake
up (Figure 1). CBT has been used extensively to study circadian
rhythms; however, it usually requires invasive gut or rectal
temperature measurements [18]. As an alternative, wrist
temperature can be measured in daily life and is found to be
more correlated with sleeping status than CBT [19]. Recent
studies have provided increasing evidence that wrist temperature
can be used for sleep monitoring [17,20-22].

Figure 1. Example wrist temperature over a 24-hour period for a healthy sleep pattern.

Low sleep quality and irregular sleep patterns become more
prevalent with increasing age and dementia [23-26]. For
example, poor nighttime sleep has been shown to be a key factor

in older adults’ tendency to have more daytime sleepiness [27],
which has been associated with changes in circadian rhythms
in older adults [28]. Sleep can also be used as an indicator of
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comorbidities, such as sleep apnea and restless leg syndrome,
both of which become more prevalent with increasing age
[29,30]. Disrupted sleep patterns have been found to be even
more prevalent in people with dementia [31]. Poor sleep has
been found to be predictive of more severely impacted cognition
in older adults, including people with dementia [32] and older
women without dementia [33]. Therefore, the ability to monitor
older adults’ sleep and circadian rhythms on an ongoing basis
is increasingly being used to understand and support their sleep,
which, in turn, supports health and well-being [34].

The proliferation of smart wearable technologies has contributed
to the substantial growth in technology adoption among older
adults; older adults are the most rapidly increasing group of
users of new technologies [35,36]. One of the most commonly
adopted technologies is smart wearable devices, which usually
have built-in accelerometer and gyroscope sensors to detect
people’s sleep (eg, Fitbit, Garmin, and Mi Band) [37-39].
Commercial smart wristbands have been designed to output
several sleep parameters, including sleep onset, offset, duration,
and wake after sleep onset, and some wristbands also give a
sleep quality score. Sleep parameters can be synchronized to
one’s smartphone via Bluetooth (and then to the cloud, should
they wish) so that users can easily access their sleep data.
Relative affordability and unobtrusiveness contribute to the
growing popularity of commercial smart wristbands. In addition,
smart wearable devices are being increasingly and widely used
in health research [40-42]. For example, Gibson et al [43]
evaluated the reliability of actigraphy to measure the sleep of
people living with dementia.

Although most smart wristbands can provide sleep monitoring
and analysis, they fail to monitor people’s sleep from an internal
perspective; they cannot measure circadian rhythm directly. As
discussed earlier, wrist temperature is a reflection of CBT, which
is indicative of a person’s biological circadian rhythm. As such,
wrist temperature could have value as an addition to
accemetry-based wearable sleep monitoring systems, which
could then be used to support better understanding and
management of sleep. To be successful, these systems should
work for different stakeholder groups, including older adults
and older adults living with dementia (OAWD). Therefore, this
research was guided by the question, “How do sleep and wrist

temperature patterns compare for younger adults and older
adults, including OAWD?”

Methods

Participants
This study measured sleep patterns and wrist temperature
patterns of 3 groups of participants: (1) healthy younger adults
(aged 20-30 years), (2) healthy older adults (aged≥65 years),
and (3) OAWD. Inclusion criteria were any gender, any race,
age in the targeted populations, and ability to understand
English. An additional criterion for OAWD was early- to
middle-stage dementia. Individuals diagnosed with severe sleep
disorders were excluded from the study.

We recruited 10 participants for each group based on the
convenience sampling method. Healthy adults were recruited
through university-wide poster advertisements and word of
mouth. Healthy older adults were recruited through phone calls
and email invitations. OAWD participants were recruited from
a local long-term care (LTC) residence. The staff at the LTC
setting requested that they coordinate the initial identification
of potential participants and support the recruitment process.
Each potential participant was then contacted and introduced
to the study by the researcher. Assent to continue participating
in the study was obtained from each OAWD participant every
time they were contacted by the researchers. This study was
approved by the Human Research Ethics Committee of the
University of Waterloo (ORE #31860 and ORE #40459).

Equipment
Each participant was asked to wear a commercially available
smart wristband (Mi Band 2, XiaoMi; Figure 2) and a
custom-built wristband developed by the authors (Figure 3) on
their left arm for 14 days. The Mi Band 2 was chosen because
of its popularity, low cost, long battery life, and accessibility
of actigraphy data. The custom-built band consisted of a
temperature sensor (iButton DS1922L, Maxim) that maintained
contact with the anterior side of the wrist and a 3-axis
accelerometer sensor (AX3, Axivity). Both sensors operated
offline by storing data locally; data were extracted after the
2-week study period using USB adaptors. All participants were
offered to keep the Mi Band 2 if they wished on completion of
the study.
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Figure 2. The Mi Band 2.

Figure 3. The customized wristband.

Study Protocol
The study protocol was the same for healthy younger adults and
healthy older adults, with an altered OAWD protocol. Before
the start of the study, all healthy participants were asked to
complete 4 questionnaires: (1) a demographic form; (2)
morningness-eveningness questionnaire, which is a measure of
circadian rhythm type [44]; (3) Pittsburgh Sleep Quality Index
(PSQI), which is a measure of subjective sleep quality [45]; and
(4) Epworth Sleepiness Scale (ESS), which is a measure of
daytime sleepiness [46]. Participants were then given the 2
wristbands; instructed on how to wear them; and asked to wear
both on their left wrist for 14 days, except when showering or
bathing. Participants were also asked to fill out a daily sleep
journal that was adapted from a study by Monk et al [47] to
capture sleep onset, offset, and subjective sleep quality.

As OAWD were not able to fill out the questionnaires, only the
demographic form was completed and was done with the help

of staff from their LTC residence. In addition, the Mini-Mental
State Examination (MMSE) [48] was conducted to approximate
the level of cognition for each OAWD. After giving each
OAWD the wristbands, their personal support workers (PSWs)
were asked to help with getting wristbands off and on when
they assisted OAWD shower or bathe as well as to routinely
check that the person was not adversely affected by wearing
the wristbands. In addition, PSWs were asked to observe
participants’ sleep status and check off either awake or sleeping
on a sheet every half an hour throughout the day and night as
part of their routine in with the OAWD. Sleep status from this
sheet was then used to generate an observed sleep journal.

Ground Truth of Sleep Parameters
Sleep onset and offset, the number of nighttime wake-ups, and
sleep quality scores were obtained from the sleep journals and
were used to help interpret actigraphy and temperature data.
Although we thought it was unlikely that people could estimate
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their sleep at a minute level, we considered sleep journals of
younger adults and healthy older adults reliable at the half-hour
interval level. Occasionally, participants would miss reporting
sleep onset and offset. In these cases, the sleep onset and offset
were manually identified from the data from the custom-built
wristband AX3 actigraphy data.

For OAWD, the intention was to use the sleep status sheet filled
out by PSWs to extract sleep parameters and use these as ground
truths for sleep. However, at the end of the study, it was found
that, on average, 40% of the sheet was filled (ie, the PSWs did
not report sleep status of OAWD 60% of the time). Owing to
the large amount of data missing from the OAWD sleep journals,

we chose to manually identify sleep periods from the AX3 data
and combined those identified sleep periods with PSW sheets
to estimate sleep for all OAWD.

Feature Extractions

Sleep Parameter Extraction
Sleep onset, sleep offset, and sleep duration from the sleep
journals were compared with the Mi Band 2 for daily sleep
monitoring; the mean values across the 14 days were calculated
and are presented in Table 1. The absolute differences between
the Mi Band 2 and journal parameters were used to indicate the
agreement of sleep detection between Mi Band 2 and
self-reported sleep.

Table 1. Sleep parameters calculated from sleep journals (younger and older adults) and recreated sleep journals (older adults living with dementia).

Older adults living with dementiaOlder adultsYounger adultsSleep parameters

9:37 PM (105 min)11:49 PM (61 min)12:32 AM (53 min)Onset, mean (SD)

7:05 AM (40 min)7:31 AM (78 min)7:55 AM (54 min)Offset, mean (SD)

562 (123)462 (88)442 (26)Duration (min), mean (SD)

Sleep Periods Identification of OAWD
As people generally have minimal movements during sleep,
sleep periods can be manually identified by segments of raw
AX3 data that have minimal variations. For one night’s sleep,
multiple sleep periods could be identified if the person had
multiple wake-ups. Once sleep periods were estimated, the sleep
onset, offset, and duration were calculated for the longest least
varied data period. If participants woke up during the night and
remained awake for a long period (ie, more than 2 hours), this
period was not counted as sleep duration. AX3-estimated sleep
was combined with the partially completed observational sheet
by PSWs to create a recreated sleep journal for OAWD.

Wrist Temperature Feature Extraction
As participants took the customized wristband off to shower,
all data points lower than 28 °C were removed and interpolated
using the nearest values. The temperature data were then
smoothed by applying a median filter with a window size of 3.
Descriptive statistics were calculated to provide a profile of the
general characteristics of the participants’ wrist temperature
patterns and rhythm indices related to circadian rhythms. The
mean and SD were calculated for the wrist temperature rhythm
of every 24-hour period that began at 3 PM because this
segmentation included full nighttime sleep periods and daytime
naps. On the basis of sleep onset and sleep offsets obtained from
sleep journals, the mean temperatures were calculated for sleep
time and wake time. The mean wake time temperature was
subtracted from the mean sleep time temperature to calculate
the mean sleep and wake temperature difference, which was
used as a measure of the extent of temperature changes between
the sleep and wake states in this study.

Interday stability (IS) and intraday variability (IV) were
calculated to examine the regularity and rhythmicity of wrist
temperature rhythms for each participant [49]. IS has been used
to measure the stability of rhythms across several consecutive
days, whereas IV reflects the fragmentation of the wrist

temperature rhythm of every 24-hour period. IS and IV were
calculated using Equations (1) and (2), respectively:

where N is the total number of wrist temperature data points, p
is the number of wrist temperature data points per day (in this
study, P=288 as the iButton is sampled every 5 min), X is the
mean of all temperature data, Xh is the hourly mean of wrist
temperature, and Xi is the data point at time i. IS and IV were
calculated for each participant for the total study period.

Statistical Analysis
One-tailed t test was used to compare the sleep parameters and
rhythm indices between different groups (young vs old and old
vs OAWD). The Pearson correlation coefficient was used to
assess correlations between different circadian rhythms and
sleep parameters calculated; P<.05 was considered to be
significant.

Case Study Analysis
When analyzing the collected data, it was found that the sleep
of some participants was not correctly reported by the Mi Band
2. For example, most PSWs reported that OAWD had 8 hours
of sleep at night, but the Mi Band 2 detected as few as 40
minutes of sleep. The AX3 data from the custom-built band
were inspected for the periods Mi Band 2 had classified as wake
periods during the night as well as wrist temperature
measurements for the same time. A healthy younger participant
who had good sleep quality; a healthy older participant with
poor sleep quality; and 2 OAWD who had poor, interrupted
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sleep were selected as case studies to illustrate this phenomenon
and are presented later in this paper.

Results

Demographics and Sleep Patterns
In total, we recruited 10 healthy younger adults, 10 healthy
older adults, and 8 OAWD. A total of 7 OAWD were able to

give their own consent and sign the consent form; for the 1
participant who could not self-consent, his power of attorney
signed the consent form, and assent was obtained from the
participant. Participants’ demographic data are presented in
Table 2. The average MMSE score of the 8 OAWD participants
was 20. Moreover, 7 OAWD were in the mild cognitive
impairment category (ie, a score between 18 and 23), and 1
OAWD had a score of 16, which indicates severe cognitive
impairment [50].

Table 2. Participants’ demographics.

Older adults living with dementia
group (n=8)

Healthy older adult group (n=10)Healthy younger adult group (n=10)Demographic

83.25 (10.38)75 (7.36)24.1 (2.23)Age (years), mean (SD)

Sex, n (%)

4 (50)4 (40)4 (40)Male

4 (50)6 (60)6 (60)Female

29.90 (8.91)25.94 (3.11)23.69 (6.30)BMI (kg/m2), mean (SD)

—b7.8 (3.56)5.2 (2.39)Pittsburgh Sleep Quality Index,

mean (SD)a

20 (2.39)——Mini-Mental State Examination,

mean (SD)c

aThe Pittsburgh Sleep Quality Index was not measured for the older adults living with dementia group as they cannot reliably complete this measure.
bTest was not administered as the test was not appropriate for the participant group.
cThe Mini-Mental State Examination of the healthy younger adult group and the healthy older adult group as they were cognitively intact.

The sleep parameters obtained from the sleep journals for all
participants are presented in Table 1. Compared with older adult
groups, healthy younger participants tended to sleep later and
wake up later, with the shortest average sleep duration among
the 3 groups. Between the 2 older adult groups, OAWD slept
earlier and had a longer sleep duration. Although we did not
require participants to record daytime naps, we asked them to
report whether they had the habit of napping. Only 1 younger
adult and 1 healthy older adult reported that they took regular
noontime naps. All OAWD napped during the day, sometimes
more than once. As the recreated sleep journals of OAWD only
summarized nighttime sleep and did not capture daytime naps,
the total sleep duration of OAWD might be longer than reported.
Healthy older adults had better compliance in reporting and
provided more detailed sleep journals (eg, a few participants
consistently recorded their nap time during the day).

Comparison Between Mi Band 2 and Sleep Journal
The absolute differences in sleep parameters between the Mi
Band 2 and sleep journals are summarized in Table 3, and

significant differences were found in sleep duration between
the younger adult group and the healthy older adult group.
Between the 2 older adult groups, the absolute differences in
sleep onset, offset, and duration of OAWD were significantly
higher than those in the healthy older adult group. As shown in
Table 4, of the 106 days of data measured from the 8 OAWD,
for 28 of the days (28/106, 26% of days monitored), the Mi
Band 2 did not detect any sleep, and we confirmed that all
OAWDs were wearing the Mi Band 2 correctly throughout the
study. Discrepancies between sleep parameters reported in the
recreated sleep journal and detected by Mi Band 2 for OAWD
were large, namely, sleep onsets detected by Mi Band 2 were
often noticeably delayed (ie, on the order of hours), and the
offset was earlier than what was reported. The average absolute
difference in sleep duration between the Mi Band 2 data and
the recreated sleep journal for OAWD was more than 6 hours.
A discussion of this detection error is presented later in the Case
Studies section.
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Table 3. The absolute difference of sleep parameters between (recreated) sleep journals and the Mi Band 2 for each group.

Older adults living with dementiaHealthy older adultsHealthy younger adultsSleep parameters

Onset

253 (104)49 (58)39 (51)Difference (min), mean (SD)

<.001——aP value

Offset

161 (94)33 (58)31 (52)Difference (min), mean (SD)

<.001——P value

Duration

379 (163)64 (77)49 (59)Difference (min), mean (SD)

<.001.04—P value

aNo significance.

Table 4. Number of days with sleep reported by the Mi Band 2 for older adults living with dementia.

Valid days, n (%)Total days (n)ID

14 (100)14OAWDa 1

2 (15)13OAWD 2

10 (100)10OAWD 3

7 (50)14OAWD 4

12 (86)14OAWD 5

8 (62)13OAWD 6

11 (79)14OAWD 7

14 (100)14OAWD 8

78 (74)106Total

aOAWD: older adults living with dementia.

Wrist Temperature Rhythm Comparison
The average wrist temperature data of the 3 groups are shown
in Figure 4. Although all curves have higher daytime (awake)
temperatures, the OAWD group has the flattest temperature
curve with the lowest nighttime wrist temperature and the

highest daytime wrist temperature compared with the other
groups. Although the average nighttime wrist temperature was
similar for healthy older and younger adults, older adults tended
to have a higher daytime wrist temperature, causing a flatter
average curve for healthy older adults compared with younger
adults. The wrist temperature indices are presented in Table 5.
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Figure 4. Average wrist temperature patterns for healthy younger adults, healthy older adults, and older adults living with dementia. Plots are expressed
as the mean temperature (standard errors of the mean). OAWD: older adults living with dementia.

Table 5. Wrist temperature indices.

Older adults living with de-
mentia (n=8)

Healthy older adults (n=10)Healthy younger adults
(n=10)

Parameters

Average wrist temperature parameters (°C), mean (SD)

34.66 (0.53)34.97 (0.34)34.98 (0.55)Sleep temperature

33.40 (1.03)32.94 (0.67)32.49 (0.83)Wake temperature

1.26 (0.82; P=.02)2.04 (0.70)2.48 (0.88)Sleep and wake temperature difference

Cosinor analysis

33.90 (0.84)33.65 (0.46)33.34 (0.61)MESORa (°C), mean (SD)

0.93 (0.59; P=.03)1.45 (0.50)1.72 (0.57)Amplitude (°C), mean (SD)

44 (145; P<.001)183 (91; P=.04)246 (59)Acrophase (min), mean (SD)

Nonparametric analyses (°C), mean (SD)

0.32 (0. 19; P=.02)0.52 (0.16)0.53 (0.10)Interday stability

aMESOR: midline-estimating statistic of rhythm.

Case Studies
Data from 4 participants are presented below as illustrative case
studies. One of the case studies is of a younger healthy sleeper,
and the other 3 cases are representative data from irregular
sleepers, 1 of which is a healthy older adult and the other 2 are
OAWD.

Case I: Healthy Younger Adult With Regular Sleep
The healthy younger adult (YA1) was a 25-year-old man
(PSQI=5 and ESS=3) who did not report any sleep disorders.
One day of YA1 data, including wrist temperature, AX3 data,
and sleep onset or offset detected by Mi Band 2, is shown in
Figure 5. The sleep period and wake period can be distinguished
using AX3 data, which shows that YA1 was mostly static with
a relatively high and stable wrist temperature during sleep. The
sleep onset and offset detected by the Mi Band 2 align well with
changes in AX3 and wrist temperature data.

JMIR Mhealth Uhealth 2021 | vol. 9 | iss. 6 | e26462 | p. 8https://mhealth.jmir.org/2021/6/e26462
(page number not for citation purposes)

Wei & BogerJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Example wrist temperature and AX3 data for a healthy younger adult with good sleep (YA1). Sleep onset and offset detected by Mi Band 2
are indicated by the double red arrows. WT: wrist temperature.

Case II: Healthy Older Adult With Irregular Sleep
The healthy older adult (OA1) was an 83-year-old man (PSQI=6
and ESS=7) who did not report any sleep disorders. OA1 was
considered to be an irregular sleeper based on his data; one day
of representative data is shown in Figure 6. Sleep onsets detected
by the Mi Band 2 were, on average, 2 hours later than OA1’s
self-reported sleep onset.

For the day represented in Figure 6, OA1 self-reported falling
asleep at around 11:45 PM, whereas the Mi Band 2 reported
that his sleep started at 2:43 AM. Significant movements were
captured by AX3 between 12:00 AM and 2:30 AM; a magnified

image, except for these data, is shown on the right side of Figure
6, where multiple peaks can be observed in all 3 axes. After
2:30 AM, the AX3 data became more static and similar to the
AX3 data collected from regular sleepers. The movements
between 12:00 AM and 2:30 AM were very periodic and
occurred approximately every 30 seconds for most of the
2.5-hour time frame; during this time, the wrist temperature
remained relatively high, and the participant reported being
asleep. As it seems unlikely that these movements were made
by the participant consciously and people cannot fake body
temperature changes, the participant was likely asleep but
experiencing irregular body movements.

Figure 6. Example wrist temperature and AX3 data for a healthy older adult with irregular sleep (OA1). Sleep detected by the Mi Band 2 is indicated
by the red double arrow. WT: wrist temperature.

Case III: OAWD1 With Parkinson Disease and Sleep
Apnea
OAWD1 was a 68-year-old man (MMSE score=21, diagnosed
with Parkinson disease and sleep apnea); 2 days of data are
shown in Figure 7. Compared with OA1 (Figure 6), OAWD1’s

data (both wrist temperature and AX3 data) have a more evident
contrast between day and night. Even so, only parts of his sleep
were detected by Mi Band 2. As shown in the left portion of
Figure 7, there was little movement between 9:00 PM and 3:00
AM, and the wrist temperature was relatively high, but this time
frame was not identified as sleep by Mi Band 2.
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Figure 7. Two consecutive days of wrist temperature and AX3 data for older adults living with dementia 1. Sleep onset or offset were obtained from
the recreated sleep journal. Sleep detected by the Mi Band 2 is indicated by the red double arrow. The sleep of 2 nights in the recreated sleep journal is
labeled by the shaded boxes. WT: wrist temperature.

Case IV: OAWD2 With Sleep Apnea and Insomnia
OAWD2 was a 68-year-old woman (MMSE score=19) who
was diagnosed with sleep apnea and insomnia and was an
irregular sleeper. Before the start of the study, OAWD2’s PSW
reported that she had very poor sleep (ie, would wake up at
night frequently and sometimes cannot fall asleep at all). During
her 13 days in our study, the Mi Band 2 indicated no sleep for
11 days; PSWs confirmed that she wore the wristbands the
entire time. Figure 8 shows 2 consecutive days of wrist
temperature and AX3 data. The left portion of Figure 8 shows
data where no sleep was detected by Mi Band 2, and the right
portion shows a short period of sleep detected by Mi Band 2.

Compared with data from OA1 in Figure 6, there are no obvious
static periods, and the day and night contrast for movement is
relatively indistinguishable. Although there are differences in
daytime and nighttime wrist temperatures, these are more
difficult to distinguish than in other participants.

A close-up of an excerpt of AX3 data for day 1 is shown in
Figure 9, where 8 short episodes of static data are highlighted.
Each highlighted episode lasted <30 minutes, and considerable
movement was observed between episodes. These data indicate
that the participant may have had some sleep, but if so, the sleep
was in short, fragmented periods. As the participant was
diagnosed with sleep apnea, this could partially account for
frequent nighttime wake-ups.

Figure 8. Two consecutive days of wrist temperature and AX3 data of older adults living with dementia 2. Sleep onset or offset were obtained from
the recreated sleep journal. WT: wrist temperature.
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Figure 9. An 11-hour period (between 8 PM and 7 AM) of AX3 data for older adults living with dementia 2. Periods of relatively static data are shown
by purple rectangles. WT: wrist temperature.

Discussion

Principal Findings
In line with other recent studies [17,19], this study found that
wrist temperature increased when people were asleep, even
when their sleep patterns were irregular. As illustrated in the
case studies presented earlier, wrist temperature appears to
correspond with sleep status changes regardless of whether body
movements occurred; wrist temperature increased when people
were asleep and decreased when they woke up. This adds
evidence that wrist temperature is correlated with circadian
rhythms and associated changes in thermal regulation of the
body during sleep. This appears to hold true for OAWD as well,
whose circadian rhythms are impacted by both aging and
dementia (and often other morbidities); their wrist temperature
appears to reflect when they are asleep and awake. A larger
sample size is needed to draw more definitive conclusions
regarding the impact dementia may have on CBT and wrist
temperature.

From the results presented in Table 5 and Figure 4, there seems
to be a trend of increasing wake temperature and decreasing
sleep and wake temperature difference as people age and people
become more pronounced dementia in this study. It is not clear
from our data whether and how much this increased discrepancy
is due to dementia or other factors, such as increased average
age of OAWD, greater prevalence of comorbidities, and/or how
living in an (often busy) LTC environment may disrupt sleep.
The less significant day versus night wrist temperature contrast
suggests changes in the circadian rhythms of older adults and
OAWD compared with younger adults. This finding is consistent
with other studies (eg, [51]).

The IS values suggest that the 2 healthy groups had similar IS
for their wrist temperature rhythm, and the dementia group had
lower wrist temperature rhythm stability. The lower IV values

of the older adult groups indicate that changes in wrist
temperature rhythms tend to be less variable intraday as people
get older, especially with people who have dementia. As IS
reflects the stability and the IV reflects the fragmentation of
one’s wrist temperature rhythm, the significantly lower IS and
IV of OAWD could be associated with irregular sleep patterns
and increased daytime sleepiness. Most OAWD in this study
took frequent naps and experienced insomnia at night, which
almost certainly increased the average daytime wrist
temperature, lowered the average nighttime wrist temperature,
and accounted for a greater amount of flux in nighttime wrist
temperature. Rhythm indices, such as IS and IV, could be further
explored with these and other populations to determine how
they might be used to infer circadian rhythm health.

Some studies [30,52-54] have reported excessive body or wrist
movements of OAWD during sleep. This research supports the
hypothesis that advanced sleep monitoring systems should detect
nighttime body movements. Although the exact cause of
abnormal body movements by the older adults in this study is
unknown, body movement during sleep seems to become
increasingly common with age and was present in all our
OAWD participants. A system that can detect involuntary
movements could be valuable in the detection of previously
unknown conditions (such as the case with our OA1 participant)
and possibly support the diagnosis and management of
conditions that impact sleep.

There are 2 noteworthy findings regarding sleep detection using
the Mi Band 2. First, by comparing the results of the Mi Band
2 with AX3 data from the custom-built wristband and reported
sleep from sleep journals, it appears that the Mi Band 2 does
not accurately detect people’s sleep when they have pronounced
or irregular body movements during sleep. Second, the Mi Band
2 sleep detection algorithm does not appear to work well if the
user has fragmented sleep (ie, waking up multiple times during
the night). For example, OAWD2 slept in short and sporadic
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episodes; most of her sleep was undetected by Mi Band 2, which
reported sleep for only 2 of her 13 recorded days. From the
example data in Figure 9, we can observe that each sleep episode
of OAWD2 was short and each wake-up accompanied body
movements and that the Mi Band 2 did not detect any sleep. As
the Mi Band 2 detects sleep based on accemetry data, it is
plausible that periodic body movements during sleep, such as
those seen in the older adults presented in the case studies, may
be the cause of the misclassification of these periods as awake
instead of asleep. Moreover, the Mi Band 2 may be trained on
data from people with 1 or 2 long nighttime sleeping periods
than multiple short ones. The hypothesis that movements and
short sleeping episodes cause the Mi Band to miss episodes of
sleep is supported by the data from our other participants.

Although the sleep detection algorithms for most commercial
smart wristbands are proprietary information, as they rely on
accelerometers and gyroscopes, their sleep detection is based
on movement. For a regular sleeper, frequent and substantial
body movements at night usually indicate the person is awake,
and fewer and infrequent movements indicate sleep. Although
an activity-based rule for sleep detection may be robust for
people who are mostly still when they sleep, this study shows
that sleep detection based on activity is not accurate for some
older adults, especially OAWD. As younger adults are the
primary consumers of wearable wristbands, the Mi Band 2 sleep
detection algorithms may have been trained predominantly on
data from younger adults with healthy sleep patterns, thus
biasing the algorithm to detect sleep for people who fit that
profile. This aligns with other studies that have found that
commercial wristbands performed poorly on populations with
sleep disorders [55]. Therefore, other smart wristbands that
track sleep based on movement alone may have similar
performance as the Mi Band 2 for the same reasons; however,
this was not investigated in this study; therefore, it remains a
question for future research.

This research highlights the need for the older adult population
to be included in the development of sleep detection algorithms,
including the possibility of developing smarter algorithms that
autonomously identify the type of sleeper a person is and
self-adjust appropriately to that person’s sleep habits. This
requires research into how to categorize what good sleep is for
that particular person in a way that helps people, their care
partners, and/or caregivers understand. This information could
then be used to better manage sleep without missing information
that may indicate a change in sleep or sleep patterns that are of
possible concern. As wrist temperature appears to be highly
correlated with sleep regardless of age or dementia, the inclusion
of wrist temperature as a complementary sensor to
movement-based ones could enable their strengths to be
leveraged and fused to support more accurate sleep detection.

More accurate sleep detection for older adults using wearable
systems could support better short-term and long-term

monitoring of sleep. Through daily sleep tracking, irregular
sleep quality and patterns can be recognized by machine learning
algorithms and then be reported to older adults or their health
care providers. Such monitoring systems are especially useful
for OAWD because the incidence of poor sleep is quite high in
this population, and self-reporting of sleep is often difficult or
impossible. Wearable technologies for sleep tracking and sleep
problem identification could help to better understand older
adults’ sleep using objective measures, but this approach is only
possible if the results are accurate. Accurate sleep data would
enable the creation of tailored sleep management plans, enabling
better sleep support for each individual, thus supporting better
health outcomes and quality of life.

Limitations
This study had several limitations. First, only the Mi Band 2
was the only commercially available wearable device that was
examined. As other commercially available smart wristbands
collect other types of data (eg, PPG) and use different sleep
detection algorithms, their performance will likely be different.
These alternatives should be examined in healthy older adults
and OAWD in future studies. Second, the sample size of this
study was small. Future research with larger sample sizes is
required to provide a deeper, comprehensive understanding that
needs to support greater generalization of the results. Third, all
our OAWD participants lived in the same LTC home. Data from
other LTC homes as well as OAWD living in the community
need to be investigated to determine how the environment plays
a role in sleep detection and dementia. Finally, sleep onset and
offset were estimated from sleep journals and/or actigraphy
data. Using another method, such as computer vision, could
estimate onset and offset more accurately as well as provide
information about what was happening during sleep (eg, giving
insight into repetitive movements).

Conclusions
This research adds evidence that wrist temperature can be used
as an indicator of sleep status, including for OAWD and people
with irregular sleep patterns. As illustrated by case studies from
our data, suboptimal sleep detection performance by a
commercial wristband was likely because of broken sleep
patterns and body movements. As wearable technologies are
increasingly being used by LTC homes and healthy older adults
to track sleep and inform sleep management and support, this
research suggests that caution should be used when interpreting
sleep data when monitoring the sleep of older adults, particularly
those living with dementia. This highlights the need for future
research and development to create systems that better
complement older adult populations. Future sleep monitoring
wearable systems could consider adding a temperature sensor
to capture the waist temperature as an extra indicator of sleep
combined with motion-based data and machine learning
algorithms of typical sleep patterns.
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