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Abstract

Background: Sleep is beneficial for physical and mental health. Several mobile and wearable sleep-tracking devices have been
developed, and personalized sleep feedback is the most common functionality among these devices. To date, no study has
implemented an objective push-type feedback message and investigated the characteristics of habitual sleep behavior and diurnal
symptoms when receiving sleep feedback.

Objective: We conducted a mobile health intervention trial to examine whether sending objective push-type sleep feedback
changes the self-reported mood, physical symptoms, and sleep behavior of Japanese office workers.

Methods: In total, 31 office workers (mean age 42.3, SD 7.9 years; male-to-female ratio 21:10) participated in a 2-arm intervention
trial from November 30 to December 19, 2020. The participants were instructed to indicate their momentary mood and physical
symptoms (depressive mood, anxiety, stress, sleepiness, fatigue, and neck and shoulder stiffness) 5 times a day using a smartphone
app. In addition, daily work performance was rated once a day after work. They were randomly assigned to either a feedback or
control group, wherein they did or did not receive messages about their sleep status on the app every morning, respectively. All
participants wore activity monitors on their nondominant wrists, through which objective sleep data were registered on the web
on a server. On the basis of the estimated sleep data on the server, personalized sleep feedback messages were generated and sent
to the participants in the feedback group using the app. These processes were fully automated.

Results: Using hierarchical statistical models, we examined the differences in the statistical properties of sleep variables (sleep
duration and midpoint of sleep) and daily work performance over the trial period. Group differences in the diurnal slopes for
mood and physical symptoms were examined using a linear mixed effect model. We found a significant group difference among
within-individual residuals at the midpoint of sleep (expected a posteriori for the difference: −15, 95% credible interval −26 to
−4 min), suggesting more stable sleep timing in the feedback group. However, there were no significant group differences in
daily work performance. We also found significant group differences in the diurnal slopes for sleepiness (P<.001), fatigue
(P=.002), and neck and shoulder stiffness (P<.001), which was largely due to better scores in the feedback group at wake-up time
relative to those in the control group.

Conclusions: This is the first mobile health study to demonstrate that objective push-type sleep feedback improves sleep timing
of and physical symptoms in healthy office workers. Future research should incorporate specific behavioral instructions intended
to improve sleep habits and examine the effectiveness of these instructions.
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Introduction

Development of Mobile Health Technologies
Recent developments in internet and communication
technologies, mobile sensing devices, and the Internet of Things
(IoT) have enabled the acquisition of longitudinal
multidimensional information, including real-time physiological,
behavioral, and environmental data. For example,
consumer-grade wearable fitness trackers (eg, Fitbit, Garmin,
and Jawbone) can record health-related information such as
physical activity, sleep, and heart rate objectively and repeatedly.

By using smartphones and their SMS text messaging, it is
possible to provide effective support at the optimal time to
promote awareness of one’s health condition and improve
compliance with intervention trials. Mobile devices can be
useful for changing health-related behaviors as a part of daily
living. Following these technological advancements and their
applicability, medical and public health practices supported by
mobile devices, such as mobile health (mHealth) [1,2], have
been attracting attention in recent years. Since 2017, more than
325,000 mHealth apps have become available in commercial
app stores, and the number of available apps continues to grow
[3]. mHealth apps have been used in several intervention trials
targeting physical activity [4-6], smoking [7,8], and suicidal
ideation [9], and their usefulness and effectiveness have been
proven.

Health Effects of Habitual Sleep Behavior
Sleep is a significant aspect of recovery. In fact, adequate and
good-quality sleep is associated with better physical and mental
health [10-12] and improved daytime functioning, including
decreased physical symptoms [13,14], better work performance
[15], and improved quality of life [16].

Although research interest has focused on the importance of
sleep duration and quality, recent studies indicate that sleep
timing and stability of habitual sleep behavior also play
important roles in health. In fact, delayed sleep timing is
associated with obesity [17], congestive heart failure [18], poor
glycemic control [19], and increased severity of depressive
symptoms [20,21]. Additional studies have indicated that
variability in day-to-day sleep behavior (ie, duration, timing,
and quality), referred to as intraindividual variability [22], is
linked to physiological dysfunction [23,24], adverse medical
and mental health conditions [25], and poor psychological
well-being [26]. Therefore, the multifaceted monitoring and
regulation of habitual sleep behavior can contribute to the
prevention and support for physical and mental health problems.

Applications of Mobile and Wearable Technologies to
Improve Sleep
Sleep data, along with other health-related behavioral and
physiological data, can be gathered in real time using mobile

devices. The widespread use of mobile or wearable sensing
devices (eg, bed sensors, smartphone apps, and activity
monitors) makes it easier and more commonplace to monitor
sleep behavior in real time [27]. Although most consumer
devices do not have Food and Drug Administration clearance
as medical devices, they are expected to provide opportunities
to track habitual sleep behavior longitudinally in large-scale
populations [28]. For instance, Crowley et al [29] attempted to
incorporate consumer wearable devices into health-promoting
trials. They investigated the efficacy of these devices in
improving physical activity and sleep among 565 employees
over a 12-month period and found that sleep duration increased
steadily throughout the study period.

In addition, mHealth apps for treating sleep disturbance have
been developed rapidly [30,31], and more than 2000 mHealth
apps targeting sleep are presently available in commercial app
stores [32]. Pulantara et al [33,34] developed the interactive
Resilience Enhancing Sleep Tactics app and examined its
clinical feasibility as a treatment for sleep behavior. They
reported that using the app improved insomnia severity and
overall sleep quality, and the app was not inferior to traditional
in-person sleep treatment. Furthermore, Hoersch et al [35] and
Kuhn et al [36] conducted randomized controlled trials and
reported that participants who received mHealth interventions
had improved insomnia severity and sleep quality compared
with waitlisted control participants.

Remaining Issues
Despite the rapid growth of mHealth apps and mobile sensing
technologies, recent reviews have indicated that scientific trials
examining the usefulness of mHealth apps are limited [32], and
further research is required to test whether objective data
enhance sleep outcomes [37]. This research investigating the
usefulness of mHealth apps in enhancing sleep has several
limitations. First, most mHealth trials have not assessed sleep
behavior objectively [31], and the feedback provided depended
on self-report assessments by the participants. While some
studies incorporated wearable devices into the trials [38,39],
they used the measurements only to assess the efficacy of the
trial but not to objectivize the feedback. Given the importance
of self-management for habitual sleep behavior to prevent future
health problems, it is beneficial to implement objective sleep
feedback into the apps. Second, previous mHealth studies
focused on improvement in limited aspects of habitual sleep
behavior, such as sleep quality and sleep duration [31], and the
dynamic aspects of sleep, including intraindividual variability
in sleep measurements over the trial period, have tended to be
ignored. To the best of our knowledge, only 1 mHealth study
by Murawski et al [40] reported the dynamic aspects of sleep
behavior and found that variability in sleep timing, as assessed
by a self-report questionnaire, was improved after their
intervention. Studying the dynamic features in sleep behavior
may provide insight into the typical properties of sleep
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self-regulation processes when responding to feedback messages
or other interventions. Finally, in view of the wide range of
effects of sleep, including psychological well-being, the
covariant relationships of sleep with daytime functions, such
as mood, physical symptoms, and work performance, should
be examined. The covariant relationships may contain important
information about subordinate effects and facilitate a
comprehensive understanding of sleep self-management.

Objective
The objective of this study was to conduct an mHealth trial
sending objective push-type sleep feedback to healthy
participants using a smartphone app and a wearable activity
monitor. Specifically, we examined whether sending daily sleep
feedback messages changed sleep behavior and self-reported
symptoms of the participants, particularly depressive mood,
anxiety, stress, sleepiness, fatigue, and neck and shoulder
stiffness. We used exploratory analysis of the statistical
properties of objectively measured sleep variables and the
characteristics of momentary symptoms recorded during the
day using ecological momentary assessment (EMA).

Methods

Study Design
In this study, we conducted a 2-arm intervention trial by
performing random convenience sampling of office workers at
an insurance company and stratifying them into control and
feedback groups. By comparing the groups in terms of the
characteristics of habitual sleep behaviors (sleep duration and
midpoint of sleep), momentary symptoms (depressive mood,
anxiety, stress, sleepiness, fatigue, and neck and shoulder
stiffness), and daily work performance, we examined the effects
of personalized sleep feedback. To minimize the memory
distortion caused by retrospective recall, momentary symptoms
were recorded on a smartphone app in real time. Habitual sleep
behaviors were measured objectively using a wearable device.
Possible extraneous variables, including pretrial psychological
symptoms, habitual sleep behaviors, and work performance,
were assessed before the trial.

EMA Method
We used the EMA method to acquire momentary mood and
physical symptom data (ie, depressive mood, anxiety, stress,
fatigue, sleepiness, and neck and shoulder stiffness) in real time.
EMA is a method for recording participants’ behavior,
psychological state, and physical symptoms in real time and at
multiple time points, allowing the collection of self-report and
objective data with reliability and ecological validity. Thus,
EMA avoids potential distortions of retrospective recall in
self-reported data [41,42].

Health Care Internet of Things System
We developed a cloud-based health care Internet of Things
(HIT) system that can continuously acquire health-related
information, including momentary symptoms, biological signals,
and surrounding environmental information, recorded as part
of daily living. The HIT system consists of a cloud server and
a smartphone app for data collection (HIT server and HIT app,

respectively). The HIT app is equipped with an EMA and users
can record their momentary symptoms in daily life (Multimedia
Appendix 1). In addition, the HIT app can connect with various
IoT devices, including a proprietary activity monitor (Sciencenet
device, Sciencenet Inc) used in this study, using Bluetooth Low
Energy (BLE). Data are transferred from the IoT devices to the
HIT server. The app is compatible with both Android and iOS
operating systems. The HIT server can store, integrate, and
manage data uploaded from the app and send personalized
messages (push-type feedback messages) to the HIT app users.
HIT systems have been used to assess self-reported symptoms
in real time [43].

Participants
A convenience sample of 31 office workers working at an
insurance company participated in this study. The mean age of
the participants was 42.3 (SD 7.9) years, and the male-to-female
ratio was 21:10. All participants were working from home
during the trial period at the request of their employer to prevent
the spread of COVID-19.

Participants were randomly assigned to a control or feedback
group using the “sample” function in the R statistical software
(version 4.0.2; R Foundation for Statistical Computing) so that
the ratio of the sample size was 1:1. No stratification by age or
sex was observed. Coauthor KS conducted this randomization,
independent of the primary researcher HT. Although author HT
was also informed of who was assigned to which group after
the random assignment, he was not allowed to contact the
participants during the trial period.

During the trial period, the participants in the feedback group
received personalized messages regarding their current sleep
status every morning, whereas the participants in the control
group did not receive any messages. The control group consisted
of 16 participants, including 9 males and 7 females, with a mean
age of 44.1 (SD 8.3) years. The feedback group consisted of 15
participants, including 12 males and 3 females, with a mean
age of 40.5 (SD 7.2) years.

Instruments

Baseline Questionnaire
Before the trial, the participants completed a baseline
questionnaire, including their demographic information (age,
sex, and BMI), psychological symptoms (depressive and anxiety
symptoms), habitual sleep behaviors (habitual sleep duration
and self-reported sleep quality), and self-reported work
performance. Items included in the baseline questionnaire are
listed in subsequent sections.

Psychological Symptoms
Depressive symptoms were assessed using the Japanese version
of the Beck Depression Inventory second edition (BDI-II)
[44,45]. The BDI-II is a 21-item self-report inventory for
measuring the presence and severity of depression (score range
0-63). A high level of internal consistency (Cronbach α=.87)
and item homogeneity have been confirmed for the Japanese
version of the BDI-II [45]. The BDI-II classifies individuals
into 4 categories based on an overall score: minimal or no
depression, 0 to 13; mild depression, 14 to 19; moderate
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depression, 20 to 28; and severe depression, 29 to 63. A score
of ≥14 points was used as the clinical cutoff point for depression.

Anxiety symptoms were assessed using the Japanese version
of the State-Trait Anxiety Inventory (STAI) Form Y [46]. The
STAI is a standardized self-report inventory for measuring state
and trait anxiety with 20 items (STAI Y-1 and STAI Y-2,
respectively). The STAI Y-1 measures the intensity of the
anxiety felt by an individual in the present, whereas the STAI
Y-2 measures how often an individual feels anxious. Scores
range from 20 to 80 for each subscale, with higher scores
indicating higher levels of anxiety.

Habitual Sleep Behaviors
Habitual sleep duration on workdays and free days (SLw and
SLf, respectively) was assessed using a single question for each
(“How long do you sleep on weekdays?” and “How long do
you sleep if tomorrow is a holiday?”). These measurements
were used to compute an index representing participants’ sleep
status during the trial period. Sleep quality was assessed using
the Pittsburgh Sleep Quality Index (PSQI). The PSQI is a
self-report inventory used to assess sleep quality over the
preceding month [47,48]. The PSQI consists of 19 items on
self-reported sleep quality, sleep latency, sleep duration, habitual
sleep efficiency, sleep disturbances, use of sleeping medication,
and daytime dysfunction. Scores range from 0 to 21, with a
higher total score indicating poorer sleep quality. The strong
reliability and validity of this questionnaire have been confirmed
in a recent meta-analysis [49].

Self-reported Work Performance
Self-reported work performance was measured using the World
Health Organization Health and Work Performance
Questionnaire (HPQ) [50,51]. The HPQ asks participants to
rate their overall work performance over the preceding 4 weeks
on a self-anchoring scale from 0 to 10: “On a scale of 0 to 10,
how would you rate your usual work performance over the past
four weeks?” The score was converted to a 100-point scale by
multiplying the raw score by 10, with a higher score indicating
better work performance.

EMA Questionnaire
The participants answered an EMA questionnaire 5 times per
day using the HIT app. The EMA included the following
measurements:

1. Depressive mood and anxiety were scored using the
Depression and Anxiety Mood Scale [52]. This scale
comprises the following 9 adjectives representing mood
states: “vigorous,” “gloomy,” “concerned,” “happy,”
“unpleasant,” “anxious,” “cheerful,” “depressed,” and
“worried.” On the basis of the 9 items, anxious (the sum of
“concerned,” “anxious,” and “worried” scores), positive
(the sum of “vigorous,” “happy,” and “cheerful” scores),
and negative (the sum of “gloomy,” “unpleasant,” and
“depressed” scores) moods were calculated. Depressive
mood scores were obtained by combining the last 2 mood
scores as follows: (300-positive mood score) +negative
mood score. The resulting depressive mood scores were
rescaled to range from 0 to 100.

2. Physical symptoms, including stress, sleepiness, fatigue,
and neck and shoulder stiffness were rated according to the
participant’s response to being asked if they felt “stressed,”
“sleepy,” or “fatigued” and “if their neck and shoulders
were stiff.”

3. Daily work performance was rated after work in response
to the question, “How would you rate your work
performance of today?”

These measurements were rated using a visual analog scale
from 0 to 100 displayed on the screen. All scores were
transferred to the HIT server immediately after the completion
of each EMA questionnaire.

Sleep Monitoring
The participants were instructed to wear a wristband-type
activity monitor on their nondominant wrist during the trial
period, except while bathing, showering, performing rigorous
exercise, or any other activities likely to damage the device.
The device is equipped with triaxial piezoelectric accelerometers
capable of detecting small changes in bodily acceleration (≥0.01
G/rad/s). We confirmed that the device performs at a level
equivalent to research-grade actigraphy (Ambulatory Monitors
Inc), which is widely used in clinical settings. Results of the
comparative analysis are presented in Multimedia Appendix 2.

The device was configured to transfer physical activity data to
the HIT server using the HIT app whenever a participant
launched the app. We used zero-crossing counts, which counts
the number of times per epoch that the acceleration signal level
crosses 0 [53], accumulated per minute, to compute objective
sleep variables.

To estimate sleep variables, we adopted the Cole-Kripke
algorithm with Webster’s rescoring rules [54,55] for
zero-crossing count data to identify whether the recorded
1-minute epoch was sleep or wake. Next, we introduced the
sleep probability function (SPF) θ(t) as follows:

where t denotes the clock time converted to a numerical value
(eg, 3 AM is transformed to 3.00, and 6:30 PM is converted to
18.50). Thus, the SPF is a value ranging from 0 to 1 and
represents circadian oscillations.

Then, we estimated the effective SPF parameters (β0, β1, and
β2) to fit the actual Cole-Kripke identification using a Bernoulli
logistic regression model.

CK(t)~bernoulli(θ(t))...(2)

where CK(t) represents the result of Cole-Kripke identification
when the clock time is t; CK(t) = 0 and CK(t) = 1 denote that
the epoch at time t was labeled as wake and sleep, respectively.

Finally, we estimated the square waveform function θ’(t) from
θ(t) by introducing onset and offset (ton and toff, respectively).
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Effective ton and toff were computed to maximize the R2 value
between θ’(t) and CK(t) using the Nelder-Mead method. We
assumed that ton and toff represent bedtime and wake-up time,
respectively; thus, sleep duration and midpoint of sleep were
determined using their interval and midpoint. We confirmed
that the algorithm was performed at a level equivalent to
Action-W version 2 software (AW2 software, Ambulatory
Monitors Inc), which was used to analyze the research-grade
actigraphy data (Multimedia Appendix 2).

The average sleep duration per day was calculated based on the
habitual sleep duration on workdays and free days (Sw and Sf,
respectively) in the baseline questionnaire using the following
equation:

which represents the expected sleep duration per day because
the participants worked 5 days per week. Sleep debt and
cumulative sleep debt were defined as follows:

sleep debt = Average sleep duration − Estimated sleep
duration...(5)

cumulative sleep debt = Σsleep debt...(6)

Thus, sleep debt represents sleep insufficiency per day, and
cumulative sleep debt represents its cumulative value over time.
During the trial period, these values were automatically sent to
the participants in the feedback group using the HIT app.

Data Collection Protocol
Trained researchers provided participants with a comprehensive
explanation of the purpose and potential risks of the study.
Subsequently, they signed an informed consent form and
completed the baseline questionnaire. In addition, they received
a sleep hygiene guide that listed daytime activities to improve
their habitual sleep behaviors or health conditions (Multimedia
Appendix 3). They were then asked to install the HIT app on
their smartphones and wear an activity monitor on their
nondominant wrist. All participants were instructed on the use
of the app and the activity monitor. Using these instruments,
we repeatedly measured their momentary symptoms and
physical activity data in real time. The setup and operating

procedures were presented on the web as much as possible using
a communication service and videoconferencing system.

An overview of the trial is shown in Figure 1. This trial was
carried out for almost 3 weeks (from November 30 to December
19, 2020). During the trial period, the participants were asked
to complete the EMA questionnaires (see the section EMA
Questionnaire) at randomly selected times within +10 minutes
to −10 minutes of predetermined times (10 AM and 2 PM). In
addition, they were asked to complete the EMA when they woke
up, finished their work, and went to bed (wake-up time, after
work, and bedtime, respectively).

At 9 AM every day, the physical activity data on the HIT server
were collated and analyzed to estimate sleep duration, sleep
debt, and cumulative sleep debt using a local data analysis
server. On the basis of the estimated sleep data, personalized
sleep feedback messages were generated and sent to participants
in the feedback group. They were informed about their sleep
status (estimated sleep debt and cumulative sleep debt) and
requested to plan and adjust their daytime activities with
reference to guidelines for reducing their sleep debt. The
message read as follows: “You accumulated XX minutes of
sleep debt yesterday. Your current overall debt is XX minutes.
Sleep debt has adverse effects on physical and mental health.
Adjust your daytime behavior to cancel your debt.”

If sufficient physical activity data (<720 records/day) had not
been uploaded to the server by 9 AM, an alternative message
was sent to the participant requesting them to confirm the BLE
pairing of the activity monitor with their app: “It seems that
your data have not been uploaded successfully. We will analyze
the data again at 1 PM. Please check the BLE connection of
your HIT app before then.” The same computation process was
executed at 1 PM for the relevant participants. These processes
were executed by the local servers and were fully automated.

After the trial period, the participants rated their overall work
performance in the preceding 2 weeks on a self-anchoring scale
from 1 to 10. The question was as follows: “On a scale from 0
to 10, how would you rate your work performance over the past
two weeks?” While the HPQ was originally developed to
evaluate work performance over the past month, the scale used
in this study was modified to evaluate performance over the
past 2 weeks, corresponding to the survey period.
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Figure 1. Overview of the trial. HIT: health care Internet of Things.

Statistical Analysis
Sleep variables, including sleep duration and midpoint of sleep,
and daily work performance were recorded once a day, while
mood and physical symptoms were recorded several times a
day using smartphone-based EMA. Owing to this difference in
the frequency of data recording, we used different models to
analyze the group differences in the obtained data.

For the sleep variables and daily work performance, we
constructed a hierarchical Bayesian model to capture the daily
trend, baseline level, and within-individual stability, as follows:

yijk = βij
0 + βi

1 Dayijk + eijk

βij
0 = βi

0 + rij
0

eijk ~ N(0, σi
y)

rij
0~ N(0,σ0)

where yijk indicates the dependent variable (sleep duration,
midpoint of sleep, or daily work performance) at the k-th
recording for the j-th participant in the i-th group; Dayijk

indicates the day on which the corresponding dependent variable
was measured to record the trend (improving or worsening);

βij
0 is the intercept of the j-th participant in the i-th group; βi

1

is the slope for the day of the i-th group; the random terms rij
0

are the between-individual residuals; and eijk are the
within-individual residuals. In particular, the variance

component σi
y can be interpreted as a measurement of how

stable or fluctuating the sleep variables within an individual are

at the group level. Therefore, σi
y was assumed to be affected

by whether the intervention was provided and estimated for
each group. All random terms were assumed to follow a normal
distribution.

For EMA-recorded mood and physical symptoms, we used
linear mixed effect models to examine their diurnal slopes and
group differences.

yijk = βj
0 + β 1 Timeijk + β 2 Groupijk + β 3 Timeijk *

Groupijk + eijk

βj
0 = β 0 + rj

0

eijk ~ N(0, σy)

rj
0~ N(0,σ0)

where yijk indicates the moods or physical symptoms at the k-th
recording for the j-th participant in the i-th group; Timeijk

indicates the categorical variable representing the timing when
the corresponding dependent variables were recorded; thus,
Timeijk = 0 and Timeijk = 1 denote that the dependent variables
were recorded at wake-up time and bedtime, respectively;
Groupijk indicates the categorical variable representing the group
in which the j-th participant was classed; thus, Groupijk = 0 and
Groupijk = 1 denote that the dependent variable was obtained
from the participant classed as the control and feedback groups,

respectively; βj
0 is the intercept of the j-th participant; β1, β2,

and β3 are the coefficients for Timeijk, Groupijk, and their

interaction term, respectively; the random terms rj
0 are the

between-individual residuals and eijk are the within-individual
residuals. All random terms were assumed to follow a normal
distribution. When a significant interaction effect was observed,
we performed multiple comparison tests with Tukey correction.

In addition, we performed two-tailed Welch t test and Fisher
exact test for the baseline data to confirm that there were no
significant group differences. As the HPQ scores were recorded
in the baseline and follow-up questionnaires, we performed
2-way repeated measures ANOVA to examine the main effects
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of group (control vs feedback) and time (pre- vs
postintervention) and their interaction effect. For the cumulative
sleep debt, we performed the Welch 2-tailed t test and Levene
test for equality of variances for the final observation data per
participant to examine the group differences in terms of mean
and variance.

All analyses were performed using R statistical software (version
4.0.2). In particular, the parameters of the statistical models
were computed using the rstan [56] and lmerTest [57] packages.
The emmeans package (also known as the lsmeans package)
[58] was used for multiple comparison tests with Tukey
correction. Statistical significance was defined as when the 95%
credible interval (CI) did not include the null value or when a
P value <.05.

Ethics Approval
The Ethics Committee of the University of Tokyo approved
this study and the informed consent form (approval number
20-20).

Results

Demographic Characteristics
In total, 31 individuals agreed to participate in the study.
However, the data of 4 participants were excluded from the
statistical analyses because of their low response rates for
wake-up time and bedtime on the EMA questionnaire (ie, <3
days; Figure 2). The demographic characteristics of the
participants, including the control group (n=12) and the feedback
group (n=15), are presented in Table 1. The mean age of the
participants was 41.8 (SD 7.9) years, and 33% (9/27) were
females. The Welch 2-tailed t test and Fisher exact test showed
that there were no significant differences in demographic
characteristics between the groups. The total number of EMA
records was 1839, and the overall response rate was 64.88%
(1839/2835).

Figure 2. Flowchart of participant data selection for analyses. EMA: ecological momentary assessment; F: female; M: male.
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Table 1. Baseline demographic characteristics of participants by group.

P valueFeedback group (n=15)Control group (n=12)Overall (N=27)

.35a40.47 (7.21)43.42 (8.72)41.78 (7.90)Age (years), mean (SD)

.22b3 (20)6 (50)9 (33)Female, n (%)

.40a22.03 (2.67)21.18 (2.54)21.65 (2.60)BMI (kg/m2), mean (SD)

.72a6.20 (5.42)6.92 (4.94)6.51 (5.13)BDI-IIc, mean (SD)

.99b2 (13)2 (17)4 (15)BDI-II >13, n (%)

.67a40.60 (11.17)38.75 (11.31)39.78 (11.05)STAI Y-1d, mean (SD)

.52a41.20 (11.69)38.67 (8.50)40.74 (10.28)STAI Y-2e, mean (SD)

.97a4.71 (2.33)4.75 (2.05)4.73 (2.16)PSQIf, mean (SD)

.88a6 h 16 min (53 min)6 h 20 min (1 h 18 min)6 h 18 min (1 h 4 min)Sw
g, mean (SD)

.45a7 h 00 min (1 h 25 min)6 h 35 min (1 h 23 min)6 h 49 min (1 h 23 min)Sf
h, mean (SD)

aWelch t test.
bFisher exact test.
cBDI-II: Beck Depression Inventory second edition.
dSTAI Y-1: State Anxiety Scale.
eSTAI Y-2: Trait Anxiety Scale.
fPSQI: Pittsburgh Sleep Quality Index.
gSw: sleep duration on work days.
hSf: sleep duration on free days.

Statistical Properties of Sleep Variables
We examined group differences in the sleep variables such as
cumulative sleep debt, sleep duration, and midpoint of sleep
during the trial period. The data of 5 of the 27 (18%) participants
were excluded from the analyses because of physical activity
measurement failures (Figure 2). Thus, the data from 11
participants in the control group (mean age 43.3, SD 9.1 years;
6 males and 5 females) and 11 participants in the feedback group
(mean age 41.3, SD 7.41 years; 9 males and 2 females) were
analyzed.

Figure 3 presents the spaghetti plots of the computed sleep
variables for all participants during the trial period. The Welch
t test and Levene test for equality of variances indicated that

there was no significant group difference in cumulative sleep
debt per participant, t17.32=0.64, P=.53; F1,20=0.15, P=.70.

We subsequently examined the group differences in the daily
trend, baseline level, and within-individual residuals for sleep
duration and midpoint of sleep using the hierarchical Bayesian
model. The within-individual residuals for the midpoint of sleep
in the feedback group were significantly smaller than those in
the control group (expected a posteriori for the difference: −15,
95% CI −26 to −4 min; Table 2). This was also the case for the
within-individual residuals for bedtime (−18, 95% CI−31 to −4
min; Multimedia Appendix 4). Both groups showed no
significant slope of the day in terms of sleep duration (control
group: 0 95% CI −3 to 3 min; feedback group: 1, 95% CI −3 to
1 min) or midpoint of sleep (control group: −1, 95% CI −4 to
1 min; feedback group: 1, 95% CI −1 to 3 min).
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Figure 3. Spaghetti plots of the estimated cumulative sleep debt (top panels), sleep duration (middle panels), and midpoint of sleep (bottom panels)
per participant across the trial period. The left and right panels indicate the time series of the sleep variables for the control group and the feedback
group, respectively.
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Table 2. Results of the hierarchical Bayesian model for sleep duration and midpoint of sleep.

DifferenceFeedback groupControl group

95% CIEAP (SD)95% CIEAP (SD)95% CIcEAPa (SD)b

Sleep durationd

−1 h 2 min to
58 min

−1 min (31
min)

6 h 27 min to 8 h 36
min

7 h 31 min (33 min)6 h 42 min to 8 h
23 min

7 h 33 min (26 min)Intercept

−4 min to 3 min−1 min (2 min)−3 min to 1 min1 min (1 min)−3 min to 3 min0 min (1 min)Day

N/AN/Af29 min to 1 h 14 min48 min (11 min)29 min to 1 h 14
min

48 min (11 min)σ0e

−14 min to 16
min

0 min (8 min)1 h 3 min to 1 h 26
min

1 h 13 min (6 min)1 h 4 min to 1 h
23 min

1 h 13 min (5 min)σy

Midpoint of sleepd

−42 min to 52
min

4 min (24 min)2:44 to 4:263:34 (26 min)2:48 to 4:123:30 (21 min)Intercept

0 min to 5 min2 min (1 min)−1 min to 3 min1 min (1 min)−4 min to 1 min−1 min (1 min)Day

N/AN/A27 min to 1 h 1 min41 min (9 min)27 min to 1 h 1
min

41 min (9 min)σ0

−26 min to −4
min

−15 min (5

min)g
39 min to 54 min46 min (4 min)53 min to 1 h 9

min
1 h 1 min (4 min)σy

aEAP: expected a posteriori (expected value of the posterior distribution).
bSD of the posterior distribution.
cCI: credible interval.
dThe models were run after controlling for age and sex.
eThe difference in the interindividual variability for the intercept (σ0) was not computed because σ0 was assumed to be equal between groups.
fN/A: not applicable.
gItalicized values denote statistically significant group effects, at a 95% CI.

Self-reported Work Performance Assessment
We examined the group differences in daily work performance
during the trial period using 307 EMA records obtained from
27 participants (Figure 4). We examined the statistical properties
of daily work performance by using the statistical model used

to analyze the sleep variables. However, there were no
significant differences between the groups (Table 3). When
comparing the HPQ score before and after the intervention using
a 2-way repeated ANOVA, the main effects of group, F1,25=0.39,
P=.54, and time, F1,25=0.01, P=.94, and their interaction,
F1,25=0.05, P=.83, were not significant.

Figure 4. Spaghetti plots of the daily work performance recorded using ecological momentary assessment per participant across the trial period. The
left and right panels indicate the time series of the work performance for the control group and the feedback group, respectively.
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Table 3. Results of the hierarchical Bayesian model for daily work performance.

DifferenceFeedbackControl

95% CIEAP (SD)95% CIEAP (SD)95% CIcEAPa (SD)b

Daily work performanced

−11.92 to 19.843.85 (8.01)44.24 to 78.8261.45 (8.77)44.60 to 70.5457.59 (6.67)Intercept

−0.77 to 0.29−0.24 (0.27)−0.26 to 0.410.08 (0.17)−0.11 to 0.750.32 (0.22)Day

N/AN/Af12.38 to 23.5417.06 (2.89)12.38 to 23.5417.06 (2.89)σ0e

−2.94 to 1.50−0.66 (1.14)11.31 to 14.1212.62 (0.72)11.68 to 15.1413.28 (0.88)σy

aEAP: expected a posteriori.
bSD of the posterior distribution.
cCI: credible interval.
dThe models were run after controlling for age and sex.
eThe difference in the interindividual variability for the intercept (σ0) was not computed because σ0 was assumed to be equal between groups.
fN/A: not applicable.

Diurnal Slopes for EMA Scores
The recorded EMA scores of 27 participants (760 records) were
used to examine the diurnal slopes in momentary mood and
physical symptoms (Figure 2). The linear mixed effect model
results showed significant interaction effects between group
and time in physical symptoms (fatigue, P=.002; sleepiness,
P<.001; and neck and shoulder stiffness, P<.001; Table 4). In

addition, a multiple comparison test with Tukey correction
showed that the EMA scores of physical symptoms at wake-up
time were significantly lower than those at bedtime in the
feedback group (fatigue, sleepiness, and neck and shoulder
stiffness, P<.001). In the control group, a significant difference
between wake-up time and bedtime was observed only for
fatigue (P<.001; Figure 5).
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Table 4. Results of the linear mixed effect model for mood and physical symptoms.

P valueDfbCoefficient (SE)Mood and physical symptomsa

Depressive mood

<.00123.2841.27 (5.56)Interceptc

.1523.42−9.87 (6.61)Group

.75731.32−0.35 (1.10)Time

.63731.60.74 (1.51)Group×Time

Anxiety

<.00123.3135.75 (7.42)Interceptc

.0723.46−16.89 (8.82)Group

.41731.36−1.29 (1.56)Time

.16731.663.03 (2.14)Group×Time

Stress

<.00123.4247.07 (8.02)Intercept

.0623.6−18.66 (9.54)Group

.17731.462.49 (1.80)Time

.85731.820.46 (2.47)Group×Time

Fatigue

<.001 d23.7235.22 (7.24)Intercept

.0724.03−16.47 (8.62)Group

<.001731.7816.07 (2.14)Time

.002732.399.31 (2.96)Group×Time

Sleepiness

<.00124.0855.75 (7.20)Intercept

.2624.51−9.81 (8.58)Group

.61732.141.27 (2.49)Time

<.001732.9617.70 (3.42)Group×Time

Neck and shoulder stiffness

<.00123.2743.33 (9.59)Intercept

.2723.37−12.99 (11.40)Group

.13731.3−2.51 (1.64)Time

<.001731.518.46 (2.26)Group×Time

aThe df values correspond to the denominator df in ANOVA model.
bThe effects of group (control vs feedback group) and time (wake-up time vs bedtime) were assumed to be fixed effects, and those of individuals were
assumed to be random effects.
cThe control group and wake-up time were used as the reference categories for each variable; thus, the intercept indicates the expected EMA score of
moods or physical symptoms for the control group during the wake-up time.
dItalicized values denote statistically significant interaction effects. All models were run by controlling for age and sex.
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Figure 5. Average ecological momentary assessment scores for fatigue, sleepiness, and neck and shoulder stiffness at bedtime and wake-up time in
the control group and the feedback group. The error bars indicate the SE per group.

Discussion

Principal Findings
We explored the effects of personalized feedback messages
regarding the current sleep status on habitual sleep behavior
and momentary mood and physical symptoms in Japanese office
workers, using a unique cloud-based HIT system that included
a web-based wearable activity monitor and a smartphone app.
Specifically, we focused on group differences in the statistical
properties of sleep variables and within-day momentary
symptoms during the trial period. We found that the
within-individual residuals for sleep timing were significantly
smaller in the feedback group than in the control group. In
addition, the diurnal slopes for physical symptoms (sleepiness,
fatigue, and neck and shoulder stiffness) differed significantly
between the feedback and control groups, largely because of
better physical symptom scores in the feedback group at
wake-up time. This is the first mHealth study to implement
push-type sleep feedback based on objective measurements and
to demonstrate improved sleep status and momentary symptoms
associated with receiving the feedback message. The findings
in this study suggest that objective push-type feedback messages
may promote sleep self-management and solve habitual sleep
behavior problems, despite the minor inconvenience.

Several mHealth apps have been developed for treating sleep
disturbances such as insomnia [30,31], but the objective sleep
feedback function has not been implemented in these apps.
While users of consumer-grade wearable devices can take
advantage of objective sleep measurements, these are regarded
as pull-type interventions, as these devices require the user to
actively access an app to receive feedback, which can sometimes
be burdensome. Connecting mHealth apps with wearable sensing
devices and sending objective push-type sleep feedback may
be a feature to consider when developing or updating mHealth
apps that target sleep disturbance.

Comparison With Previous Work
The within-individual residuals in sleep variables examined in
this study can represent how sleep behavior varies across days,
which is commonly referred to as intraindividual variability

[22]. Recently, the stability of habitual sleep behavior has been
considered a critical factor for physical and mental health, as
previous studies have indicated that greater intraindividual
variability in sleep behavior is associated with worse medical
health conditions [25] and poorer psychological well-being [26].
In our study, participants may have attempted to improve their
sleep habits by adopting strategies to stabilize their sleep timing
(specifically their bedtime); for example, by not staying up late
excessively. This inference is supported by evidence of a
significant group difference in the within-individual residuals
at bedtime but not in wake-up time. Similar results were reported
by Murawski et al [40] who found improvement in the
variability of sleep timing after the 3-month intervention. Given
the fact that our survey period was relatively short, it is
speculated that the improvement in sleep variability is an initial
change caused by improved awareness of habitual sleep
behaviors. Especially in modern industrial societies, the
sleep-wake cycle adhering to social schedules, rather than
endogenous circadian rhythms, leads to exposure to bright light
at significantly different times from the natural environment.
This causes disturbances in sleep and circadian rhythms, such
as circadian misalignment [59] and social jet lag [60,61], which
are linked to future health problems. Thus, the findings of this
study suggest that sending personalized sleep feedback messages
may potentially contribute to the primary prevention of physical
and mental health problems as well as the improvement of the
sleep-wake cycle.

Improvements in physical symptoms and stabilization of sleep
timing were simultaneously observed in the feedback group,
suggesting the covariant relationship between them. Indeed,
previous studies have indicated that individuals with greater
intraindividual variability in sleep timing and sleep duration
show more dysregulated biomarkers related to endogenous
circadian rhythm [23] and inflammatory functions [24], which
can influence diurnal symptoms including sleepiness and fatigue.
Therefore, improved physical symptoms at wake-up time in the
feedback group may have been caused by stabilized sleep
timing, mediated by regulated physiological systems. Thus, it
is possible that improved physical symptoms were observed as
a short-term effect or proximal outcome of the interventions
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that stabilized sleep timing and, by extension, functioned as an
incentive to improve sleep habits and adjust daytime activities.
However, inconsistent results have been reported in previous
studies investigating the relationship between sleep and physical
symptoms. In a cross-sectional study, there was no relationship
between sleep variability and daytime fatigue and sleepiness
[62], whereas daytime sleepiness was reduced among university
students who were instructed to stabilize their sleep-wake
schedule experimentally [63]. These mixed results may be due
to the use of survey designs that evaluate symptoms at a single
time point. In contrast, we measured physical symptoms several
times per day using the EMA technique, with finer temporal
resolution than in previous studies, and with ecological validity,
resulting in the discovery of improved physical symptoms at
wake-up time in the feedback group. When acquiring physical
symptom data, the timing of the measurements can also be an
important factor.

A previous study demonstrated that the use of wearable devices
improved sleep duration in a healthy population [29]. However,
the hierarchical Bayesian model demonstrated that the slope of
day for sleep duration and midpoint of sleep were not
statistically significant; thus, we did not find an improvement
in sleep duration or midpoint of sleep by using only sleep
feedback. This discrepancy may be due to the prompts of
feedback messages. During the survey period, participants’
sleep debt did not accumulate much, and they seemed to receive
messages indicating that their sleep status was better. Under
such circumstances, they might have attempted to maintain their
sleep status by stabilizing their sleep-wake cycle rather than to
improve their sleep duration or sleep timing. In future studies,
it will be necessary to provide further support for prolonging
sleep duration and advancing sleep timing, in addition to an
objective sleep feedback message. Improvements in sleep
duration and timing can also be beneficial to daytime functions,
such as momentary moods and work performance, which were
not improved in this study.

Future Directions
The HIT app is primarily designed for collecting
multidimensional data in daily life, unlike mHealth apps
developed for treating sleep disturbance. Therefore, in the HIT
app, the functions useful for improving sleep disturbances are
limited to objective feedback messages, while other apps offer
several support functions, such as psychoeducation, sleep
hygiene, and data visualization [30]. It is possible to improve
sleep duration and timing by incorporating additional
intervention options into the HIT app. Behavioral instructions
to build sufficient sleep pressure at night are an example of
additional support. In the treatment of patients with insomnia,
sleep restriction therapy, which induces mild sleep deprivation
to build homeostatic sleep pressure, is used, and existing
mHealth studies incorporating sleep restriction therapy
demonstrate a significant improvement in insomnia severity
and sleep efficacy [35,64,65]. Interventions that build sufficient
homeostatic sleep pressure as part of daily living, for example,
exercising in the evening and avoiding long naps, may improve
sleep duration and daytime functions, including work
performance. Other interventions include behavioral
coordination that works on the endogenous circadian rhythm;

for example, adjusting the timing of food intake and avoiding
exposure to bright light before bedtime. Such expansions can
facilitate the control of habitual sleep timing and enhance the
applicability of an IoT system with mobile devices for the
treatment of various sleep disorders. Measuring, integrating,
and using multidimensional information, including
environmental and behavioral data, requires additional research.
Simultaneously, integrative health care information systems,
such as an HIT system, may provide a solution and expand
intervention options, facilitating the verification of their
effectiveness.

Limitations
This study had several limitations. First, the small number of
participants were recruited from a life insurance company in
Japan, and the social schedules of participants appeared similar,
limiting the generalizability of the results. Indeed, work-related
factors, including occupation, job stress, work hours, shift work,
and physically demanding work, are associated with habitual
sleep duration and sleep quality [66-68], suggesting that sleep
habits may differ by occupation. Thus, a representative study
including various occupations and lifestyles is required to ensure
generalizability of the findings of this study.

Second, in this study, the exclusive computational method
estimating sleep debt was introduced by summing the
differences between the estimated and expected sleep duration.
Although similar methods have been used to estimate sleep debt
in other studies (the difference between self-reported sleep need
and sleep duration on weekdays) [69,70], sleep debt computed
using these methods may not reflect the neurobehavioral
impairment caused by chronic sleep loss commonly observed
in the experimental condition [71,72]. Initially, we adopted this
definition with the aim of having participants plan their daily
activities to improve the status of sleep insufficiency, but it
could be possible that actual sleep debt was not accurately
estimated. Therefore, a reliable method to estimate current sleep
status should be developed and used in future studies. Especially,
combining EMA techniques and machine learning methods is
expected to provide reliable sleep measurements in daily life.
For instance, a recent study reported that machine learning
techniques could estimate daily sleep quality by using complex
life data obtained from EMA questionnaires [73]. Collecting
and integrating multidimensional information would be
meaningful not only in understanding the covariant associations
of sleep behavior with daytime symptoms but also for
developing novel sleep measurements.

Finally, participants could identify the group they were assigned
to because only the participants in the feedback group received
feedback messages at 9 AM. Considering that physical
symptoms were measured using self-report evaluations, EMA
recordings were affected by cognitive biases such as the
Hawthorne effect (the inclination of people who participate in
an experimental study to change or improve their behavior only
because it is being studied and not because of changes in the
experimental stimulus). Optimizing the study design would help
clarify this point. For example, by sending intervention messages
that are not related to habitual sleep behavior to participants in
the control group, we can determine whether the finding is based
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on a specific response to sleep feedback messages. In addition,
implementing a microrandomized trial [74], which is equivalent
to a within-individual randomized controlled trial, could also
be helpful in investigating the effectiveness of the interventions.
By randomizing whether feedback messages are sent, we could
examine the causal relationships between sleep behaviors and
daytime functions.

Conclusions
We conducted an mHealth trial with office workers and
demonstrated that objective push-type sleep feedback stabilizes

sleep timing and improves physical symptoms at wake-up time.
However, we did not find evidence of prolonged sleep duration,
advanced sleep timing, or improved work performance. Future
research should incorporate specific behavioral instructions
intended to improve sleep duration and sleep timing with the
current protocol and investigate behavioral instruction
effectiveness by integrating and using multidimensional
information collected as part of daily life.
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