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Abstract

Background: With the development and promotion of wearable devices and their mobile health (mHealth) apps, physiological
signals have become a research hotspot. However, noise is complex in signals obtained from daily lives, making it difficult to
analyze the signals automatically and resulting in a high false alarm rate. At present, screening out the high-quality segments of
the signals from huge-volume data with few labels remains a problem. Signal quality assessment (SQA) is essential and is able
to advance the valuable information mining of signals.

Objective: The aims of this study were to design an SQA algorithm based on the unsupervised isolation forest model to classify
the signal quality into 3 grades: good, acceptable, and unacceptable; validate the algorithm on labeled data sets; and apply the
algorithm on real-world data to evaluate its efficacy.

Methods: Data used in this study were collected by a wearable device (SensEcho) from healthy individuals and patients. The
observation windows for electrocardiogram (ECG) and respiratory signals were 10 and 30 seconds, respectively. In the experimental
procedure, the unlabeled training set was used to train the models. The validation and test sets were labeled according to preset
criteria and used to evaluate the classification performance quantitatively. The validation set consisted of 3460 and 2086 windows
of ECG and respiratory signals, respectively, whereas the test set was made up of 4686 and 3341 windows of signals, respectively.
The algorithm was also compared with self-organizing maps (SOMs) and 4 classic supervised models (logistic regression, random
forest, support vector machine, and extreme gradient boosting). One case validation was illustrated to show the application effect.
The algorithm was then applied to 1144 cases of ECG signals collected from patients and the detected arrhythmia false alarms
were calculated.

Results: The quantitative results showed that the ECG SQA model achieved 94.97% and 95.58% accuracy on the validation
and test sets, respectively, whereas the respiratory SQA model achieved 81.06% and 86.20% accuracy on the validation and test
sets, respectively. The algorithm was superior to SOM and achieved moderate performance when compared with the supervised
models. The example case showed that the algorithm was able to correctly classify the signal quality even when there were
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complex pathological changes in the signals. The algorithm application results indicated that some specific types of arrhythmia
false alarms such as tachycardia, atrial premature beat, and ventricular premature beat could be significantly reduced with the
help of the algorithm.

Conclusions: This study verified the feasibility of applying the anomaly detection unsupervised model to SQA. The application
scenarios include reducing the false alarm rate of the device and selecting signal segments that can be used for further research.

(JMIR Mhealth Uhealth 2021;9(8):e25415) doi: 10.2196/25415
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Introduction

Background
Wearable devices have been widely adopted for daily health
care monitoring during the past decades. Many researchers
utilize wearable sensors to continuously monitor physiological
signals for mobile health (mHealth) and ubiquitous health
(uHealth) app studies [1-3]. Recently, wearable devices have
shown their potential in providing early warning of disease
deterioration, chronic disease self-management, rehabilitation
assessment, among others [4-7]. For example, some clinical
deterioration changes in physiological signals could be often
present 8-24 hours before a severe life-threatening event such
as an unplanned intensive care unit admission or sudden cardiac
death [8,9]. In these scenarios, signal quality is essential to
acquire the valuable information from the time-series
physiological signals which are very sensitive to noise. Signal
quality assessment (SQA) facilitates reducing the high false
alarm rate caused by signal quality [10] and can be applied to
automatically screen the “real-world” data for further research.
However, SQA of wearable physiological signals has not been
well investigated. Such inadequate studies on signal quality
reliability limit the further clinical deployment of these devices
in the medical sector [11]. Therefore, it is important to develop
a feasible method to evaluate the signal quality from wearable
physiological monitoring systems and SQA is one of the basics
of mHealth research and apps.

Related Work
It is widely recognized that the electrocardiogram (ECG) and
respiratory signals are crucial for both patient monitoring and
health status identification, and thus are being extensively
investigated. Various solutions have been proposed to
accomplish ECG SQA [12,13]. Some early studies, such as
those by Langley et al [14] and Johannesen [15], considered the
poor quality of ECG signals when their waveform features
exceed the preset thresholds [16]. Several signal quality indices
(SQIs) such as kSQI (the kurtosis of the distribution), sSQI (the
skewness of the distribution), and pSQI (the relative power in
the QRS complex) were introduced [17-19], which use the
features from the time domain and the frequency domain of the
ECG signals to assess the quality [20]. Another approach to
ECG SQA is based on template matching. Researchers usually
compare the similarity between the signals and a template that
is fixed or derived from historical data [21]. In recent years,
leveraging the machine learning technology in the medical
domain, many researchers used the time–frequency domain

features and SQIs to build machine learning models to achieve
ECG SQA [16,21-23]. For example, Zhao et al [23] provided
an algorithm based on convolutional neural networks, which
aimed at identifying noisy segments from wearable ECG
recordings. Zhang et al [16] compared the performance of
random forest (RF), support vector machine (SVM), and their
variants for ECG SQA with nonlinear features. For respiratory
signals, Charlton et al [24] developed an SQI for the impedance
pneumography respiratory signal by using the breath duration
variations and by examining whether the peaks and troughs are
clear and similarity of breath morphologies. However, research
on respiratory SQA remains in its infancy. Few studies have
investigated this topic so far to our knowledge.

Challenges
Owing to the rapid development of wearable devices, there is
an explosion of the volume of data being acquired and available
for research studies. However, the importance of the SQA
process has been underestimated. The limitations of previous
studies and the challenges we are currently facing are
summarized as follows: For ECG SQA, first, signal quality is
often judged subjectively, which lacks objective quantitative
criteria, and the standard of signal quality was relatively fuzzy
in previous studies [25,26]. Second, most of the SQAs were
conducted under well-designed laboratory conditions by using
simulated signals [27], or assessed the signals from bedside
monitors. Thus, signals are highly different from those measured
by wearable devices in daily lives because the noise in the
laboratory was relatively single and controllable, or the signal
quality was good for most of the time. Third, although most of
the methods have good performances on ECG SQA, the
dominant methods are still supervised machine learning models
[16]. There is a concern that these models are at a high risk of
overfitting, leading to unsatisfying model generalization.
Moreover, when using supervised models, it is quite challenging
to prepare tons of labeled data and even impossible for each
research group to use the fixed open-source data sets, such as
the MIT-BIH Arrhythmia Database (MITDB), to build models,
which were not built for SQAs. In addition, hardware designs
of wearable devices are diverse, resulting in aggravating
incomplete generalization of data and poor migration
performance of models. One possible solution to this problem
is to build dedicated models using specific wearable devices
and the data they collected. For respiratory SQAs, the challenge
lies in the various respiratory patterns. Compared with ECG
signals, respiratory signals have more diverse forms, broader
spectral distribution, and different noise sources.
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Study Objectives
To address the above problems, we pioneered the idea that the
SQA process can be seen as an anomaly detection. The basic
hypothesis of our study was that the decline of the signal quality
can be quantified with the increase of the anomaly and can be
detected by the machine learning model. The application
scenarios we expected of the algorithm include reducing the
false alarms caused by poor signal quality and selecting the
high-quality signal segments for further research. The objectives
and main components of this paper are to:

• design an algorithm based on the unsupervised machine
learning model, isolation forest (IF), to classify the ECG
and respiration signal quality into 3 different grades: good,
acceptable, and unacceptable.

• quantitatively evaluate the performance of the algorithm
on a small amount of labeled data. Further validation of the
algorithm was implemented on several cases of data to
prove its feasibility.

• apply the SQA algorithm to real-world data to demonstrate
that the algorithm has the potential to reduce the false
alarms caused by poor signal quality.

Methods

The Wearable Device and Data Sources
The medical-grade wearable device we used was a
self-developed physiological signal monitoring system,

SensEcho (Figure 1) [28], which has received clearance from
the China Food and Drug Administration (CFDA) and has been
deployed in the general wards of the Hyperbaric Oxygen (HBO)
Department in Chinese PLA General Hospital (PLAGH) since
2018. The core wearable device of SensEcho is a vest, which
provides a single-lead ECG signal, chest and abdominal
respiratory signals via the respiratory inductive plethysmography
(RIP) technology, and triaxial acceleration signals. It also allows
for communication with other third-party wearable devices such
as oximeters and blood pressure monitors. Its battery supports
continuous monitoring for a minimum of 24 hours. For detailed
information about SensEcho and the monitoring system, please
refer to [29]. At the time of writing, SensEcho has collected
more than 1000 records from patients and healthy individuals.
Each record contains nearly 24-hour physiological signal
monitoring results; thus, a large pool of data is available for
research purposes. Data collection was carried out in a clinical
environment for patients and from daily lives for healthy
individuals without restriction of movement and activity. In this
study, we used the single-lead ECG signal and chest respiration
signal from the data pool to establish and evaluate the algorithm.
This study was approved by the ethics committee of PLAGH
(No. S2018-095-01).

Figure 1. Picture of SensEcho, including third-party oximeter and cuff blood pressure monitor.
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Signal Quality Classification

Overview
The definition of signal quality was indistinct in previous
studies, but some of the studies have proposed a few quantitative
criteria. Inspired by [26] and the results of our pre-experiment,
10- and 30-second segments of ECG and respiratory signals
were considered sufficient for our study. In early SQA studies,
5 quality groups (excellent, good, adequate, poor, and
unacceptable) [15], 3 quality groups (acceptable, indeterminate,
and unacceptable) [18,30,31], and 2 quality groups (acceptable
and unacceptable) [32-35] were investigated. Based on previous
studies, we defined 3 grades of signal quality for different
requirements: (1) good signal quality refers to that in which the
signal waves are clear, and signal of this grade can be analyzed
automatically in follow-up studies and have confidence high
enough for waveform feature analysis; (2) acceptable signal
quality refers to that in which the R peak in ECG signal and
peaks and troughs of respiratory signal can be accurately located
by the algorithm, and the signal of this grade can be used for
relative accurate heart rate and respiratory rate analysis. In
addition, this grade is often the most difficult to distinguish and
the signal availability depends on the specific apps where further
manual determination might be needed; (3) unacceptable signal
quality refers to that in which the waveform in the window is

chaotic, and this grade of signal should be dropped because of
the unreliable results obtained in signal analysis.

A brief description of characteristics of signal noise sources and
their patterns is summarized in the following subsections
[12,22,36,37].

Baseline Wander
ECG signals are affected by respiratory motion, body movement,
and poor electrode contact. Respiratory signals are more
sensitive to movement and breath pattern than ECG signals.
One final major expression in signals is different levels of
baseline wander.

High-Frequency Noise
For ECG signals, high-frequency noise usually includes power
line interference, myoelectricity interference, and movement
artifact. For respiratory signals measured by the RIP, the noise
often is from vibrations caused by movement, such as moving
or speaking.

Signal Loss
This is also a pervasive pattern in daily signal acquisition, which
usually appears as a straight line. Based on the noise source and
expression analysis, the quantitative evaluation criteria defined
by clinical and engineering experts in our study are listed in
Table 1.

Table 1. Quantitative signal quality assessment criteria.

Respiratory signalElectrocardiogramQuality grade

••• Regular waveform lasts for more than three-fourth of
the observation window.

ECG rhythm is clear; each QRS waveform can be dis-
tinguished with naked eyes.

Good

•• Maximal baseline wander amplitude is less than the
signal amplitude in the observation window.

No signal loss in the observation window.
• Maximal baseline wander amplitude is less than one-

third of signal amplitude in the observation window. • High-frequency noise can be easily filtered and does
not affect the judgment of the respiratory signal wave-
form.

• Pathological changes do not influence the signal quality
assessment; the recognized obvious pathological pat-
terns can be classified as good quality, such as ventric-
ular premature beats.

••• One-half to one-fourth of the signal is clear; respiratory
rhythm can be identified.

Low-intensity high-frequency noise; the R waves in
signal can be recognized accurately.

Acceptable

•• Time for signal loss or hold breath lasts less than one-
half of the observation window.

No more than 2 high-frequency impulse noises occur
in the observation window.

• •Less than 2-second signal loss in the observation win-
dow.

High-frequency noise has only a little impact on the
judgment of the overall waveform trend.

• The maximal baseline wander amplitude is below the
signal amplitude.

• Fewer than 2 cardiac cycles in which the QRS waves
cannot be recognized are allowed.

••• The pattern of respiratory waveform is difficult to rec-
ognize.

Full of noise.Unacceptable
• More than 2 R peaks in the observation window cannot

be distinguished. • Severe baseline wander.
• Excessive baseline wander.
• Signal loss lasts more than 2 seconds.
• Suspected pathological changes, but the cause is not

clear.

Isolation Forest
IF is an unsupervised anomaly detection model that has been
applied to many fields such as streaming data processing and

mineral mapping [38,39]. IF grows an ensemble of binary trees
to estimate the degree of being an anomaly of an instance. As
anomalies are more susceptible to isolation, they have a short
path length [38,40]. Furthermore, an anomaly score can be
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obtained by measuring/estimating the average path height of
the ensemble of binary trees (in [40], the authors named them
iTree). The IF model is based on 2 fundamental assumptions
and premises. The first one is that the anomalies should be “few
and different.” If a pattern occurs frequently in the training set,
it will be more likely to be perceived as normality, although it
is indeed an anomaly manually determined. The second one is
that the training set should conclude as many normal patterns
of the signals as possible. It is necessary to guarantee that the
training set has a large enough variety, especially for normal
signals; otherwise the model will be more likely to classify a
brand-new pattern as an anomaly.

Based on the above theory, the general framework of the SQA
algorithm is shown in Figure 2. We built models for ECG and
respiratory SQA, respectively, and both models were trained
and evaluated independently. The preprocess included filtering,
removing the outliers, removing the baseline, and normalization.
We then selected 8 and 18 features from the time and frequency
domains of the ECG and respiratory signals, respectively.

Skewness, kurtosis, and distances of adjacent waveforms
calculated using the dynamic time warping method [41] were
the key features we used, which also have been widely adopted
as the key variables to construct the SQIs [17,18,42,43]. The
skewness and kurtosis are defined as Equations (1) and (2).
Other features we used in this study were the features from
amplitude of the signal in the time–frequency domain, power
spectrum distribution, and power spectral density.

(1)

(2)

where N is the sample points of the signal, is the mean value,
and σ is the SD.

Figure 2. General framework of the signal quality assessment algorithm for the electrocardiogram and respiratory signal.

Experiment Design

Overview
The experimental process involved 4 key steps. The model
training and validation were conducted on 4 nonoverlapping
data sets extracted from the sizable volume data pool and
possessed different functions: (1) training set, which was used
to train the IF model; (2) validation set, which was used to find
the thresholds that map the anomaly scores obtained by the
model to the triclassification SQA results; (3) test set, which
was used to quantitatively measure the generalization ability of
the model; and (4) case set, which was used to qualitatively
evaluate the model’s performance by feeding a whole case of
data to it. Some details of these 4 data sets are specified in the
following sections.

Training Set
We selected a set of 24-hour monitoring records which met the
following inclusion criteria: (1) signal acquisition was stable
by manual determination; (2) no signal loss for extended periods
(over 10 minutes) during monitoring; and (3) no persistent atrial
fibrillation during monitoring. Based on these, 30 records were
included and we selected 3-10 of them randomly to construct
the training set with their whole data. We repeated the selection
process 20 times for each epoch, that is, we randomly selected
3 records to construct the training set 20 times to find the best
performance of the model.

Validation Set
We used the data from 16 patients and 8 healthy individuals to
construct this data set, expecting that the pathological changes
were more complex and the proportion of anomaly was
relatively high. We selected 10,000 windows of signals from
the records and then removed half of them that were obviously
of high quality. The data set was labeled independently by 3
pretrained graduate students of biomedical engineering
according to the criteria in the above section. To guarantee label
accuracy, we used the agreed result to define the final label, and
dropped the windows of signals that had conflicting label results.
Moreover, we asked clinical specialists to mark whether the
ECG signals in the data set were pathological. If pathological
manifestations of the signal, such as arrhythmia or ST-segment
elevation, were confirmed, the number of this signal segment
was recorded additionally. After the manual annotation of the
data set is completed, the anomaly scores of the labeled data
can be obtained by feeding the signals to the trained SQA model.
Then, thresholds T1 and T2 were set to map the anomaly scores
to the signal quality grades. We adjusted the values of T1 and
T2, respectively, to find the best performance thresholds, which
were fixed and used in the next step.

Test Set
Test set data came from 8 patients and 9 healthy individuals,
because we expected the test set to be somewhat different from
the validation set and to be closer to practical use. We extracted
1 window of signals every 6 minutes and this data set initially
comprised 5500 windows of signals, which were labeled in the
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same way as the validation set. We used the T1 and T2 values
determined by the validation set to obtain the classification
results of the model, and then quantitatively evaluated the

generalization ability of the model. The basic information about
the individuals involved in the validation and test sets is
summarized in Table 2.

Table 2. Basic information about the individuals utilized in the validation and test sets.

Test setValidation setCharacteristics

Healthy individuals (n=9)Patients (n=8)Healthy individuals (n=8)Patients (n=16)

Demography

5 (56)5 (63)8 (100)9 (56)Male, n (%)

32 (27-41)69 (65-73)27 (25-33)56 (52-60)Age (year), mean (Q1-Q3)

171 (157-175)165 (156-174)174 (171-176)168 (160-170)Height (cm), mean (Q1-Q3)

73 (58-74)70 (64-78)68 (59-74)68 (55-76)Weight (kg), mean (Q1-Q3)

Comorbidity, n (%)

—5 (63)—12 (75)Coronary heart disease

—4 (50)—9 (56)Hyperlipemia

—7 (88)—9 (56)Hypertension

—4 (50)—8 (50)Diabetes

—2 (25)—4 (25)Pulmonary nodule

———2 (13)Sleep apnea syndrome

Case Set
We fed several cases of data to the model. Different grades of
signal quality segments were marked in different colors. We
looked at several observation windows in detail to determine
whether the model classification results were correct. Note that
we are particularly concerned about the pathological changes
in the cases, because we expected pure pathological changes to
be not misclassified as poor signal quality.

Data Set Descriptions
After data labeling, we obtained the final validation and test
sets. The validation set consisted of 3460 and 2086 ECG and
respiratory labels (all agreed), respectively. Of the 3460 ECG
labels, 3022 (87.34%) were good, 189 (5.46%) were acceptable,
and 249 (7.20%) unacceptable. Of the 2086 respiratory labels,

1308 (62.70%) were good, 511 (24.50%) acceptable, and 267
(12.80%) unacceptable. The test set consisted of 4686 and 3341
ECG and respiratory labels, respectively. Of the 4686 ECG
labels, 3767 (80.39%) were good, 284 (6.06%) acceptable, and
635 (13.55%) unacceptable, compared with 2255 (67.49%),
587 (17.57%), and 499 (14.94%), respectively, for respiratory
labels. Some typical examples of the labeled ECG and
respiratory signals are shown in Figures 3 and 4.

Meanwhile, for the pathological ECG labels, a total of 661/3460
(19.10%) windows of ECG signal in the validation set were
marked. Of these, 648 (98.0%) were labeled as having good
quality and the rest (13/661, 1.9%) as acceptable quality. In the
test set, 634/4686 (13.53%) windows of signal were
pathological; of these, 618 (97.5%) were of good quality and
the rest (16/634, 2.5%) were of acceptable quality.
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Figure 3. Typical examples of the labeled electrocardiogram signals. (a) & (b) are the normal, good-quality signals; (c) is suspected of arrhythmia
while (d) is an expression of ventricular premature beats (VPBs); (e) – (h) show examples of baseline wander, power line interference and impulse
noise; (i) – (k) show examples of severe noise and signal loss; (l) is suspected of VPBs but the signal is unclear.

Figure 4. Typical examples of the labeled respiratory signals. (a) – (d) show clear and regular respiratory waves; signals in (e) – (h) do not have enough
regularity, apnea occupies some small segments in the observation windows; (i) – (l) show severe noise and signal loss in the observation windows.
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Performance Evaluation
The programming language we used was Python (version 3.6.5)
and the major library in this study is scikit-learn (version 0.23.1).
The proposed algorithm contained 2000 trees and had 5%
anomaly proportion as parameters. We first evaluated the
algorithm’s performance according to its accuracy score, which
is defined as the number of correctly classified samples divided
by the total number of samples. Some additional evaluation
indicators included mean precision rate, recall rate, and F1 score
(marco-F1). To further evaluate the performance of the
algorithm, we compared the algorithm with the self-organizing
maps (SOMs) [44] and 4 classical supervised machine learning
models, namely, logistic regression (LR), SVM, RF, and extreme
gradient boosting (XGB). It should be noted that the SOM is
an unsupervised model based on artificial neural network and
has been applied in several health care–related signal processing
fields such as photoplethysmogram signal classification [45,46]
and health situation monitoring [47,48]. The SOM library used
in this study was MiniSom (version 2.2.7) and the SOM model
was trained using 10,000 interactions and a 10 × 10 grid on the
training set with the learning rate of 0.05. For RF, we used 1000
trees, whereas for XGB, we chose the following
hyperparameters: “binary: softmax” as the logistic function and
“approx” as the tree method. The other parameters of the models
were default. Features were normalized before being fed to LR,
SVM, and SOM.

According to our evaluation strategy, for unsupervised models,
we trained the models on the training set and found best
thresholds on the validation set. For supervised models, we
trained the models on the whole validation set. We then
compared the performance of both supervised and unsupervised
models on the test set. The accuracy, precision, recall, and F1
scores are calculated.

We also investigated the performance of the proposed model
with fewer labels in comparison with that of the reference model.
We randomly selected 200, 600, and 1000 labels in the
validation set to find the thresholds for the unsupervised models
and train the supervised models, and then test these on the whole
test set. Each random selection is repeated 30 times, and then
the mean and SD of the accuracy of the models are computed.

Algorithm Application
We applied the designed SQA algorithm to 1144 cases of data
collected in the HBO Department of PLAGH; each of the cases
had a dynamic ECG record of nearly 24 hours. Each record of
data was read by a clinical expert to give an overall signal
quality evaluation result. According to the results, the data were
divided into 3 groups, representing different grades of quality
of the whole signals. We also scanned the data with an
arrhythmia detection algorithm, which is commonly used in

automatic dynamic ECG analysis, and the real-time alarm
function of SensEcho. The core technology of the arrhythmia
detection algorithm is traditional signal processing methods,
including filtering and wavelet decomposition. We learned about
the type, onset, and duration of each arrhythmia alarm detected
by the arrhythmia detection algorithm. For the purpose of this
study, a false alarm was defined as the onset of 1 arrhythmia
alarm marked with poor signal quality. The proportion of
different quality of signals, the number of various arrhythmia
alarms, and the percentage of false alarms in each group were
calculated.

Results

Model Performance
For the training set that is important for the IF model, we
randomly selected monitoring records as described in the
“Experiment Design” section and built the training sets to train
the model to guarantee the variety and find the best performance
of the model. Quantitative evaluation results of the model
performance on the validation and test sets are shown in Figure
5. For ECG signals, the model performed at the same level on
both validation and test sets, but for respiratory signals, the
model performed slightly better on the test set than on the
validation set. This is reasonable because the two data sets were
constructed differently; thus, the test set was easier for SQA
classification. Models that performed the best on the test set
were selected for further study. The scores gained from the best
model for ECG SQA and the best classification thresholds are
shown in Figure 6, in which the accuracy reached 94.97% and
95.58% on the validation and test sets, respectively. The
confusion matrixes are shown in Figure 7. Similarly, the scores
for respiratory SQA and the thresholds are shown in Figure 8.
This model achieved 81.06% and 86.20% accuracy on the
validation and test sets, respectively. Figure 9 shows the
confusion matrix of the results.

The results regarding the classification efficiency of the
pathological ECG signal are summarized as follows: in the
validation set, 100% (648/648) of good-grade and 23% (3/13)
of acceptable-grade pathological ECG signals were classified
correctly; however, 77% (10/13) of acceptable-grade signals
were misclassified as good quality. In the test set, 99.8%
(617/618) of good-grade and 31% (5/16) of acceptable-grade
pathological signals were classified correctly; however, 1 sample
of good-quality signal was misclassified as acceptable grade
and 69% (11/16) of acceptable-grade signals were misclassified
as good quality. The above results showed that the model also
had a good classification effect on pathological signals: In this
study, the vast majority of pathological signals were correctly
classified and the misclassification will not increase
false-negative decisions.
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Figure 5. Quantitative evaluation of the model performance on the validation set and test set. ECG: electrocardiogram.

Figure 6. Electrocardiogram (ECG) signal anomaly scores on the validation set and test set, and the best performance thresholds.

Figure 7. The electrocardiogram confusion matrixes of the results. 0: Good; 1: Acceptable; 2: Unacceptable.
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Figure 8. Respiratory signal anomaly scores on the validation set and test set, and the best performance thresholds.

Figure 9. The respiratory confusion matrixes of the results. 0: Good; 1: Acceptable; 2: Unacceptable.

Performance Evaluation Results
The classification results of the desired algorithm and reference
models of the test set are summarized in Tables 3 and 4. From
Table 3, it can be found that, for supervised models, the LR
model performed the worst for both ECG and respiratory signals.
Meanwhile, RF and XGB performed slightly better than the
proposed algorithm. Understandably, supervised models
generally have better performance than unsupervised models.
For unsupervised models, SOM performed worse than the
proposed model. For ECG SQA, the SOM achieved 0.91
accuracy and 0.55 F1 score on the validation set, indicating an
insufficient generalization ability of the thresholds in this

scenario for the model. We speculated that the complex
pathological changes and noise in the data set made it difficult
for SOM to perform dimensionality reduction and correctly
map the model outputs to the SQA results. From Table 4, it can
be found that the proposed model had a better performance
when the number of labels is small. When the number of labels
is greater than 1000, the performance of the supervised models
was better than that of the proposed model. In other words,
when we do not have enough labeled data, the unsupervised
model is superior. However, we still recommend preparing
slightly more labels as possible to guarantee the stability and
generalization ability of the thresholds.
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Table 3. Model performance on the test set.

Respiratory signalElectrocardiogramModel

F1RecallPrecisionAccuracyF1RecallPrecisionAccuracy

Supervised models

0.590.550.720.790.500.610.790.79Logistic regression

0.600.570.720.800.790.770.930.96Support vector machine

0.870.850.880.920.870.840.950.97Random forest

0.850.850.860.910.890.860.950.97Extreme gradient boosting

Unsupervised models

0.510.510.650.770.400.390.570.82Self-organizing maps

0.780.780.790.860.800.770.900.96Isolation forest, proposed unsupervised
model

Table 4. The accuracy on the test set of models with fewer labeled data.

Isolation forest, proposed
unsupervised model

Self-organizing
maps

Extreme gradient
boostingRandom forest

Support vector
machineLogistic regressionNumber of labels

ECGa, mean (SD)

0.89 (0.06)0.80 (0.01)0.84 (0.06)0.86 (0.06)0.85 (0.05)0.80 (0.00)200

0.90 (0.06)0.81 (0.01)0.88 (0.05)0.89 (0.06)0.86 (0.05)0.80 (0.00)600

0.93 (0.02)0.81 (0.01)0.92 (0.04)0.93 (0.04)0.90 (0.04)0.81 (0.00)1000

Respiratory signal, mean (SD)

0.82 (0.04)0.70 (0.02)0.79 (0.03)0.80 (0.04)0.71 (0.06)0.71 (0.05)200

0.84 (0.02)0.73 (0.03)0.84 (0.02)0.85 (0.02)0.75 (0.06)0.75 (0.04)600

0.85 (0.01)0.72 (0.07)0.86 (0.01)0.87 (0.01)0.76 (0.06)0.77 (0.04)1000

aECG: electrocardiogram.

Case Validation
To further evaluate the performance of the algorithm on SQA,
the algorithm was tested on several cases. In this paper, ECG
and respiratory signals of a patient are illustrated. The patient
is a 65-year-old male, standing 170 cm tall, and weighing 68
kg when admitted, and had been monitored by the SensEcho in
the general ward of the HBO Department. He was diagnosed
with coronary heart disease, posterior mitral valve prolapse,
hypertension risk level 2, hyperuricemia, and fatty liver disease.

As shown in Figures 10 and 11, the different signal quality
grades classified by the algorithm were marked in 3 colors: the
green segments stand for the good quality, the yellow segments
for the acceptable quality, and the red segments for the
unacceptable quality. Furthermore, in these figures, 4 windows
of the monitoring signals were selected to elaborate and illustrate
the detailed signals and the classification results, respectively.
It can be seen that the monitoring lasted for up to 24 hours, but
there was not much high-quality data available in this case.

Signal loss was the most common unacceptable signal quality
expression and the segments were all marked in red. ECG and
respiratory signals of the last few hours were full of noise, so
it was suspected that the patient might have removed the device
ahead of time.

We found that the pathological changes in ECG did not
influence the SQA process directly (Figure 10). Most of the
observation windows with ventricular premature beats (VPBs)
were also marked in green and yellow correctly, that is, in this
case the pathological changes were not filtered which met our
expectations. In Figure 11, acceptable and unacceptable signal
quality segments are more numerous and dispersed for
respiratory signals compared with ECG signals. The
good-quality segments were mainly concentrated during the
patient’s bed rest period, as breath was more controllable and
vulnerable to noise during the day. In conclusion, the algorithm
demonstrated an excellent performance in this case and it can
be used to automatically screen out the good-quality segments
for further research.
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Figure 10. A signal quality assessment case example of the whole monitoring 24-hour electrocardiogram signal (Green: Good segments; Yellow:
Acceptable segments; Red: Unacceptable segments).

Figure 11. A signal quality assessment case example of the whole monitoring 24-hour respiratory signal (Green: Good segments; Yellow: Acceptable
segments; Red: Unacceptable segments).

Algorithm Application Results
The algorithm application results are summarized in Table 5.
The types of arrhythmia alarm we were concerned about were
bradycardia, tachycardia, atrial premature beat (APB), VPB,
atrial bigeminy, and atrial trigeminy. The “count” column
represents the number of cases with a specific arrhythmia alarm
detected; for example, bradycardia was detected in 525 cases
out of the total 1144 cases. From Table 5, it can be seen that
the age, weight, and height of the 3 groups of patients were
basically on the same level, whereas the proportion of females
increased in the medium and worst groups, indicating that the
quality of ECG signal measured from female users might be
poor due to hardware. The proportion of different signal quality

grades in these cases means that the best group of patients has
the highest percentage of good quality and the lowest percentage
of unacceptable quality, whereas the worst group of patients
has the lowest percentage of good quality and the highest
percentage of unacceptable quality. Among these cases, the
median [Q1-Q3] for good, acceptable, and unacceptable quality
proportion was 90.0% [81.4%-95.9%], 4.8% [2.1%-8.0%], 4.0%
[1.1%-9.3%], respectively. These results have 2 implications:
First, the desired SQA algorithm is consistent with the common
knowledge of people, which can be used to analyze the quality
of signals measured by SensEcho automatically and
quantitatively. Second, the vast majority of ECG signals
measured by SensEcho are usable, which demonstrates that the
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wearable device can effectively monitor patients’ ECG signal
for most of the time.

For the arrhythmia alarm results, ideally, the number of various
arrhythmia alarms within each group should be similar.
However, it was observed that the number of APBs and VPBs
increased significantly (P=.02 and <.001, respectively),
suggesting that the signal quality did affect the accuracy of the
arrhythmia detection algorithm and that some of the alarms
might have been caused by poor signal quality. For the defined
false alarm results, the APBs and VPBs increased significantly
(P<.001 for both) in the medium and worst groups, and the false

alarm of VPBs even accounted for 60.4% [23.9%-87.3%] in
the worst group, compared with 18.2% [0.0%-61.5%] for the
VPBs among all cases. In addition, it was found that tachycardia
had a very high false alarm proportion, probably due to the
movement of patients with poor signal quality. We considered
that the aforementioned types of false alarms can be detected
and effectively reduced by the desired SQA algorithm.
Meanwhile, it was also found that for some types of arrhythmia
alarms such as those for atrial bigeminy and atrial trigeminy,
the arrhythmia detection algorithm was accurate and rarely
affected by the signal quality.

Table 5. Results of the SQA algorithm and the arrhythmia detection algorithm applied to the data collected from the Hyperbaric Oxygen Department.

CountTotal (n=1144)Grouped by manual evaluationCharacteristic

Worst (n=108)Medium (n=365)Best (n=671)

Demography

1144429 (37.5)45 (41.7)145 (39.7)239 (35.6)Female, n (%)

114460.1 (53.5-67.1)60.6 (53.5-66.7)61.5 (54.0-67.9)59.3 (53.0-66.8)Age (year), median (Q1-Q3)

114470.3 (63.0-80.0)70.0 (63.0-81.0)71.0 (65.0-80.0)70.0 (62.0-78.5)Weight (kg), median (Q1-Q3)

1142168.0 (160.0-173.0)167.5 (160.0-174.0)168.0 (160.0-173.0)168.0 (160.0-173.0)Height (cm), median (Q1-Q3)

Proportion of different signal quality grades detected by the algorithm (%), median (Q1-Q3)

114190.0 (81.4-95.9)75.5 (61.9-86.2)85.9 (78.6-92.0)93.2 (87.0-97.3)Good

11414.8 (2.1-8.0)5.8 (4.3-9.0)5.8 (3.2-9.4)3.8 (1.7-7.0)Acceptable

11414.0 (1.1-9.3)15.2 (6.6-29.2)7.0 (2.9-12.7)2.1 (0.6-5.4)Unacceptable

Arrhythmia alarm count, median (Q1-Q3)

5254.0 (2.0-6.0)2.0 (1.0-4.5)3.0 (2.0-6.0)4.0 (2.0-7.0)Bradycardia

2241.0 (1.0-2.0)1.0 (1.0-2.0)1.0 (1.0-2.0)1.0 (1.0-2.0)Tachycardia

110313.0 (5.0-39.0)17.0 (4.0-46.0)15.0 (6.0-42.0)11.0 (4.0-34.5)APBa

9879.0 (3.0-39.0)25.0 (5.0-76.0)14.0 (4.0-54.0)6.0 (2.0-25.2)VPBb

794.0 (2.0-10.0)2.5 (2.0-6.0)5.0 (2.0-9.0)4.0 (1.0-13.0)Atrial bigeminy

884.5 (1.8-11.0)6.0 (2.2-11.2)5.0 (1.0-10.8)4.0 (2.0-10.5)Atrial trigeminy

Defined false alarm proportion (%), median (Q1-Q3)

5250.0 (0.0-0.0)0.0 (0.0-0.0)0.0 (0.0-0.0)0.0 (0.0-0.0)Bradycardia

224100.0 (0.0-100.0)100.0 (50.0-100.0)100.0 (0.0-100.0)50.0 (0.0-100.0)Tachycardia

11030.4 (0.0-19.1)14.1 (0.0-70.6)5.6 (0.0-28.6)0.0 (0.0-9.9)APB

98718.2 (0.0-61.5)60.4 (23.9-87.3)35.6 (1.9-71.7)6.2 (0.0-50.0)VPB

790.0 (0.0-0.0)0.0 (0.0-0.0)0.0 (0.0-0.0)0.0 (0.0-0.0)Atrial bigeminy

880.0 (0.0-0.0)0.0 (0.0-0.0)0.0 (0.0-0.0)0.0 (0.0-0.0)Atrial trigeminy

aAPB: atrial premature beat.
bVPB: ventricular premature beat.

Discussion

Contributions and Principal Findings
Our highlights and key contributions are summarized as follows:

• We achieve the ECG and respiratory SQA by using an
unsupervised model, IF, which has not been applied in SQA
before. Furthermore, we attempted to verify the idea that

the SQA process can be viewed as an anomaly detection.
In this study, the proposed algorithm was superior than
SOM and achieved moderate performance when compared
with the supervised models.

• We applied the SQA algorithm to a large data set with 1144
records of ECG signal. The results demonstrate that the
arrhythmia alarm accuracy could be influenced by the signal
quality, and the SQA algorithm has the potential to reduce
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some specific types of arrhythmia false alarms such as
tachycardia, APB, and VBP caused by poor signal quality.

• To our knowledge, this is one of the earliest studies that
focuses on the quality of respiratory signals measured via
the RIP technology. It provides a method to automatically
select the high-quality segments of respiratory signal for
further studies.

One featured point in our study is that 3 data sets that have
different functions were used to construct and quantitatively
validate the algorithm. In the workflow of our study, the training
set was a large volume data set in which ideally all the patterns
of the signal could be enumerated, while the validation set and
the test set were unseen by the model when we trained it. We
also conducted a very small experiment, where we directly
trained the models on the validation set, found the best
performance thresholds, and then evaluated the performance of
the models on the test set. The results showed that for the ECG
signal, the model achieved 0.92 accuracy and 0.72 F1 score,
whereas for the respiratory signal, the model achieved 0.72
accuracy and 0.68 F1 score, which are lower than the current
performance in the “Results” section. These results demonstrate
that the diversity of patterns in the training set ensures the
generalization performance of the unsupervised model. In fact,
in an era of big data, it is easy to obtain a training set with a
large sample size, yet lacking labels. The workflow we proposed
in this study provides a feasible way to take advantage of the
large sample size that can be applied in follow-up studies.

What should be emphasized is that we included the respiratory
signal measured via RIP in this study for 2 reasons. First, the
respiratory signal is an important physiological signal, which
contains abundant personalized information, indicating the
health status and disease deterioration of a person. More
importantly, the quality of respiratory signal measured via RIP
is not well investigated compared with ECG. In our study, we
would like to point out that a signal with relatively little research
and no fixed waveform could also be assessed by this method,
which has the potential to be extended to other SQA scenarios
such as impedance pneumography respiratory signal, dynamic
blood pressure, and photoplethysmogram. That is, our study
provides a practical workflow for other time-series physiological
signal research groups to develop their own applicative SQA
algorithms.

Limitations
There are also some limitations to our work. First, the model
we used was an unsupervised machine learning model, which
lacks enough interpretability and the performance is largely
determined by the quality of the training set. We attempted
several construction methods of the training set, yet it was hard
to guarantee that the models achieved the best performance.
Second, the classification results of the models for the medium
grade of signal quality were not good. The sensitivities of the
algorithm for this grade are only 0.34 for ECG and 0.57 for
respiratory signals, respectively, which seriously lower the
overall F1 scores of the models. This is because the medium
level of signal quality is always the hardest to classify even
manually. We tried some approaches such as data augmentation
and constructing an artificial training set. However, the results

showed no significant improvement. It is worth mentioning that
the SOM showed moderate performance in the unsupervised
methods, perhaps because, in our study, the framework,
especially the training and generalization methods, was not
suitable for this model. Further to this point, SOM and the
rapidly evolving deep learning methods are worth being
investigated after further accumulation of data. Third, as the
validation of the algorithm on pathological signals was
insufficient, although the results in this study were good, we
still consider that the algorithm has the risk of misclassifying
pathological changes as abnormal as a result of noise. We thus
need to further validate the algorithm, which demands more
pathological data accumulation and long-term feedback of actual
use from clinicians.

Future Work
Our future research includes the following. First, the algorithm
calls for more comprehensive experimental validation.
Accordingly, we should further verify the performance of the
model in the presence of pathological changes and quantify how
much the model can reduce the false alarm rate. It requires
long-term usage and more data collection, especially from
patients with specific diseases such as arrhythmia and chronic
obstructive pulmonary disease. Second, we will test the time
usage and real-time performance of the algorithm. To our
knowledge, the IF model operation does not take too much time
when the thresholds are determined, yet the feature extraction
process is more time-consuming. As we preliminarily tested,
the whole SQA process for ECG signal takes 0.3-0.5 seconds
on server for every observation window (10 seconds). For
respiratory signal, it takes less than 0.1 seconds for every
observation window (30 seconds). We will integrate the
algorithm into the server to achieve the real-time SQA. Third,
there are many mHealth and uHealth apps nowadays, but there
is a lack of assessment of the data measured under nonlaboratory
conditions and their usability. Based on the algorithm we
developed, we will further evaluate the value of the wearable
device, SensEcho, in daily life situations from a signal quality
perspective, find the cause of the decrease in signal quality, and
improve the both hardware and software of the wearable device.
We believe that this will further promote the application of
mHealth and uHealth.

Conclusions
In this study, the results verified our hypothesis that the SQA
problem can be seen as an anomaly detection. We built a model
based on the unsupervised machine learning model, IF, to avoid
heavy data annotation work and to realize ECG and respiratory
SQA. What distinguishes us from other studies that used the IF
model is that we used a small amount of labeled data to enable
the mapping of model scores to human cognitive classification
results. Our validation results indicate that the proposed
algorithm is superior than SOM and shows a moderate
performance compared with supervised models. Meanwhile,
the proposed algorithm has the advantages of flexibility, easy
adjustment, and better performance with few labeled data. In
addition, the pathological changes in our case are correctly
classified, demonstrating the model’s good application effect.
The algorithm application results on 1144 cases from the clinic
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suggest that the proposed algorithm has the potential to reduce
some types of arrhythmia false alarms such as tachycardia, APB,
and VBP.

Middle-aged and elderly people, such as patients in the HBO
Department in this study, often suffer from complex chronic
diseases and are at relatively high risk even in hospitals.

Therefore, the adoption of wearable devices in clinics and the
advancement of data analysis could provide easily accessible
health care that can greatly benefit this population. We consider
that the proposed algorithm can advance the clinical apps of
wearable devices and facilitate follow-up mHealth and uHealth
studies of various time-series physiological signals.
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