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Abstract

Background: There is a growing need for the integration of patient-generated health data (PGHD) into research and clinical
care to enable personalized, preventive, and interactive care, but technical and organizational challenges, such as the lack of
standards and easy-to-use tools, preclude the effective use of PGHD generated from consumer devices, such as smartphones and
wearables.

Objective: This study outlines how we used mobile apps and semantic web standards such as HTTP 2.0, Representational State
Transfer, JSON (JavaScript Object Notation), JSON Schema, Transport Layer Security (version 1.3), Advanced Encryption
Standard-256, OpenAPI, HTML5, and Vega, in conjunction with patient and provider feedback to completely update a previous
version of mindLAMP.

Methods: The Learn, Assess, Manage, and Prevent (LAMP) platform addresses the abovementioned challenges in enhancing
clinical insight by supporting research, data analysis, and implementation efforts around PGHD as an open-source solution with
freely accessible and shared code.

Results: With a simplified programming interface and novel data representation that captures additional metadata, the LAMP
platform enables interoperability with existing Fast Healthcare Interoperability Resources–based health care systems as well as
consumer wearables and services such as Apple HealthKit and Google Fit. The companion Cortex data analysis and machine
learning toolkit offer robust support for artificial intelligence, behavioral feature extraction, interactive visualizations, and
high-performance data processing through parallelization and vectorization techniques.

Conclusions: The LAMP platform incorporates feedback from patients and clinicians alongside a standards-based approach to
address these needs and functions across a wide range of use cases through its customizable and flexible components. These
range from simple survey-based research to international consortiums capturing multimodal data to simple delivery of mindfulness
exercises through personalized, just-in-time adaptive interventions.

(JMIR Mhealth Uhealth 2022;10(1):e30557) doi: 10.2196/30557
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Introduction

Background
The medical field today is transitioning toward integrating
patient-generated health data (PGHD) into clinical care to
increase shared decision-making, coordination of care, patient

safety, and clinical outcomes [1]. PGHD are central to this
mission and are defined as data recorded or created by the
patient or caregivers used to address health concerns. Examples
include a longitudinal view of symptoms of patient status
between clinic visits captured via an app or information related
to daily adherence to treatment plans [1]. This may include a
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daily step count captured from a smartphone, medication surveys
administered on the smartphone, and sleep quality data measured
via a wearable sensor. Given the ability of smartphones and
wearables to collect a myriad of continuous multimodal data
relevant to care, such as heart rate, sleep, steps, and more, tools
and systems to harness and use this vast amount of automatically
generated PGHD are a health care priority. One challenge that
remains toward this goal is the lack of technical infrastructure
and organizational capability to handle the intake of accurate
and valid PGHD from patient-owned consumer devices. Such
standards and tools supporting the effective and compatible
integration of PGHD are needed to enhance clinical insight and
support research and data analysis before PGHD can actually
impact routine care.

Digital Phenotyping+
The need for apps that can not only capture but also use and
integrate PGHD is clear. The use of commercially available
wearable technology for the acquisition of PGHD has seen a
recent uptick owing to the effects of the COVID-19 pandemic
and growing demand for telehealth services [2,3]. Today, over
80% of Americans own a smartphone device [4] and over 20%
own a wearable device [5], reinforcing the potential of PGHD
to improve clinical outcomes. For example, the Apple Watch
today retails at US $350 with onboard nonmedical grade
electrocardiography and oxygen saturation sensors that
continuously measure and record data. Modern smartphones
are also equipped with numerous sensors that generate a high
volume of potentially clinically significant PGHD that could
enable a better real-time understanding of cognition, mobility,
sociability, and more through techniques, such as digital
phenotyping and ecologic momentary assessment.

Digital phenotyping [6] is the construction of an individual-level
phenotype using data collected from smartphones or wearable
devices actively via user interaction (eg, surveys), or passively
without user input (eg, sensors, such as an accelerometer).
Although there are many digital phenotyping tools and systems
used in health care and research contexts, a recent review
identified nearly 50 of them [7], and few offer an integrated and
standardized approach to analyze and respond to clinically
actionable patient-generated data. Existing tools are primarily
closed systems or consist of only a single app with little
flexibility or customizability [7]. In a recent review, 85% of
existing solutions supported active and passive sensing but only
33% supported clinical assessment, 30% supported predictive
modeling of patient data, and 24% supported app-delivered
interventions [7]. Furthermore, only 35% of the existing
solutions showed a patient- or clinician-facing user interface
[7]. However, the combination of all these features is necessary
to meet the diverse needs of research and care delivery. A search
outside the research literature and instead, across mental health
smartphone apps in commercial marketplaces reported that only
1.1% supported sensors [8], suggesting that many research tools
do not translate into accessible tools for patient or clinician use.
Although diverse functionality and innovation continue to exist
across the entire app space, we have argued that there is a need
for multiple uses of the same app, instead of using multiple apps
in a fragmented manner, toward better supporting clinical
research, integration, and implementation [9].

Challenges in Integration
Creating PGHD tools that use sensor and digital phenotyping
tools in a more patient- and health system–centric manner is a
common goal, but it remains challenging to achieve. Despite
the prevalence of existing electronic medical record standards
and tools, a 2019 review on the integration of PGHD into
clinical practice, “integration [...] was extremely limited, and
decision support capabilities were for the most part basic” [10].
The most widely adopted medical record standards initiative
that can be used to link PGHD to medical records is Fast
Healthcare Interoperability Resources (FHIR), led by the Health
Level 7 organization [11], which is now adopted by many major
health care systems and industry partners, including Apple,
Google, Amazon, Microsoft, and others [12]. Its companion
projects SMART (Specific, Measurable, Achievable, Realistic,
and Timely) [13] and SMART Markers [14] build on FHIR and
enable integration of third-party modules into medical record
systems, including patient mobile devices and sensors.

However, the FHIR ecosystem alone does not address a number
of concerns specific to the integration of PGHD into clinical
systems. FHIR and the current data interoperability standard
(United States Core Data for Interoperability) [15] were not
developed for continuous high-velocity data, and its
implementation in the health care ecosystem today is primarily
read-only, although its data gathering and write-back ability
continues to evolve. For example, the FHIR core does not allow
for semantic equivalence of data that can be used to automate
data matching or harmonization. As a result, it is not possible
to work with both cognitive assessment scores and mobility or
sociability metrics using the same analysis pipeline. This
increases the effort required and time taken to work with PGHD,
as clinicians or researchers must first preprocess data of different
semantic types individually before being able to work with a
data set as a whole. Although R4 extensions, such as the
mCODE core cancer model [16] are becoming a new way to
expand FHIR’s supported vocabulary, they are still early in
evolution and adoption. Today, the inability to standardize
terminologies across interconnected systems, such as through
a data dictionary, impedes effective export and analysis of
different types of data from different data sources using the
FHIR ecosystem [17,18]. These challenges preclude the adoption
of FHIR as a PGHD-first standard for clinical and research use
cases.

Thus, there remains a need for a flexible, interoperable, and
extensible platform that enables the effective use of PGHD
through widely accepted standards for both clinical and research
needs. In this paper, we present a potential solution for the robust
and effective acquisition and integration of PGHD into research
and clinical care with tangible examples and open-source code.

Methods

Overview
To integrate PGHD into research and clinical care needs, our
team has designed and developed the Learn, Assess, Manage,
and Prevent (LAMP) platform that encompasses a robust set of
protocols, standards, tools, and apps. Our team initially
developed the mindLAMP smartphone app [19] as part of the
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initial version of the LAMP platform. In this paper, we review
a rearchitected and redeveloped platform comprising new
frontend, backend, and analysis components to support PGHD,
patient-centric care, and actionable digital phenotyping. This
new platform, distinct from its predecessor, includes features
such as customizable and schedulable activities, sensor data
collection and analysis, messaging support with the care team,
and more, available across modern web browsers and
smartphone operating systems. The design and development of
the platform was approached from both a patient- and
clinician-focused approach as well as a semantic
standards–based approach.

Patient- and Clinician-Led Design
The LAMP platform was designed and developed with
continuous feedback from patients with serious mental illnesses

and clinicians. Through a patient advisory panel, focus groups
[20-22], clinical use, and feedback from a global consortium of
users, mindLAMP has been co-designed iteratively with updates
reflecting expanding ideas for its role. User input informed the
adaptability, flexibility, and customizability of the LAMP
platform, which resulted in a new user interface compared with
the previous version, as shown in Figure 1. We established a
formal system to enable anyone to suggest improvements, report
bugs, and assess new features to ensure that all could partake
in the iterative design rounds. This process also influenced
aspects of the user experience, such as making mindLAMP
available in multiple languages (English, Spanish, and Hindi)
and designing to ensure easy addition of more. Key examples
of patient feedback and the design outcomes they influenced
are provided in Table 1.

Figure 1. (A) The home screen interface of the original (version 1 with red border) mindLAMP app; (B) the new and improved home screen interface
of the (version 2 with green border) mindLAMP app that incorporates multiple activities and schedules into a heads-up tab called the Feed; (C) the
Learn, Assess, Manage, and Prevent tabs group embedded activities together with helpful tooltips and icons, with new activity types (eg, tips, meditation);
(D) returning data and insight to users was considered a priority in the redesigned user interface and thus more advanced charting tools were integrated
into the Prevent tab, accessible to both patients and clinicians.
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Table 1. Selected examples of patient feedback driving significant changes in the user experience and overall architecture of the Learn, Assess, Manage,
and Prevent platform. Semantic (technical) standards–based approach.

OutcomeSample patient feedback

The Learn, Assess, Manage, and Prevent platform was re-
built around an open-source collaborative environment
supported by the consortium; all development and data
handling processes are disclosed in the privacy policy, and
significant backend changes were made to patient data eq-
uity and ownership.

“Apps like Facebook or Amazon are clear where I am lost in a sea of people or items and
that is generally accepted, but with apps in the health space, who is involved, which insti-
tution is involved, level of comfort with the individuals and what data is collected, all of
these factors are carefully calculated when I make a decision to join a study like this—an
establishment of trust is crucial. Apps that track people incur a level of suspicion that
changes between people, from none at all to a lot, perhaps depending on level of illness.”

Additional types of activities were added to the mindLAMP
app, including tips (Figure 2), meditation, and other infor-
mational and management tools; each of these activities
captures metadata during patient use that can be interpreted
and incorporated into a clinical encounter.

“Yeah, because I don’t see any apps out there these days that help people with psychosis
and when they’re getting sicker. It just seems...they just don’t help with certain things.
This gives you control to go get help if somebody needs it. It’s like, the good thing about
this app is, it’s getting the right information and it’s sending you somewhere, it’s almost
as if you could go to the therapist with this information! You don’t want an app that’s
just one sided [and siloed off from the therapist or delivery of care].”

The smaller heads-up summaries originally found in the
first version of the mindLAMP app (Figure 2) were updated
and expanded into an entire tab (Figure 2), providing more
insight and customization into patient data.

“mindLAMP is a tool for me to get better: I want to know if I’m making progress and
when, what am I deficient in, how am I deficient, and how to improve on it; that is, as a
metrics-driven person.”

Figure 2. Flow of the data collection process from native app to backend: (1) an activity specification describes the types of interactive elements
available in the mindLAMP app, along with their possible configuration parameters; (2) when participants interact with a configured and scheduled
activity (such as a mood survey based on the survey specification), all metadata and data from the interaction session is integrated into a single unit of
patient-generated health data called events; (3) events are then submitted to the backend in real time as part of a continuously generated stream of
patient-generated health data; and (4) clinicians and researchers are able to perform continuously updating queries on the data with their desired
parameters.

In addition to a patient- and clinician-centric design approach,
the LAMP platform was also architected with a semantic
standards–based approach, considering technical best practices
for future proofing and security or compliance across health
care systems. The open standards listed in Table 2 were chosen
specifically to foster an open ecosystem around the platform.
For example, the platform’s programming interface adopts a
repository model to store and configure patient-facing
instruments, each with its own embedded user interface. These
embedded user interfaces were developed using common and
widely adopted web standards indicated in Table 2 (HTML5.0,

Cascading Style Sheets 3.0, and ECMAScript 6). As a patient
begins an interaction session, this embedded code is securely
sandboxed by the mindLAMP user interface both within the
smartphone app and the patient-facing web dashboard. In
addition to providing a standard schematic of all structured
documents encountered and processed in the LAMP platform
using OpenAPI [23], the JSON Schema [24] data markup
standard is used to provide developers of these interactive
patient-facing instrument configurability and extensibility. With
little required skill or upfront effort, developers can use the
platform’s software development kit to create instruments with
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completely customizable user experiences that are then tuned
and customized by clinicians for individual patients or by

research coordinators for studies spanning many patients.

Table 2. Adopted semantic web standards, their use rationale, and implementation details.

Reason chosenUseDescriptionStandard

In contrast to TCPa-based binary data protocols re-
quiring specialized tooling to access and work with
data, almost all systems and tools are able to interact
with web standards through the HTTP protocol.

Implemented by core program-
ming libraries and the backend

Ubiquitous web standard that declares and
defines the semantics of client-server
communication with a rich and readily
available debugging and implementation
toolset and ecosystem not available for
custom binary protocols

HTTP 2 [22]

In contrast to a custom implementation of remote
function invocation that would require custom
programming libraries to interface with, most web
systems are able to interact with REST-based re-
sources in a logical manner. In the absence of devel-
oper knowledge or pre-existing tools, it remains
possible to communicate with RESTful systems.

Implemented by core program-
ming libraries and the backend

Ubiquitous lightweight HTTP-based web
standard that defines systems logically
through accessibility and manipulation of
remote resources instead of invocation of
remote functions

RESTb [25]

In contrast to encoded binary data formats requiring
specialized tooling to interpret and work with data,
most programming environments support the JSON
standard.

Implemented across all compo-
nents in the platform

Ubiquitous web standard that supports
structured (as opposed to tabular, ie, CSV
files) formatting and markup of data using
strict data types

JSONc [26]

No alternativeImplemented by core modules and
programming libraries, used by all
components in the platform

Ubiquitous web standard that enables en-
cryption of data in transit between client
and server

TLSd version
1.3 [27]

No alternativeImplemented by the backend and
mandated by the backend and de-
ployment configuration for the
database within which data shall
be stored

Ubiquitous cryptographic standard that
enables encryption of data at REST (on
disk) by a database

AES-256e [28]

Although binary protocols require a predetermined
strict schema to format the data, JSON does not.
JSON Schema provides ahead-of-time resolution
of the contents of a data payload and can be used
to validate and harmonize data as well.

Implemented by the backend and
used by the frontend

Web standard that describes JSON-encod-
ed data and metadata through ahead-of-
time specification of a universally agreed
upon schematic, as opposed to inline
schema provided only at runtime

JSON Schema
[24]

In contrast to writing programming libraries and
testing or validation tools, the generation of these
tools and packages by the OpenAPI ecosystem in-
creases productivity.

Implemented by the backend and
core programming libraries and
used by the frontend

Web standard that describes REST-based
web services and metadata through ahead-
of-time specification of a universally
agreed upon schematic

OpenAPI [23]

No alternativeImplemented by the frontend and
all patient-facing activities, with

wide support for CSS3f and

JavaScript 2016 (ES6g)

Ubiquitous web standard that makes it
possible to securely embed custom user
interfaces backing patient-facing activities

HTML5 [29]

In contrast to static images and handwritten analysis
code, the ability to declaratively generate interactive
real-time charts through an embedded query reduces
data science and clinician effort and fatigue.

Implemented using HTML5. Im-
plemented by the frontend and
Cortex analysis code

Visualization grammar standard that en-
codes charts and graphs as JSON docu-
ments that are then rendered and viewed
interactively by apps

Vega [30]

aTCP: transmission control protocol.
bREST: Representational State Transfer.
cJSON: JavaScript Object Notation.
dTLS: Transport Layer Security.
eAES-256: Advanced Encryption Standard.
fCSS: Cascading Style Sheets.
gES: ECMAScript.

LAMP Platform
The LAMP platform is a customizable clinical care management
and neuropsychiatric research platform designed around PGHD,

as detailed in Figure 3. It comprises numerous essential features,
such as customizable clinician-defined activities (eg, surveys,
breathing exercises, journaling, and cognitive tests), collection
and analysis of mobile and wearable sensor data, push
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notification scheduling, care team–centric conversations,
just-in-time adaptive interventions, prebuilt featurization,
visualization, or analysis pipelines, and a companion integrated
development environment (IDE). The LAMP platform is
available for use across any modern desktop web browser as
well as recent versions of iPhone operating system and Android
through the mindLAMP app available on the Apple and Google
app stores, as shown in Figure 4. The backend is deployable
using enterprise-standard orchestration tools (Docker and
Kubernetes [31]) and has already been deployed across several
health care systems and is used today by patients, clinicians,
and researchers. The companion Cortex data analysis toolkit
integrates tightly across the platform to provide a unified
processing pipeline for secondary active and passive data
features (measurable behavioral characteristics extracted from
raw data), interactive visualizations, and the generation of
targeted and automated adaptive interventions. The IDE is
bundled with support for the widely adopted Python, R, and
JavaScript programming languages and built atop Jupyter
Notebooks and Visual Studio Code for collaborative data
analysis.

The LAMP platform is designed to be customizable to fit a wide
range of use cases and requirements, eliminating the need for

multiple apps hosting only a set of fixed, immutable content as
well as the research concern of proprietary data formats and
closed-source commercial analysis software. It also securely
enables data interoperability and extensibility, avoiding the
issue of data silos without external access of collected data for
clinicians or patients. It integrates into existing hospital
organization structure and is not limited to the sandbox on an
individual’s smartphone, allowing the caregivers and patients
to coexist on the same platform. These features combined allow
the LAMP platform to engage the care team through interactive
clinical decision support with adaptive responses to incoming
PGHD. Where a self-contained app must focus on solving
individual problems for specific stakeholders, the LAMP
platform focuses on broader challenges around linking people
with data and data to teams of interconnected stakeholders, from
patients and clinicians and family members and the care team
to administrators and research coordinators. For these reasons,
the LAMP platform supports digital phenotyping+, the plus
symbol indicates the ability to return and share PGHD with the
individuals from which it is collected in a secure and ethical
manner and the ability to integrate that data into a machine
learning pipeline or other clinical decision support algorithms.

Figure 3. The Learn, Assess, Manage, and Prevent platform consists of three major components: (1) mindLAMP, the patient- and clinician-facing app
and web dashboard; (2) Data center, providing secure storage and access to data; and (3) Cortex, the data analysis toolkit that enables adaptive interventions
and interactive visualizations. API: application programming interface; HIPAA: Health Insurance Portability and Accountability Act; iOS: iPhone
operating system; SDK: software development kit.
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Figure 4. Screenshots of the home screen as viewed by a patient in the mindLAMP app on a smartphone device; system administrators install applets
such as Survey, Breathe, or Tips that clinicians and researchers are able to configure and schedule so that the participants interact with the app and
produce data and metadata.

Results

Overview
The rearchitected LAMP platform addresses the integration of
PGHD into existing systems through a simplified extensible
programming interface (application programming interface
[API]) and an internal data representation that interlinks raw
data and metadata with descriptive schema. The Cortex data
analysis toolkit obviates the need for custom preprocessing or
harmonization of disparate sources of data and removes barriers
between the real-time collection of PGHD and subsequent
featurization, analysis, or visualization. We present the process
results and examples below but do not offer a hypothesis in line
with other papers exploring informatics systems created for use
in clinical care and research.

Integration to Existing Systems
To enable robust data analysis, adaptive interventions, and
interoperability with a broad range of health care systems and
services, the platform’s data repository and programming
interface are based upon a concise semantic FHIR-compatible
API. The platform’s API provides both predefined and pluggable
schematics for patient-facing instruments, such as surveys and
cognitive tests as well as for mobile and wearable sensors. The
platform’s backend validates and harmonizes patient data upon
receipt, retaining lossless FHIR compatibility in the process.

The platform provides a facility to query and transform data
into FHIR-compatible bundle and resource types, in addition
to other domain-specific tabular or structured data formats.
Table 2 lists the clinical, regulatory, and software standards
implemented and supported by the LAMP platform.

The LAMP platform’s internal data representation provides a
simplified abstraction around PGHD in comparison with FHIR.
Fundamentally, FHIR adapts a message and document-based
exchange programming interface atop the representational
exchange state transfer web standard protocol. The FHIR data
structures (Figure 5) consist of over 90 modules for clinical use,
insurance, billing, and other use based on the concept of
resources, with each resource containing some raw data,
metadata, a schema identifier, and a human-readable
representation of the raw data. The schema identifier is used to
reference how the data should be interpreted by a compatible
system or machine. As the raw data contained within 2 resources
of the same schema type may differ (eg, the use of the
observation data type to represent both blood pressure and
depression assessments results), data processing cannot be
standardized across different data types. By organizing and
accessing PGHD separately from generalized repositories of
data, such as electronic health record systems using the FHIR
API, common and shared analysis methods and processing tools
that are standardized across such various data types can be used
by clinicians and researchers.
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Figure 5. The structured list of all supported Fast Healthcare Interoperability Resources core resources; the structured list of all Learn, Assess, Manage,
and Prevent platform resources.

The LAMP platform declares only 12 core PGHD-centric
resources (Figure 5) that remain focused on clinical and research
use. The Researcher and Study resource types group together
sets of participants as well as the activities and sensors they
are able to interact with or collect data from. Upon data
collection, ActivityEvent and SensorEvent describe and link the
recorded data to its metadata and any specific customized
parameters. The Credential resource provides security access

controls to any of the aforementioned resources, and the Tag
resource provides support for integration, extensibility, and
backward compatibility. The semantic context of any recorded
data and metadata is described by ActivitySpec, SensorSpec,
and TagSpec.
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Internal Data Representation
Understanding the need for seamless integration into existing
health care systems, software, and services, the platform exposes
its internal data representation through the LAMP protocol, a
programming interface that enables integration with third-party
services. For example, integration with Google Fit wearable
devices that also implement this same push-based model, is
possible by signing up on the Fitbit developer portal and
connecting the data output of the Fitbit programming interface
to the data input in the programming interface provided by the
LAMP platform. In another example of seamless integration,
clinicians and researchers can use automated scripts to
synchronize data between the mindLAMP app and their existing
record-keeping systems. Data can be proactively fetched and
stored securely, and users of the platform are notified of any or
all data from a particular patient using subscriptions, regardless
of whether the data were generated by the mindLAMP app or
a third-party data source.

The extensibility and flexibility of patient-facing instruments
in the LAMP platform rely on the unique data structure and
functionality provided by the LAMP protocol as shown in Figure
2. Each activity with which patients are able to interact is
defined and encapsulated in an activity specification that
contains the program code written using web-compatible
standards, along with descriptors of the required input
configuration and output data. When a patient begins an
interactive session with any activity, session-wide metadata
regarding who, what, and when are recorded. Each tap of the
screen within the activity is then automatically validated and
converted into a standardized data format called a temporal
slice. When the user completes the interactive session, all the
temporal slices are packaged into chronologically ordered events
indexed under the patient’s identifier as a stream of continuously
generated data. The data analyst is then able to query these data
at any desired temporal resolution (eg, 1 millisecond, 1 day,
and 1 year) and filter by the type of activity (eg, mood survey,
anxiety survey, trails-making test, and meditation). The query
can be mutated using transformation logic executed by the
backend and subscribed such that newly uploaded data matching
the query is reported in real time to the data analyst. This query
framework can be used to better understand how participants
use and engage with the activities available to them as part of
the study, for example, by extracting a real-time metric of
duration spent meditating in the app per participant.

As depicted in Figure 4, the flow of activity specifications to
configured activities to their generated PGHD facilitates patient
interaction with any kind of interactive web media, from static
text for tips, to video content for learning modules, or audio
content for breathing exercises. Instruments and their data can
be monitored and maintained organization-wide for compliance

and conformance. Multimedia Appendix 1 lists the sources of
active and passive data currently available within the
mindLAMP app and their data sources and types. This novel
data organization and structure supported by the platform
enables unification and harmonization of these different data
types, with both backward compatibility to data types from
legacy systems and future compatibility for data types for
systems that are not yet available.

Data Analysis With Cortex
The same pipeline operates on both active and passive data,
unifying the conceptual model for PGHD processing and
obviating the need for individual analyses tied to custom code
for specific sensor types across various devices. Sensor data are
therefore subject to additional harmonization to account for the
various differences in functionality and recording between Apple
and Android devices. For example, accelerometer measurements
taken on Apple devices are measured in units of gravity (G)
with a frame of reference experiencing −1 G in the
downward-facing axis, whereas measurements on Android are

measured in meters per second square (m/s2) without a frame
of reference provided. As the platform automatically applies
this harmonization step, the data analysis code does not require
an intrinsic understanding of the source of the data. Samples of
sensor data after harmonization are shown in Figure 6.
Furthermore, in addition to raw sensors on smartphones or
wearable devices, processed Apple HealthKit and Google Fit
sensor data, such as activity recognition or heart rate variability,
are available to the LAMP platform.

The Cortex data analysis toolkit further simplifies the extraction
of passive data features as listed in Multimedia Appendix 1,
with an example shown in Figure 7. Cortex provides prebuilt,
parallelized and vectorized workflows in Python for PGHD
extraction and featurization that operate across large data sets
to generate interactive visualizations for the mindLAMP
dashboard using the Vega visualization grammar (as listed in
Table 2). It obviates the need to work directly with the LAMP
protocol, allowing data scientists to reason about live actionable
structured data entirely as data frames within their programming
environment of choice. Through the vectorization of array
operations and parallelization of function calls, Cortex is able
to target high performance and cost-effectiveness, while
maintaining data security and policy compliance. A sample
execution plan for a particular analysis involving the GPS data
is shown in Figure 8. The modular nature of PGHD captured
by mindLAMP allows for personalization and creation of new
digital biomarkers and analysis without the need for additional
coding. Furthermore, the companion IDE manager abstracts
away log-in and security issues by securely injecting an
authenticated connection to the server into Cortex and the
resulting analysis notebooks.
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Figure 6. Samples of data from selected sensors in the mindLAMP app for a sample patient. Total duration (in seconds) spent in calls per day; cumulative
number of steps taken per hour during a 24-hour rolling window; number of times the device’s screen was turned on per day; number of unique nearby
devices (Wi-Fi or Bluetooth) encountered per day.

Figure 7. A visual representation of the various categories of activity and sensor data type features using standardized functions as part of the Cortex
data analysis toolkit; shown as part of Cortex is the distinction between the primary and secondary feature types, where secondary features are composed
of primary features as opposed to raw patient-generated health data. Availability of wearable sensors depends on the device type used and supported
application programming interface; Apple Watch (HealthKit) sensors are shown here. DBT: dialectical behavioral therapy.

JMIR Mhealth Uhealth 2022 | vol. 10 | iss. 1 | e30557 | p. 10https://mhealth.jmir.org/2022/1/e30557
(page number not for citation purposes)

Vaidyam et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 8. A sample execution plan for Cortex around an example using only geolocation data (1) the clinician or researcher creates an aggregate
operation; (2) Cortex transparently interposes the correct feature layers by creating a dependency graph of data and executes each atomic operation (ie,
independent of external variables) in the order it computes to be most efficient; (3) any raw sensor data are transparently cached during execution; and
(4) as multiple operations require the same raw sensor data, Cortex blocks their execution until the cached data becomes available, to avoid duplicate
downloads, wasted computation, and oversaturation of network bandwidth.

Discussion

Principal Findings
Research and clinical needs in digital medicine are evolving to
use PGHD approaches to understand patient behavior and
symptomatology [3]. To this end, by optimizing the system
architecture for data throughput and substantial database
write-loads, the LAMP platform supports high-performance
data collection and real-time data analysis to enable, for
example, larger machine learning models or just-in-time
adaptive interventions that can leverage PGHD into actionable
insights for patients and clinicians alike.

Efficient Collection and Configuration
Among the various approaches to data collection adopted in
digital medicine, the pull-based model [13,14] shown in Figure
9, requires patients to activate a request and upload data from
their mobile devices. This request can be scheduled and
authorized. An example of the pull-based model is that during
a clinical encounter, the clinician would use a portal to request
data collection from the patient’s device for a period of 1 day;

the patient would then have to approve this request in their
smartphone app before data collection can begin. During the
next clinical encounter, the clinician would be able to interpret
the data in potentially meaningful ways.

The LAMP platform, however, adopts a push-based model
shown in Figure 9, where, in contrast, clinicians or research
coordinators configure and schedule activities for patients to
use and sensors from which measurements should be passively
recorded ahead of time. The patients’ devices receive a
configuration request that activates data collection in the
background. As it is collected, the data are uploaded (pushed)
to the back end periodically, available for processing and clinical
insight ahead of time. This push-based approach reduces latency
from collection of PGHD to the usability of that PGHD, for
example, as real-time alerts in the context of research studies
(Figures 10 and 11), or toward clinical decision-making with
custom rules and alerts. It is important that clinicians or research
coordinators communicate clearly and establish consent with
the patient or subject about the various types of data being
collected and the frequency of the data push.
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Figure 9. A pull-based model, in which clinicians must schedule data to be pulled from the device periodically versus a push-based model, in which
clinicians preconfigure various sensors on the device to collect and push data to the server in real time.

Figure 10. The detailed coordination required among the many components of the Learn, Assess, Manage, and Prevent platform involved in the
submission of a push notification for a survey or gift card email for completion of a study; an example of the reporting of live intervention processing
as made possible by a push-based model. Upon participant enrollment, survey delivery, gift card delivery, or intervention triggering, a message is pushed
and logged to the Slack messaging service, a push-based model, to alert the research coordinator in real time. API: application programming interface;
APNS: Apple Push Notification Service; FCM: Firebase Cloud Messaging; LAMP: Learn, Assess, Manage, and Prevent; REST: Representational State
Transfer; SNS: Simple Notification Service.
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Figure 11. An example of the reporting of live intervention processing as made possible by a push-based model. Upon subject enrollment, survey
delivery, gift card delivery, or intervention triggering, a message is pushed and logged to the Slack messaging service, also a push-based model, to alert
the research coordinator in real time.

The data collection processes are executed both actively during
patient interactions with the mindLAMP app as well as passively
while the app or mobile device is not in use. These data are
securely uploaded to the organization’s backend systems and
can be used immediately upon receipt for data analysis and logic
to select interventions to display to the patient. Using push
notifications sent to the mobile device, the platform promotes
a high level of engagement with patients without explicitly
requiring approval for data upload. Once a research study or
clinic is configured, its documenting configuration can be
exported and reimported by other LAMP-compatible systems
or interfaces. This allows reproducibility in both clinics and
research studies, for example, by attaching the configuration
file to a research manuscript or clinical protocol.

Consortium and Clinical Research Efforts
The LAMP platform is built and maintained collaboratively as
an open platform to address the needs of many and integrate

tools and resources to streamline workflows. In contrast to
commercially available apps and services, the mindLAMP app
may be used by organizations independently of our team through
the deployment of a secure self-hosted backend. It can be
customized and adapted without requiring specialized coding
and deployment efforts, although others have also taken
advantage of the extensibility of the platform to design and
develop unique cognitive tests for their organization’s needs.
Common data processing and analysis needs across clinical and
research workflows are encapsulated by the platform and the
Cortex data analysis toolkit to minimize the time between patient
onboarding and affecting or assessing patient outcomes.

The LAMP platform is highly configurable to suit many needs
across a broad range of both clinical and research use cases and
strategies. Consortium partners are encouraged to share their
use case and LAMP configurations. As shown in Textbox 1,
there were many different potential configurations and use
patterns across consortium members.
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Textbox 1. Selected examples of configurations and use cases for the Learn, Assess, Manage, and Prevent platform across various consortium members.

Ecological momentary assessment tool

• A total of 17 adults with substance use disorder who recently discharged from the hospital for this diagnosis completed daily assessments delivered
via mindLAMP of mood, anxiety, sleep, social activity, and craving. No sensors were configured, and push notifications were enabled as reminders.
Participants were able to view select survey responses in the Prevent tab. Results will be presented by the study team at the 34th Annual European
College of Neuropsychopharmacology meeting in October 2021.

Digital phenotyping+

• A research study to examine circadian rhythms in bipolar disorder was conducted in which no activities were enabled or scheduled. The
accelerometer, gyroscope, magnetometer, gravity, device motion, GPS, screen state, call and text, Bluetooth, and Wi-Fi sensors were enabled
and configured to collect data at the highest possible frequency. Participants were able to view select sensor data in the Prevent tab.

Both ecological momentary assessment and digital phenotyping+

• A research study was conducted in which 100 college students were remotely enrolled to use the mindLAMP app for 1 month. Participants took
1 scheduled daily survey and 1 scheduled weekly survey, with provided optional tips and resources for managing stress, depression, and anxiety.
The accelerometer, gyroscope, magnetometer, gravity, device motion, GPS, screen state, call and text, Bluetooth, and Wi-Fi sensors were enabled
and configured to collect data at the highest possible frequency. Results are summarized in a paper published in 2021 [32].

Individual patient study

• A research study was conducted in which 50 participants with schizophrenia or bipolar disorder used the mindLAMP app for 1 year. Each
participant was scheduled a daily standard battery of several surveys, the Jewels cognitive test, and the Spatial Span cognitive test. Optional tips
and resources were provided, and the journaling, scratch card, and breathing exercise activities were made available for participants to use on
their own volition. Participants were able to view their own data in the Prevent tab and worked with the research coordinator and psychiatrist to
create custom surveys specific to individual participants’needs. For example, 1 participant chose to create a water intake survey. Each participant’s
notifications were scheduled individually by the research coordinator, instead of at a set time across all participants. The accelerometer, gyroscope,
magnetometer, gravity, device motion, GPS, screen state, and call and text sensors were enabled and configured to collect data at the highest
possible frequency.

Clinical use

• A clinical team in California offered dialectical behavioral therapy diary cards to all patients via mindLAMP. Before clinic visits and during their
daily lives, patients would fill out these app-based dialectical behavioral therapy diary cards on their mobile device and were able to see their
previous responses in the Prevent tab. No other activities were made available to the patients and no sensors were enabled for data collection.
The diary cards were reviewed during each clinical session with the dialectical behavioral therapy therapist.

Digital clinic

• A clinic was established in which patients used the mindLAMP app with a new care team in addition to their ongoing care. Each patient was
scheduled a daily standard battery of several surveys. Required tips and resources were provided along with required journaling, scratch card,
and breathing exercise activities that were scheduled according to patient preferences. Patients were able to view their own data in the Prevent
tab and worked with the digital navigator and clinician to create custom surveys or activities specific to individual patient’s needs. For example,
1 patient requested a set of self-management tips and resources. Each patient’s notifications were scheduled individually by the digital navigator.
On the basis of each patient’s clinical goals each week, accelerometer, gyroscope, magnetometer, gravity, device motion, GPS, screen state, call
and text, and other sensors were turned off or on with the goal of capturing relevant and actionable information to help manage care. A protocol
for the clinic is published here [33].

Intervention tool

• A research team used the cognitive games in mindLAMP as a tool for cognitive remediation to offer attention and memory training to patients
with clinical high risk for psychosis. A paper summarizing the results was published in 2021 [34]. The app was offered in the Mandarin Chinese
language for this study.

To aid these joint research and clinical efforts, the LAMP
consortium was founded to connect partners using the LAMP
platform. The design and development of the platform occurs
in an open-source, collaborative environment that many have
taken advantage of to suggest features, report bugs, add
documentation, and improve the overall quality and efficacy of
the LAMP platform. Through its flexibility and interoperability,
the platform encourages integration and cross talk between
clinical and research contexts, and to this end, supports the
implementation of a digital clinic [33] and the creation of a
digital navigator role [35].

Next Steps
The consortium further integrates directly into the development
and feedback cycle using a community forum and bug tracking
system, both available publicly. The community forum serves
as a centralized resource for multiple teams or organizations to
work with one another to assist with data analysis or
troubleshooting and provide feedback about the LAMP platform.
In addition, collaborators actively engage in making
modifications to the source code (hosted through the public
source code repository hosting service GitHub), make any
suggested modifications or bug fixes, and then request that these
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changes be merged upstream into the distribution of the LAMP
platform that is used by all. To learn more about the LAMP
platform or help contribute, one can join the consortium or visit
the open-source repository [36].

Conclusions
Through the incorporation of patient- and clinician-centric
feedback as well as a standards-based approach, the LAMP
platform is designed to address important needs around the
effective and compatible integration of PGHD into existing
clinical systems for research and clinical care. It offers a flexible
and comprehensive set of tools and solutions that can be

configured and stitched together to function in a wide range of
use cases, as used by members of the LAMP consortium. Its
simplified programming interfaces are designed to securely
handle a high throughput of PGHD as well as its companion
metadata. With the integration of the Cortex data analysis
toolkit, machine learning feature extraction, data processing,
interactive visualization, and other essential tasks are simplified
and coordinated seamlessly at low cost and high efficiency. In
addressing technical challenges, the LAMP platform enables
research and clinical teams to rapidly convert PGHD from
widely accessible consumer smartphones and wearable devices
into actionable clinical insights.
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