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Abstract

Background: For adolescents living with type 1 diabetes (T1D), completion of multiple daily self-management tasks, such as
monitoring blood glucose and administering insulin, can be challenging because of psychosocial and contextual barriers. These
barriers are hard to assess accurately and specifically by using traditional retrospective recall. Ecological momentary assessment
(EMA) uses mobile technologies to assess the contexts, subjective experiences, and psychosocial processes that surround
self-management decision-making in daily life. However, the rich data generated via EMA have not been frequently examined
in T1D or integrated with machine learning analytic approaches.

Objective: The goal of this study is to develop a machine learning algorithm to predict the risk of missed self-management in
young adults with T1D. To achieve this goal, we train and compare a number of machine learning models through a learned
filtering architecture to explore the extent to which EMA data were associated with the completion of two self-management
behaviors: mealtime self-monitoring of blood glucose (SMBG) and insulin administration.

Methods: We analyzed data from a randomized controlled pilot study using machine learning–based filtering architecture to
investigate whether novel information related to contextual, psychosocial, and time-related factors (ie, time of day) relate to
self-management. We combined EMA-collected contextual and insulin variables via the MyDay mobile app with Bluetooth blood
glucose data to construct machine learning classifiers that predicted the 2 self-management behaviors of interest.

Results: With 1231 day-level SMBG frequency counts for 45 participants, demographic variables and time-related variables
were able to predict whether daily SMBG was below the clinical threshold of 4 times a day. Using the 1869 data points derived
from app-based EMA data of 31 participants, our learned filtering architecture method was able to infer nonadherence events
with high accuracy and precision. Although the recall score is low, there is high confidence that the nonadherence events identified
by the model are truly nonadherent.

Conclusions: Combining EMA data with machine learning methods showed promise in the relationship with risk for nonadherence.
The next steps include collecting larger data sets that would more effectively power a classifier that can be deployed to infer
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individual behavior. Improvements in individual self-management insights, behavioral risk predictions, enhanced clinical
decision-making, and just-in-time patient support in diabetes could result from this type of approach.

(JMIR Mhealth Uhealth 2022;10(3):e21959) doi: 10.2196/21959
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Introduction

Background
Type 1 diabetes (T1D) is a prevalent chronic illness, with
increasing incidence rates reported worldwide [1,2]. It is an
autoimmune disorder in which the body does not produce insulin
and requires patients to perform critical self-management tasks
multiple times per day [3]. Two key self-management tasks in
T1D are frequent monitoring of blood glucose (BG) and
administration of insulin. These tasks help manage glycemic
control to avoid or delay serious short- and long-term
consequences, such as retinopathy, neuropathy, and mortality
[4-6]. Mealtime is a critical time for diabetes self-management.

Adolescents and young adults have the worst glycemic control
of any age group [4]. For young people with diabetes, living
successfully with T1D is particularly hard because of many
potential psychosocial and contextual barriers to
self-management [7-9]. A recommended approach to improve
self-management involves promoting and supporting
problem-solving skills to reduce barriers [10]. To identify
problems related to self-management, patients, caregivers, and
clinicians must rely on BG and insulin administration data from
devices along with a patient recall of behavioral, emotional,
and contextual events that could pose barriers to
self-management. However, using retrospective memory or
recall for events that are days or weeks in the past has been
identified as generally unreliable and potentially biased in nature
[11]. Unreliable recall of events in diabetes problem-solving
could result in incorrect modifications to the insulin regimen.

To address the limitations of human recall and bias in health
behavior research, ecological momentary assessment (EMA)
methods have been developed and successfully used in a range
of health conditions. In contrast to traditional assessment
methods, EMA uses more frequent and in vivo ambulatory
assessments of factors that affect health behaviors and
decision-making. EMA methods provide a more proximal, and
often more accurate, technology-mediated method to monitor
and assess the contexts, subjective experiences, and processes
that surround health decisions in daily life [12,13]. In particular,
EMA methods provide more relevant and frequent observations
per person and generate rich data to assess correlates of health
behavior more accurately and identify novel correlates for
intervention [14].

Many studies in the EMA literature typically use mixed effects
or hierarchical linear modeling [15,16]. This analytic approach
does not provide a means to automate analyses or use learning
algorithms that improve and integrate incoming data over time.
A promising approach for identifying such a model involves

integrating EMA with techniques and tools associated with
machine learning, which is a data analysis method that
automates statistical model building by identifying patterns and
making decisions with minimal human intervention [17,18].
Machine learning has been used with wearable sensor data and
may also be useful in analyzing intensive self-report data, such
as EMA. Machine learning techniques provide a viable means
of examining both big and small data by providing automated
classification and prediction for more feasible behavioral
interventions.

Objective
The objective of our study is to develop a machine learning
algorithm to predict the risk of missed self-management. We
seek to identify the momentary psychosocial and contextual
factors that have an impact on T1D self-management, as
assessed by EMA. To achieve these objectives, we train and
compare a number of machine learning models through a learned
filtering architecture (LFA) to explore the extent to which EMA
data could predict the completion of two self-management
behaviors: insulin administration and self-monitoring of blood
glucose (SMBG). By integrating these two strategies (EMA
and machine learning), we aim to provide researchers with not
only a better understanding of what may hinder or promote
adolescents’ adherence to their T1D regimen from a behavioral
perspective but also an efficient and adaptive analytic
computational method.

Methods

Study Design and Setting
These subanalyses analyzed data from a feasibility trial of the
mobile EMA and feedback app called MyDay, which is a
self-management feedback and problem-solving tool designed
for adolescent patients with T1D [19]. Youth from the
Vanderbilt Eskind Pediatrics Diabetes Clinic were invited to
participate in a 30-day assessment period if (1) they were aged
between 13 and 19 years, (2) had been diagnosed with T1D for
at least 6 months, (3) owned either an Android or iPhone
smartphone, (4) understood and spoke English, and (5) were
willing to use a Bluetooth BG meter during the study [1]. The
study was reviewed and approved by the Vanderbilt University
institutional review board (IRB #150685). All parents provided
consent before the adolescents provided assent. Both consent
and assent were obtained before the study procedures
commenced.

Participants
A total of 48 participants were recruited for the pilot study. Of
the 48 participants, 3 (6%) dropped out of the study, noting
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competing demands, leaving 45 (94%) for our analyses.
Participants were randomized in a 2:1 ratio to the MyDay app
+ Bluetooth BG (meter group 31/45, 69%) and a control group
(14/45, 31%). The control group provided SMBG data only
using Bluetooth BG meters but did not use the MyDay app.
Design processes, engagement, and momentary relationship
results for MyDay have been published previously [19-21].

Momentary Assessments and Glucose Meter Data
All SMBG data were objectively assessed using iHealth [22]
glucometers. The iHealth glucometers are commercially
available Bluetooth low-energy meters that can upload data
automatically to the iHealth secure cloud server via their open
application programming interface. Of the 45 participants,
31(69%) participants were instructed to use the MyDay app at
each mealtime and bedtime to answer questions that focused
on factors likely to affect diabetes self-management.

MyDay provided notifications to complete the EMA assessment
personalized to typical mealtimes identified by participants.
Time stamps were associated with all data entries. Only
mealtime EMA was used in analyses. Variables analyzed in
relation to self-management outcomes were organized into
subsets. The first two domains of variables were collected for
all participants: (1) demographics obtained at baseline (ie,
gender, age, father’s education, mother’s education, family
income, and race) and (2) time variables that were coded using
the original time stamps of the collected data entries (eg,
weekday, weekend, and mealtime [breakfast, lunch, and
dinner]).

The next three domains of EMA data were available only for
the 31 participants using the MyDay app: (3) social context
related to who was with the youth at the time of
self-management (ie, parent, sibling, alone, casual friend, close
friend, other family, other person, strangers, and boyfriend or
girlfriend) and where the youth was at the time of
self-management (ie, home, school, work, restaurant, friends’
house, or on the road); (4) stress, fatigue, and mood levels at
the reported self-management event, scored as 0 to 100, with
higher scores indicating greater stress, more fatigue, and worse
negative mood; and (5) selected situational barriers at the time
of self-management event (ie, participant was rushing, feeling
sick, on the road, hungry, wanting privacy, busy, without
supplies, or having fun). Details of the EMA data collection
process can be found in the study by Zhang et al [20].

Outcomes
We examined three self-management behavioral outcomes:

1. Daily SMBG frequency of <4 or ≥4 times a day; 4 glucose
checks per day are generally considered as the minimum
recommended [23]

2. Missed SMBG at mealtimes
3. Insulin administration at mealtimes

Data from all 45 participants were available for analyses
examining the daily number of SMBG from meters. The data
available for all participants were demographic and time
variables. Analyses for outcomes 2 and 3 examined data from
participants who used the MyDay EMA app (31/45, 69%),
which obtained mealtimes.

LFA Approach
To extract domains of variables to predict insulin administration
and SMBG self-management behaviors via the training of a
series of models, an LFA was created in this study as a
byproduct, and a similar process was used in the study by Zhang
et al [24] but not formally constructed. For this study, the LFA
created and compared four machine learning models: k-nearest
neighbors (KNN), logistic regression, random forest (RF), and
support vector machines. These models performed binary
classification for each behavioral outcome observed in this
study.

KNN classifies each sample by finding its K-most similar
instances in the training set and chooses the class to which most
neighboring instances belong [25]. The value of k is determined
by running KNN models with varying k values iteratively and
selecting the k value that produces the most optimal model.
Logistic regression is a statistical model that classifies a sample
by predicting the probability of an output using the maximum
likelihood estimation method and using a probability threshold
(P=.50 was used in our study as the threshold such that an output
with a probability of P≥.50 was classified as true and false
otherwise) to separate the 2 classes [26]. RF is a popular
ensemble learning method that trains multiple decision trees on
different parts of the data set and then averages the results to
improve classification accuracy [27]. The number of trees, or
estimators, is determined by running a number of RF models
with varying estimator values, such as 10, 50, and 100, and
selecting the value that produced the most performant model.
Support vector machines work by finding an optimal hyperplane
in the feature space that optimally separates the data points into
different classes [28].

Figure 1 presents the workflow of this LFA and shows that the
SMBG data and EMA data collected from the MyDay app were
integrated as a complete data set fed into the LFA (steps 1 and
2). The LFA then performed specified data preprocessing, such
as normalizing numeric values, removing entries that were
empty or had many missing features, and one-hot encoding
based on the type of each column (step 3). After step 3, a data
filtering process began, where subsets of variables were
extracted from the cleaned data either based on configurable
user input, such as the names of columns that would be grouped
to create a clinically meaningful, or to-be-observed, feature
subset. The features were grouped as described above to create
multiple data subsets. Owing to the small sample size of the
data available, the data subsets were each split further for
evaluating each classification model using cross-validation
(steps 4a and 4b).
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Figure 1. Iterative process of the learned filtering architecture. BG: blood glucose; ML: machine learning.

The LFA calculates the distribution of the target variables of
each data set. If the data set is balanced, it evaluates each model
using k-fold cross-validation that further splits the data into
training and validation sets k times and produces mean values
of the performance metrics. Otherwise, if the classes are
unevenly distributed, it uses the stratified k-fold cross-validation
to create k (k=7) splits, with each split of training and validation
sets maintaining the original class distributions. The
performance metrics are averaged across the results from the k
different splits. The process is then repeated for each of the
specified machine learning models (step 6).

Specifically, we used the following metrics to assess the models:
(1) accuracy, which is the percentage of correct predictions; (2)
precision, which is the ratio of true positives and all predicted
positives that evaluates what proportion of predicted positives
was actually correct; (3) recall, which is the ratio of true
positives and all actual positives and calculates what proportion
of actual positives was predicted correctly; (4) F1 score, which
evenly weighs precision and recall; and (5) for imbalanced
classification tasks, the Brier score, which is a continuous
scoring loss function that evaluates the goodness of predicted
probabilities in a classification task—a lower number
corresponds to a stronger model and vice versa.

The classification results were then used by the filter component
to compare them across all feature subsets (step 7). The filter
component had a configurable tolerance value that was used to
select feature subsets with relatively good classification results
compared with the best-performing models. Next, the LFA
checked whether additional feature groups remained to be
processed (step 8). If so, feature selection was repeated to create
the next data subset (step 9). Otherwise, the filtering process
would terminate and output the filtered results; that is, variable
groups with relatively strong predictive power of the outcomes
(step 10).

The classification results were filtered to extract the best
predictor groups for the target class variable. For example, if
the overall performance metrics exceeded the specified threshold
values (such as 15% compared with the performance metrics

of the model trained with all features together), the predictor
group was added to the final output queue. When all variable
groups were evaluated, LFA returned the final insights obtained
from the input; that is, feature groups that had significant
predictive power for the outcomes observed in this study.

Although the number of observations per participant was
substantial (average number of observations 60), the overall
number of participants was relatively small (n=45). Thus, the
collected data had some imbalance in the distribution of the
outcomes, with missed mealtime insulin being a relatively less
frequent event. Classification models constructed using
imbalanced data sets may result in the minority class being
neglected [29]. Techniques such as Synthetic Minority
Oversampling Technique [30] and Tomek link [31] have been
used in the literature for training imbalanced data, especially
for small data sets [32-35]. However, given the small size of
the population in this study, using such sampling methods would
risk introducing bias and misleading results. Therefore, in this
study, we used a stratified K-fold (k=7) cross-validation [36]
evaluation method instead of random oversampling or
introducing synthetic samples based on the existing data.

In stratified K-fold cross-validation, the original data set was
randomly split into k folds. Each fold was further split into
separate training and testing sets that are used to generate the
evaluation metrics of a model. The distributions of the majority
and minority classes within each training and testing set follow
the distribution of the majority and minority classes in the
original data set. After the model was trained and tested against
all k folds, the results were averaged to represent the overall
classification performance.

In addition to the machine learning methods previously
described, we also used a Bayesian hierarchical regression model
for the entire EMA data set that has a large number of features
but a small sample size. This approach was applied to confirm
the inferential power of the collected EMA data rather than
focusing on which specific category was the most predictive of
the outcomes.
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Hierarchical modeling can capture the similarities of multiple
participants within a data set while allowing estimations of
individual parameters for data containing multiple participants.
With the Bayesian approach, the entire data set is considered
known information that is used to derive the distributions of
unknown parameters of the model. It is a probabilistic model
that intends to estimate the expected values or density.

In our analysis, we applied Markov chain Monte Carlo methods
[37] to assist with the model formation and sampling process.
Monte Carlo is a method for randomly sampling a probability
distribution to approximate the desired target function. Markov
chain is a sampling technique that can generate a sequence of
random samples where the current sample is drawn based on

the prior sample. The goal of the Markov chain Monte Carlo is
to construct a Markov chain that eventually stabilizes on the
desired quantity to be inferred. Specifically, we created a
noncentered Bayesian hierarchical model to estimate the
likelihoods of SMBG and insulin administration.

Results

Overview
This section first reports findings from our initial statistical
analysis and then analyzes the results obtained from the LFA
constructed in accordance with the methods described in the
previous sections. Table 1 shows the characteristics of the
sample.
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Table 1. Characteristics of the sample (N=45).

ValuesVariable

13.3 (1.7)Age (years), mean (SD)

24 (53)Female, n (%)

Race or ethnicity, n (%)

38 (84)White

4 (10)African American

1 (2)Asian

1 (2)Hispanic

0 (0)Other

Father’s education, n (%)

1 (2)Less than high school

13 (29)High school or GEDa

7 (16)2-year college

15 (33)4-year college

5 (11)Graduate degree

4 (9)N/Ab

Mother’s education, n (%)

0 (0)Less than high school

10 (22)High school or GED

12 (27)2-year college

17 (38)4-year college

2 (4)Graduate degree

12 (27)N/A

Household income (US $), n (%)

2 (4)<25,000

3 (7)25,001-35,000

7 (16)35,001-75,000

14 (31)75,001-100,000

3 (7)>100,000

4 (9)N/A

5.5 (3.7)Duration of diabetes (years), mean (SD)

9.0 (1.9)HbA1c
c, mean (SD)

26 (58)Use insulin pump (yes), n (%)

aGED: General Educational Development.
bN/A: missing values.
cHbA1c: hemoglobin A1c.

Statistical Analysis
The data set was preprocessed using statistical approaches. First,
it was observed that the data set contained missing values in
demographic features: 9% (5/45) missing for both father’s
education and household income categories and 27% (12/45)
missing for mother’s education category (the percentage of
missing values in each category is denoted as “N/A” entry in

our report). In this study, the missing values of a feature were
imputed using the mode value for features of mother’s education
and father’s education and the median value for the feature of
family income. Ordinal categorical variables whose order of
the values were significant, such as parent education and family
income level, were each transformed into a single feature with
numeric values, whereas nominal variables whose significance
could be assumed, such as participant race and day of the week,
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were converted to numeric values using one-hot encoding. Each
feature was normalized using the minimum–maximum scaler
such that all the final values of that feature were between 0 and
1. The source code for data preprocessing is included in
Multimedia Appendix 1.

Tables 2-4 display the summary statistics of features that have
P<.05 (ranked in ascending order) for the target feature (or
dependent variable) of daily SMBG frequency, missed glucose,
and insulin not administered categories, respectively. P value

is an initial indicator that the corresponding features are
statistically significant in our analysis: (1) for daily SMBG
frequency, most features reported in Table 2 belong to the
demographic group; (2) for SMBG, variables from the
demographics, social context, barriers, and stress or mood or
energy feature groups are reported in Table 3; (3) for insulin
administration, variables from groups of demographics, time
variables, stress or mood or energy, and barriers are reported
in Table 4.

Table 2. Summary statistics of features with statistical significance on daily self-monitoring of blood glucose frequency.

P valueSECoefficientFeature

<.0010.0620.5221Mother’s education

<.0010.057−0.2494Age

<.0010.0320.2721Male

.010.066−0.1691Father’s education

Table 3. Summary statistics of features with statistical significance on self-monitoring of blood glucose.

P valueSECoefficientFeature

<.0010.0410.1706Busy

<.0010.0890.7417No supplies

<.0010.0380.1436Other family

<.0010.019−0.1543Gender

<.0010.033−0.1835Mother’s education

<.0010.039−0.2569Income

<.0010.026−0.0785Parent

.010.038−0.1064Black race

.010.031−0.084Casual

.010.0350.0906Father’s education

.010.020.0522With sibling

.020.106−0.2582In restaurant

.040.021−0.0436Hungry

.0450.108−0.2177Other place

.0470.4660.9274Stress+energy
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Table 4. Summary statistics of features with statistical significance on insulin administration.

P valueSECoefficientFeature

<.0010.021−0.0958Hungry

<.0010.0910.3703No supplies

<.0010.0210.1134Breakfast

<.0010.034−0.145Mother’s education

<.0010.039−0.1637Black race

<.0010.0470.1495Diabetes burnout

<.0010.077−0.2369Third day of week

<.0010.0220.0695Lunch

<.0010.0430.1219Busy

.010.077−0.216Second day of week

.010.077−0.2146Fourth day of week

.010.078−0.1999Weekend

.010.020.0508Fatigue

.020.077−0.1765Fifth day of week

.030.0390.0849Low blood glucose

.030.02−0.0425Gender

.030.043−0.0919Mood

.040.077−0.1602Sixth day of week

Daily SMBG Frequency
The average age of all participants was 13 (SD 1.7) years; 53%
(24/45) were female, 84% (37/45) were White, 58% (26/45)
used an insulin pump, and participants had a mean hemoglobin
A1c (indicating overall glycemic control) of 9.03% (SD 1.91).
Additional characteristics of the sample are summarized in Table
4.

A total of 4475 BG measurements were obtained from the
iHealth Bluetooth meters used by all participants (n=45). For
this analysis, the demographic and time variables were studied
to identify if they had any impact on the outcome of SMBG
frequency per day. The measurements were aggregated on a
daily basis to obtain a new data set of 1231 entries, with each
entry per participant being the total number of measurements
an individual had each day during the study period. SMBG
frequency ranged from 1 to 12 measurements per day. If a
participant did not report an entry on a particular day, the entry

for that day was not assumed to have an SMBG daily frequency
of 0, and hence, the entry for the participant on that day was
not created.

Several distributions of daily SMBG frequencies were observed.
There were 591 entries with <4 frequency and 640 entries with
≥4 or. Of all the classifiers trained with the same training data,
RF was the best performing model based on the overall
classification metrics using the same test data. The mean and
SD values of the evaluation results from the best-performing
RF model are shown in Table 5 for SMBG frequencies <4 (the
source code comparing the performance of all machine learning
models is included in Multimedia Appendix 1). The filter then
compared the benchmark value with the outcome classification
results obtained from each variable group. A tolerance value of
15% was configured for the filter to select subsets with
significant predictive power. As shown in Table 5, the
demographic variable group for SMBG frequency resulted in
a better performance than time variables and all variables.

Table 5. Self-monitoring of blood glucose <4 classification results.

F1 score, mean (SD)Recall, mean (SD)Precision, mean (SD)Accuracy, mean (SD)Feature group

74% (0.06)72% (0.07)75% (0.08)75% (0.04)Demographics

28% (0.12)21% (0.14)46% (0.06)49% (0.04)Time variables

67% (0.03)68% (0.06)67% (0.06)68% (0.03)All

Missed Mealtime SMBG and Insulin Administration
From the app group (31/45, 69%), a total of 1869 entries were
associated with breakfast, lunch, or dinner and used to analyze
factors that could affect SMBG and insulin administration.

Missed insulin administration had a distribution of 1:5.72 for
true (missed) versus false (administered) outcomes. In contrast,
the outcome missed SMBG had a class distribution of 1:5.44
for true (missed) versus false (checked). LFA created
classification models for each variable group (ie, demographic,
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time, social context, and psychosocial) using the stratified K-fold
approach, as discussed previously. Similar to the previous
experiment, the RF model resulted in the best classification
performance in all metrics compared with other models (the
source code comparing the performance of all machine learning
models is included in Multimedia Appendix 2).

Tables 6 and 7 present the classification results of missed SMBG
and missed insulin administration, respectively. The results
showed mixed sentiments on the predictive power of individual
groups of indicators on self-management behavior; however,
their combined effect can be used to infer when the lack of
SMBG or insulin administration occurred with high accuracy
and high precision.

Table 6. Missing mealtime blood glucose measurement classification results.

Brier test (%)F1 score (%)Recall (%)Precision (%)Accuracy (%)Feature group

2247623878Demographics

5120421350Time variables

2530552161Social context

3325292274Stress, fatigue, and mood

2533443373Barriers

1248357888All

1338257887All (MCMCa)

aMCMC: Markov chain Monte Carlo.

Table 7. Missing mealtime insulin administration classification results.

Brier test (%)F1 score (%)Recall (%)Precision (%)Accuracy (%)Feature group

3636652565Demographics

4132642159Time variables

5125591649Social context

3225282274Stress, fatigue, and mood

2732442673Barriers

1423146186All

1524155485All (MCMCa)

aMCMC: Markov chain Monte Carlo.

Discussion

Principal Findings
To better understand the factors affecting the self-management
behavior of adolescents with T1D, this study applied machine
learning analyses to construct an LFA using demographic, BG,
and momentary psychosocial and self-management data. The
relative association of the 5 domains of variables for the
predictability of self-management behaviors was compared
using all the variables collectively as the benchmark.

For the demographic data, the results indicated that
demographics were most associated with average daily SMBG
frequency. These results highlight the value of social
determinants of health, as defined by demographics. Although
demographic factors are generally not modifiable, social
determinants of health are increasingly used to adapt care to
those who are most vulnerable and may not receive the full
benefit of current approaches to health care [36,37].

The EMA data were able to infer nonadherence to SMBG and
insulin with high accuracy and precision. Although the recall

score was low, there was high confidence that the nonadherence
events identified by the model are truly nonadherent. A reason
for the lower recall score has to do with the small data sets that
have disparities in the frequencies of observed classes or
outcomes. Nonetheless, this study shows promise in the
collection of larger data sets that would more effectively power
a classifier that is deployable in the real world. These results
also concord with our reported results from the initial statistical
analysis in that (1) demographic features are correlated with
daily SMBG frequencies; (2) features from each group, except
for time points, have a statistically significant impact on SMBG;
and (3) features from each group, except for social context, have
statistically significant inferential power on insulin
administration.

These results support the feasibility and value of integrating
EMA and machine learning to improve behavioral assessment
and automate behavioral pattern recognition in health care
[18,38]. Our learned models show promise in quantifying the
impact of psychosocial factors on self-management. In diabetes,
stress and mood are modifiable factors that may be positively
influenced by coping and problem-solving interventions [39,40].
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The use of machine learning and EMA was also seen in a recent
study on tinnitus (the phantom perception of sounds), where an
RF classifier was applied on EMA data collected from the
TrackYourTinnitus mobile app across devices to predict the
mobile operating system used [41].

Social context also provided a framework for understanding
risk and may be modified by interventions focused on social
competence and problem solving [39]. In previous studies
[42,43], behavioral observations were used to identify patterns
of hand hygiene compliance monitoring, from which we
obtained useful initial insights into which domains of variables
had the most impact on compliance behavior.

Moving forward, the use of primarily intensive self-reported
and passive psychosocial and behavioral data streams combined
with machine learning could provide the basis for
population-based monitoring systems to help guide automated
pattern detection for clinical risk management. For example,
experimental unobtrusive indicators of mealtimes are in
development [44], and insulin administration is available via
pumps [44]. If successful, additional passive data streams would
greatly improve our methodological rigor and reach [45].

The LFA machine learning methods used here should be applied
to a large, diverse sample of patients to confirm and expand the
results reported in this paper. Although passive methods are
increasingly used to infer behavior and psychosocial status
[46,47], there are important subjective experiences, such as
mood, which may continue to require self-reporting. For the
foreseeable future, both self-reported real-time data and passive
data, such as social networking [48], may be integrated to
optimize insights for health care.

Prior research using traditional retrospective questionnaire
methods has focused largely on identifying psychosocial
correlates and predictors of self-management in chronic illness
in general and specifically in diabetes [9]. With a few
exceptions, little research using EMA has been conducted on
diabetes. The few studies conducted have uniquely identified
time-based factors, such as time of day and momentary negative
mood, as related to self-management behaviors [49-51].

Machine learning analyses have been applied in various studies,
focusing largely on the improvement of diabetes management
and control. Earlier studies have constructed and fine-tuned
different machine learning models to predict future BG levels
based on historical physiological data [52-54], detect incorrect
BG measurements [55], predict hypoglycemia [56,57], and

manage insulin dosing [58] and applied it to provide lifestyle
support integrating food recognition and energy expenditure
[59,60]. The study results reported here advance the assessment
and analysis of factors previously associated with
self-management, including stress [49], mood [61,62], stigma
[9,63], and social contexts [8,12]. Our study also uniquely
assesses novel factors not previously studied in the T1D
population, such as fatigue [64], location [65], social contexts
[8], and contextual factors, such as rushing and traveling. The
collected EMA data have a promising ability to infer the 2
diabetes self-management behaviors under study.

Limitations
This study had several limitations. First, although intensive
assessment resulted in a substantial number of observations per
participant, the number of participants was relatively small.
Although the inferential ability of this data was identified during
our empirical analysis, a larger sample size in future iterations
will help produce higher quality results. Second, some of the
data collected here using momentary self-report, such as stress,
may eventually become available as feasible passive data
streams. This could reduce the burden of momentary assessment
for participants and enhance the accuracy and reliability of the
data. Consideration of burden should influence behavioral
sampling strategies and research designs using momentary
assessment. Finally, this study used a self-report of insulin
administration. Moving forward, integration of insulin pumps
or automated insulin administration systems will be necessary
to infer insulin dosing and timing accurately.

Conclusions
On the basis of the current findings, psychosocial context may
be successfully assessed using momentary assessment, combined
with physiological data, and analyzed using machine learning
to optimize, and ultimately automate, health behavior insights.
Similar experiments are needed with larger samples to prioritize
multiple potential domains of influence on health behaviors and
advance the assessment and analytic approaches used here.
Future work validating self-reporting with sensor data will
enhance our ability to use passive indicators of health-related
behaviors. For example, experimental unobtrusive indicators
of mealtimes are in development and, if successful, would
greatly enhance our methodological approach [45]. The LFA
machine learning methods used here will be applied to a large,
diverse sample of patients to confirm and expand the results
reported in this paper.
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