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Abstract

Background: Smartphone studies provide an opportunity to collect frequent data at a low burden on participants. Therefore,
smartphones may enable data collection from people with progressive neurodegenerative diseases such as amyotrophic lateral
sclerosis at high frequencies for a long duration. However, the progressive decline in patients’ cognitive and functional abilities
could also hamper the feasibility of collecting patient-reported outcomes, audio recordings, and location data in the long term.

Objective: The aim of this study is to investigate the completeness of survey data, audio recordings, and passively collected
location data from 3 smartphone-based studies of people with amyotrophic lateral sclerosis.

Methods: We analyzed data completeness in three studies: 2 observational cohort studies (study 1: N=22; duration=12 weeks
and study 2: N=49; duration=52 weeks) and 1 clinical trial (study 3: N=49; duration=20 weeks). In these studies, participants
were asked to complete weekly surveys; weekly audio recordings; and in the background, the app collected sensor data, including
location data. For each of the three studies and each of the three data streams, we estimated time-to-discontinuation using the
Kaplan–Meier method. We identified predictors of app discontinuation using Cox proportional hazards regression analysis. We
quantified data completeness for both early dropouts and participants who remained engaged for longer.

Results: Time-to-discontinuation was shortest in the year-long observational study and longest in the clinical trial. After 3
months in the study, most participants still completed surveys and audio recordings: 77% (17/22) in study 1, 59% (29/49) in study
2, and 96% (22/23) in study 3. After 3 months, passively collected location data were collected for 95% (21/22), 86% (42/49),
and 100% (23/23) of the participants. The Cox regression did not provide evidence that demographic characteristics or disease
severity at baseline were associated with attrition, although it was somewhat underpowered. The mean data completeness was
the highest for passively collected location data. For most participants, data completeness declined over time; mean data
completeness was typically lower in the month before participants dropped out. Moreover, data completeness was lower for
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people who dropped out in the first study month (very few data points) compared with participants who adhered long term (data
completeness fluctuating around 75%).

Conclusions: These three studies successfully collected smartphone data longitudinally from a neurodegenerative population.
Despite patients’ progressive physical and cognitive decline, time-to-discontinuation was higher than in typical smartphone
studies. Our study provides an important benchmark for participant engagement in a neurodegenerative population. To increase
data completeness, collecting passive data (such as location data) and identifying participants who are likely to adhere during the
initial phase of a study can be useful.

Trial Registration: ClinicalTrials.gov NCT03168711; https://clinicaltrials.gov/ct2/show/NCT03168711

(JMIR Mhealth Uhealth 2022;10(2):e31877) doi: 10.2196/31877
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Introduction

Background
Participation in clinical research requires an effort. More
research visits create a greater burden and, thus, a larger barrier
to long-term participation. Clinical trialists often design studies
that collect data relatively infrequently to reduce the burden of
clinical research for participants. Although this reduces the
research burden, it also reduces statistical power [1]. Data
collection from participants’ smartphones may allow
high-frequency data at a low burden of participation. As
smartphones are now increasingly common and typically carried
by their users throughout the day, every day, they can be used
for nearly continuous, unobtrusive data collection in everyday
settings [2,3].

This opportunity to collect research data frequently at a low
participant burden is appealing for research on
neurodegenerative diseases. For participants, clinic visits are
especially onerous, owing to the progressive decline in their
cognitive and physical function. Study teams also feel the burden
on staff time, as assessment visits often are 1-3 hours in duration.
Research sponsors see ballooning costs from staffing
requirements [4].

Digital data collection from smartphones could reduce all of
these burdens while providing relevant, quantitative, and
frequent study data directly from participants. Smartphones can
be used to collect a rich variety of data for clinical research.
These data include active data, which requires data entry by the
participant (eg, surveys), and passive data (eg, sensor and log
data) that do not require activity by the participant beyond
installing a research app [5]. These voluminous passive data
can be converted into meaningful and interpretable variables
that describe individual-level traits, habits, and behavior. If a
study makes use of a participant’s own phones (therefore
enabling collection of naturalistic data without requiring
additional instrumentation) and collects raw high-throughput
data from the phones (therefore enabling generation of study
specific metrics over prepackaged metrics with enhanced
reproducibility), the approach is referred to as digital
phenotyping [6].

Smartphone Studies in Neurodegenerative Diseases
In many cases, people with neurodegenerative diseases remain
able to use their smartphones to participate in studies, despite
the progressive nature of their disease. This is certainly true for
people with amyotrophic lateral sclerosis (ALS), a
neurodegenerative disease that causes a progressive decline in
speech, respiratory function, and motor skills [7]. Recent studies
have demonstrated that people with ALS use smartphones and
can complete frequent surveys for research, even in the later
stages of the disease [8]. Thus, smartphone-based digital
phenotyping for neurodegenerative diseases is feasible.

At the same time, digital data collection has potential
shortcomings that must be understood. Despite the low burden
of data collection from participants’ own devices, smartphone
studies may have high attrition, even when focusing on passive
data collection [9-12]. When participants discontinue app use,
they introduce missing active data. In addition, sensor
noncollection due to technological factors or participant behavior
introduces missing passive data [11,12]. Missing data, whether
active or passive, reduces statistical power, threatens the
generalizability of results, and can introduce attrition bias
[9,12,13]. For example, if participants with more severe disease
at baseline dropout more frequently, the study findings may not
generalize to these participants [13].

To assess the risk of attrition bias in smartphone-based medical
research, we must understand the relationship between
participant characteristics, disease severity, and rate of
progression on the one hand, as well as attrition risk on the other
hand [9]. Patterns of attrition may differ between observational
studies and clinical trials [14]. Attrition has been reported for
smartphone studies in some areas, including mental health
[9,15,16], cancer [17], chronic diseases [18], neurodegenerative
diseases [19,20] and healthy controls [19]. However, predictors
of attrition or risk of attrition bias have not been thoroughly
investigated for neurodegenerative diseases. In people with
diseases such as ALS, immobility, challenges with activities of
daily living, and cognitive decline can threaten their ability to
comply with smartphone data collection.

Study Aims
We investigated data completeness in 3 studies using the same
platform for data collection from personal smartphones of people
with ALS. Two of these were observational studies, and one
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was a clinical trial. In all 3 studies, the participants contributed
traditional ALS clinical outcome data during in-clinic visits. In
addition, participants installed the front-end app from the Beiwe
platform on their smartphones and used it for active and passive
data collection [8]. We estimated time-to-discontinuation in
each of the three studies, identified predictors of app
discontinuation, and quantified data completeness for early
dropouts and participants who remained engaged longitudinally.

Methods

Overview
We analyzed data from 3 studies using the Beiwe platform for
smartphone data collection. In each of the three studies, data
were collected in three ways: (1) traditional
clinician-administered survey data during clinic visits or by
telephone; (2) active data, including patient-reported outcomes
from smartphone surveys administered through the Beiwe app,
audio recordings where participants coughed, and audio

recordings where participants recited a text shown on their
smartphone screen; and (3) passive data from sensors and logs,
automatically collected by the Beiwe smartphone app.

All data were collected and stored in compliance with local,
state, and national laws, regulations, and policies. For study 1,
participants were enrolled at the Massachusetts General Hospital
(MGH) in Boston. For study 2, participants were enrolled at
both MGH in Boston, United States, and in Washington
University in St Louis, Missouri, United States. For study 3,
participants were enrolled at MGH, Twin Cities ALS Clinic in
Minneapolis, Minnesota, United States, and Holy Cross ALS
Clinic in Fort Lauderdale, Florida, United States. The studies
differed in duration and expected frequency of clinical data
collection (Table 1). None of the studies included routine contact
with participants to encourage engagement; there was no
reimbursement for engagement; and outside of reminders from
the smartphone app itself (known as notifications), no reminders
were sent to participants.

Table 1. Characteristics of the 3 included studies.

Frequency of data collectionStudy duration (weeks)Number of participants, NStudy

Smartphone sensorsSmartphone surveyClinic visit

GPS on for 1 minute and off for
10 minutes

Weekly3 times1222Study 1

GPS on for 1 minute and off for
10 minutes

Weekly2 times5249Study 2

GPS on for 1 minute and off for
10 minutes

Weekly3 times2023Study 3

Study 1: 12-Week Pilot Study
Study 1 was a pilot observational cohort study 12 weeks in
duration, running from July 2016 to June 2018.
Clinician-administered survey data were collected at baseline
and at weeks 6 and 12. Study design and participant recruitment
for study 1 have been previously published [8].

Study 2: 52-Week Cohort Study
Study 2 was an observational cohort study 52 weeks in duration,
running from November 2018 to March 2021.
Clinician-administered survey data were collected at baseline
and week 52. This study used the same methods for recruitment
and data collection used in study 1 [8].

Study 3: 20-Week Clinical Trial
Study 3 was the safety of rate elevation in ALS (SURE-ALS2)
randomized, placebo-controlled clinical trial of inosine to raise
urate levels (NCT03168711). The trial ran from November 2017
to December 2019. The participants were divided into an
intervention group, receiving inosine and a control group,
receiving matching placebo until week 16. In short, after consent
and successful screening for the trial, the Beiwe smartphone
app was installed on the participants’ personal smartphones at
the baseline visit. The app was uninstalled at the 20-week visit.
Participants were asked to complete in-person visits for clinical
outcomes at baseline, week 12, and week 20. They also received
phone calls every 3 weeks throughout the study. The

clinician-administered revised ALS functional rating scale
(ALSFRS-R) was completed during in-person visits.

Study 3 had more restrictive selection criteria than the
observational studies. Studies 1 and 2 required participants to
have a diagnosis of ALS according to the El Escorial Criteria
[21], at least moderate smartphone use, and no neurological
disorders other than ALS. Study 3 included additional selection
criteria requiring vital capacity >60% of predicted, plasma urate
<5.5 mg/dL, and no medical history of gout, coronary artery
disease, stroke, poorly controlled hypertension, or renal
insufficiency.

Ethics
Each study was approved by the Mass General Brigham
Institutional Review Board (IRB). Study 2 was also approved
by the Washington University IRB. Study 3 used a central IRB
(the Mass General Brigham IRB) for all sites.

Data Collection
We collected smartphone data through Beiwe, an open-source,
end-to-end encrypted high-throughput digital phenotyping
platform [22]. It consists of Android and iOS smartphone apps
for data collection and an Amazon Web Services cloud-based
system back-end for data collection and processing [23]. It has
been used in both observational studies and clinical trials to
collect self-administered surveys and various types of passive
data [8,24].
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The primary clinical outcome measure in the 3 studies was
functional ability, as measured by the ALSFRS-R. The
ALSFRS-R is a 12-item survey for measuring functional ability,
each with 5-answer options, scored from 4 (normal ability) to
0 (lowest functionality) [25]. The questions are divided into four
subdomains: the bulbar domain (questions 1-3), fine motor
domain (questions 4-6), gross motor domain (questions 7-9),
and respiratory domain (questions 10-12). The maximum
domain score is 12 (domain not affected), with a lower score
denoting lower functional ability. The total survey score is the
sum of all questions and has a 48-point scale (from 48 points,
indicating normal function to 0 points [25]).

Baseline Visit
At the baseline visit, clinical characteristics were obtained in
person and stored in an electronic data capture system. The
Beiwe app was downloaded onto the participant’s smartphone
and activated by the study coordinator. Upon activation, the
app delivered a baseline survey to the participant to gather
demographic and clinical information and thereafter collected
active and passive data as planned.

Smartphone Data
The Beiwe app was configured to collect weekly
self-administered ALSFRS-R scores, weekly recordings of
speech, and weekly recordings of cough (not analyzed here).
The app also collected metadata on survey completion, including
clock-times of survey presentation on the smartphone screen,
submission time of each question answer by the participant, and
submission time of the completed survey. In addition, the app
collected data from multiple smartphone sensors and logs (Table
1) [8,26]. GPS data were collected for a 1-minute interval
followed by a 10-minute interval of noncollection, that is, GPS
data were collected for 1 minute every 11 minutes (hence,
approximately 6 times per hour).

Statistical Methods

Data Volume
For clinic-based and smartphone-based surveys, we reported
the number of clinic-based and smartphone-based ALSFRS-R
surveys per participant. For GPS location data, we reported the
number of participant-days for which data were available and
the total data volume. Data were considered available if the app
had recoded any location data on that day.

Kaplan–Meier Estimates of Time-to-Discontinuation
For smartphone survey data, we defined the date of dropout as
the date of the first missed survey, that is, the week after a
participant had completed their last smartphone survey. For
smartphone sensor data, we defined the date of dropout as the
day after the last recording of smartphone sensor data.

We used the Kaplan–Meier method to estimate
time-to-discontinuation for smartphone survey data (model 1)
and for smartphone sensor data (model 2). Both models were
stratified by study type. Time-to-discontinuation was censored
at the end of each study’s follow-up period (after week 12, 52,
or 20; see Table 1) if a participant died and, for trial participants,
if they discontinued the trial because of side effects.

Proportional Hazard of Dropping Out
We used Cox proportional hazard regression to identify the
predictors of smartphone survey data and smartphone sensor
data. We tested whether the likelihood of dropout was higher
for participants with certain demographic characteristics or with
a higher disease severity at baseline.

The covariates we included in the model were as follows:

• Participant characteristics, such as age (in years), sex (male
or female), and smartphone operating system (Android or
iOS)

• Disease severity at baseline, such as baseline functional
ability as measured by the 4 domains of the ALSFRS-R
score. These four domains are the fine motor domain score,
gross motor domain score, bulbar domain score, and
respiratory domain score.

Data Completeness
Data completeness was defined as the percentage of days for
which participants provided GPS data and the percentage of
weeks for which participants submitted surveys and audio
recordings. For GPS data, 100% data completeness meant that
GPS data were available for each day from the participants’
enrollment until their last day in the study. For survey and audio
recording data, 100% data completeness meant that a participant
had submitted 1 survey or audio recording per week for each
week from their enrollment until their last day in the study.

We visualized the data in a boxplot of participants’ data
completeness during the time they contributed to the data. In
addition, we calculated the data completeness for each 28-day
period in which a participant was in the study. We used a 28-day
period rather than a calendar month, because the total duration
of all 3 studies was a multitude of 28 days; the maximum time
in study was 3×28 days for study 1, 12×28 days for study 2,
and 5×28 days for study 3. We plotted data completeness for
each 28-day period (hereafter, month), stratified by participants’
total duration in the study.

Results

The 3 studies are referred to as study 1 (12-week observational
pilot study), study 2 (52-week observational study) and study
3 (20-week clinical trial) in this section.

Participants
Demographic data for the 3 studies are presented in Table 2.
There were 22 participants in study 1, 49 in study 2, and 23 in
study 3. There were more male participants in the 2
observational studies (15/22, 68% and 29/49, 59%; in line with
a higher prevalence of ALS in men), but fewer in the clinical
trial (9/23, 39%). The mean age and baseline ALSFRS-R scores
were similar across studies. Owing to the differences in inclusion
criteria, mean disease duration was 5-7 months shorter for
participants in the clinical trial, and baseline mean vital capacity,
a measurement of lung volume, was higher for those in the
clinical trial. Most participants were iOS users in all studies
(56/94, 60%). In each of the three studies, one person died
before the end of the study.
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In total, we collected 185 ALSFRS-R scores during clinic visits
(43 for study 1, 77 for study 2, and 65 for study 3), 1465
ALSFRS-R scores from smartphones (375 for study 1, 759 for
study 2, and 331 for study 3), 3748 audio recordings from

smartphones (678 for study 1, 1315 for study 2, and 609 for
study 3), and a total of 10.4 GB of GPS location data (3.4 GB
for study 1, 5.5 for study 2, and 1.5 GB for the study 3).

Table 2. Demographic characteristics of participants per study.

Study 3Study 2Study 1Characteristics

234922Number of participants, N

9 (39)30 (59)15 (68)Sex (male), n (%)

23 (100)48 (98)20 (91)Race (White), n (%)

12 (52)36 (73)17 (77)Phone operating system (iOS users), n (%)

23 (100)49 (100)21 (100)Location of symptom onset, n (%)

7 (30)11 (22)5 (23)Bulbar

15 (65)38 (78)16 (73)Limb

1 (4)01 (5)Trunk

58 (10)57 (11)56 (6)Age (years), mean (SD)

26 (14; n=22)a35 (23; n=48)a31 (21)Disease duration at baseline visit (months), mean (SD)

12 (7; n=22)a17 (14)17 (13)Diagnostic delayb (months), mean (SD)

36 (8)35 (9; n=46)a34 (7)Baseline ALSFRS-Rc total score, mean (SD)

9 (3)10 (3)10 (2)Bulbar subscore

8 (3)8 (3)8 (2)Fine motor subscore

8 (3)7 (3)7 (3)Gross motor subscore

11 (2)10 (2)9 (3)Respiratory subscore

aData were missing; mean and SD calculated over smaller sample size (smaller sample size provided as n, wherever applicable).
bDiagnostic delay: time between symptom onset and diagnosis.
cALSFRS-R: revised amyotrophic lateral sclerosis functional rating scale.

Time-to-Discontinuation
Kaplan–Meier estimates of the time-to-discontinuation for active
data are presented in Figure 1 (red line for audio recordings,
yellow line for surveys, and blue line for passive data). After
12 weeks, 77% (17/22) of the participants in study 1, 59%

(29/49) of the participants in study 2, and 96% (22/23) of the
participants in study 3 continued to contribute active data
(surveys and audio recordings). For passive data, 95% (21/22)
of the participants in study 1, 86% (42/49) of the participants
in study 2, and 100% (23/23) of the participants in study 3
continued to contribute sensor data.
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Figure 1. Kaplan–Meier plot estimates of time-to-discontinuation for 3 data types. Each color denotes a different data type: audio data in red, GPS
data in blue, and survey data in yellow. Participants that were censored before the end of the study are denoted by + signs. Each panel shows
time-to-discontinuation in a different study: study 1 (top, a 12-week pilot study), study 3 (middle, a 20-week clinical trial), and study 2 (bottom, a 1-year
observational study).

Predictors of Early Discontinuation
We used the Cox proportional hazards model to estimate
whether study, participant demographics, and disease severity
were associated with the risk of discontinuation, with a separate
model for survey, audio recording, and GPS data. None of the
variables were statistically significantly associated with the risk
of discontinuation. The estimated associations between the
study, participant demographics, and disease severity at baseline
are presented in Multimedia Appendix 1.

Data Completeness
The time-to-discontinuation model described above paints only
part of the picture—how long the participants contributed to
any data. We also explored data completeness, the proportion
of days a participant provided GPS data, surveys, audio
recordings of coughs, and audio recordings when participants
recited a short text that was displayed on their screen. Data were
100% complete for GPS if any data were contributed for a given
day, and data were 100% complete if surveys and audio
recordings were completed each week when the task was
presented.

Figure 2 shows boxplots for each study of the average data
completeness for each data type before discontinuation (after
discontinuation, data completeness is 0% by definition). In all

studies, GPS data completeness was highest over the 3 studies
(range 90%-100% of days that a participant stayed in the study),
followed by survey data in study 1 (median 100%) and study 2
(median 90%) and by audio recordings (cough recordings;
median 92%) in study 3. Of the 3 studies, study 3 (20-week
clinical trial) had the highest data completeness, and study 2
(52-week observational study) had the lowest data completeness.

We then plotted data completeness for each 28-day period
(hereafter, month), stratified by participants’ total duration in
the study (Figure 3). First, this analysis showed that participants
who contributed data for longer (eg, for >2 months) had higher
data completeness than participants who stopped contributing
data in the first or second month. Participants who contributed
data longer had a data completeness fluctuating around 75%
for all the data types for their first months in the study, whereas
early dropouts typically had low data completeness for the
months that they were active. For those dropping out within the
first month, mean data completeness across the studies ranged
from 7.8% (audio recording) to 41% (surveys). For those who
dropped out in the second study month, completeness ranged
from 41% (audio cough recording) to 59% (GPS data). Second,
for most participants, data completeness declined over time;
mean data completeness was typically lower in the last month
of the study (except for study 2, where participants who were
active until the final month completed all surveys and audio
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tasks). Third, data completeness was generally highest for GPS
data (except for those who dropped out in the first month).

Fourth, data completeness did not differ significantly between
the 2 audio tasks.

Figure 2. Boxplot of participants’ data completeness (in %) excluding the period after discontinuation. Data completeness was defined as percentage
of days with any GPS data and percentage of weeks with a completed survey or audio recording.

Figure 3. Bar graph of data completeness per month in study (excluding the period after discontinuation), stratified by time-to-discontinuation of the
participant (gray bar indicates time-to-discontinuation). Number of participants for each panel from left to right are as follows: N=7, 4, and 18 for study
1; N=20, 6, 10, 8, and 33 for study 2; and N=5, 1, 2, and 22 for study 3. Data completeness was defined as percentage of days with any GPS data and
percentage of weeks with a completed survey or audio recording.

Discussion

Principal Findings
In this study, we showed that smartphones can be used to collect
frequent active and passive data from people with
neurodegenerative diseases, specifically ALS, both in
observational studies and in a clinical trial setting. Participant
engagement, as measured by time-to-discontinuation, was higher

than that in published data [9,10]. The two observational studies
described in this paper, in which no adherence reinforcement
or incentives were implemented, provide an important
benchmark for participant engagement with a smartphone app
in research.

Data completeness was lower for active data than for passive
data. In other words, smartphones continued to collect passive
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data even after participants had stopped completing surveys or
recording audio.

Understanding Participant Adherence

Time-to-discontinuation was higher in our studies compared
with smartphone data collection studies in other domains, which
often show an exponential dropout [9,10,27]. The lower dropout
rate in our study may highlight the high commitment to research
of people with ALS and neurodegenerative diseases despite the
challenges of progressive functional and cognitive decline. In
another smartphone study, participants with multiple sclerosis
dropped out significantly later than healthy controls, who only
remained active for 1 day [19]. In addition,
time-to-discontinuation was shorter for clinic-referred
participants than for self-referred participants (7 days vs 25.5
days) and shorter than in our study.

Our analysis did not provide evidence that demographic
characteristics or disease severity at baseline were associated
with attrition, although our analysis was underpowered to detect
predictors of attrition.

Strengths and Limitations
ALS is a rare disease, and our analysis of 3 studies, both in
observational and interventional research contexts, is the first
of its kind. Given that sample sizes were limited by the low
prevalence of ALS, we were underpowered to detect associations
between participant and disease characteristics and adherence
to digital data collection. Furthermore, although
neurodegenerative diseases share many characteristics, our
results may not be generalizable to all neurodegenerative
diseases.

Improving Participant Adherence
Despite better than expected adherence compared with published
studies, boosting adherence remains important, especially for
clinical trials using smartphone-based outcomes. Participants
of digital health studies are more likely to actively engage long
term if they see the value of participation [14,27], which may
have been the case, especially in the trial participants who
received a novel therapeutic. Personal contact with study
personnel helps participants feel valued and is a major driver
of engagement [27]. Both perceived value and personal contact
with study personnel may explain the better participant
adherence in study 3, which had almost full adherence until the
end of treatment with the study drug.

In future studies, we will test whether reminder phone calls,
more frequent clinic visits, or financial incentives can improve
adherence, particularly in longer studies. Another potential
motivator for adherence could be allowing participants to view
their data, including previous survey responses [28]. However,
this may not always be scientifically advisable, as it may

influence participants’ responses through the Hawthorne effect
and related forms of reporting bias [29].

Data completeness was higher and attrition was lower for
passive data than for active data. Passive data incompleteness
is due to both behavioral factors (eg, a participant disabling
GPS) or technological issues (eg, smartphone blocking sensor
data collection) [12,30,31]. Investigators familiar with passive
smartphone data collection recognize that both commonly used
smartphone operating systems (Android and iOS) implement
power saving measures for apps running in the background to
reduce consumption of the central processing unit resources,
memory, and battery [12,31]. This means that no app can run
in the background mode indefinitely, but instead the app needs
to be brought to the foreground at least occasionally for the
background data collection to persist [30]. Therefore,
longitudinal passive data collection without active data
collection is not possible. Factors such as device type, hardware,
and operating system influence data completeness [30]. These
technological factors can be difficult to modify, and they also
change over time.

Identifying High Adherence: Run-in and Withdrawal
Design
Our analyses showed that participants in the clinical trial adhered
best to the study regimen. When treatment ended, >80% were
still answering surveys, and all eligible participants were still
contributing sensor data. Nevertheless, for clinical trials, it could
be useful to identify participants who are more likely to adhere.
For studies requiring participants to use smartphones, especially
trials, a run-in and withdrawal design has been suggested [9].
With this design, participants enter a weed-out period after
enrollment. Only participants who still used the study app after
the weed-out period were randomized. Our study showed that
participants who stopped contributing surveys within 1 or 2
months of enrolling had lower data completeness than their
engaged counterparts. This suggests that monitoring active data
completeness during a screening period for a trial could help
identify participants who are more likely to adhere.

Conclusions
Our study demonstrates that it is possible to collect longitudinal
research data from people with progressive neurodegenerative
diseases using their personal smartphones. Our results are
especially promising for clinical trials (longer
time-to-discontinuation than in observational studies) and for
studies collecting mainly passive data with a light active data
component (higher data completeness and longer
time-to-discontinuation than in studies prioritizing survey data).
We identified putative predictors of dropout, which can be
confirmed in future studies, and will allow researchers to target
efforts to improve participant adherence to smartphone data
collection.
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