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Abstract

Background: There has been a steady rise in the availability of health wearables and built-in smartphone sensors that can be
used to collect health data reliably and conveniently from end users. Given the feature overlaps and user tendency to use several
apps, these are important factors impacting user experience. However, there is limited work on analyzing the data collection
aspect of mobile health (mHealth) apps.

Objective: This study aims to analyze what data mHealth apps across different categories usually collect from end users and
how these data are collected. This information is important to guide the development of a common data model from current
widely adopted apps. This will also inform what built-in sensors and wearables, a comprehensive mHealth platform should
support.

Methods: In our empirical investigation of mHealth apps, we identified app categories listed in a curated mHealth app library,
which was then used to explore the Google Play Store for health and medical apps that were then filtered using our selection
criteria. We downloaded these apps from a mirror site hosting Android apps and analyzed them using a script that we developed
around the popular AndroGuard tool. We analyzed the use of Bluetooth peripherals and built-in sensors to understand how a
given app collects health data.

Results: We retrieved 3251 apps meeting our criteria, and our analysis showed that 10.74% (349/3251) of these apps requested
Bluetooth access. We found that 50.9% (259/509) of the Bluetooth service universally unique identifiers to be known in these
apps, with the remainder being vendor specific. The most common health-related Bluetooth Low Energy services using known
universally unique identifiers were Heart Rate, Glucose, and Body Composition. App permissions showed the most used device
module or sensor to be the camera (669/3251, 20.57%), closely followed by location (598/3251, 18.39%), with the highest
occurrence in the staying healthy app category.

Conclusions: We found that not many health apps used built-in sensors or peripherals for collecting health data. The small
number of the apps using Bluetooth, with an even smaller number of apps using standard Bluetooth Low Energy services, indicates
a wider use of proprietary algorithms and custom services, which restrict the device use. The use of standard profiles could open
this ecosystem further and could provide end users more options for apps. The relatively small proportion of apps using built-in
sensors along with a high reliance on manual data entry suggests the need for more research into using sensors for data collection
in health and fitness apps, which may be more desirable and improve end user experience.

(JMIR Mhealth Uhealth 2022;10(3):e30468) doi: 10.2196/30468
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Introduction

Background
Mobile health (mHealth) apps support health delivery by the
use of mobile devices such as mobile phones, wearables, and
other wireless devices [1]. Several mHealth systems have been
created for various apps, such as drug dosage reference [2,3],
weight management [4], and monitoring cardiac health using
wearable devices [5]. These mobile apps collect or generate
health insights from three sources: external devices (Bluetooth
or Wi-Fi-based sensors), built-in smartphone sensors, and
manual data entry.

By 2017, it was estimated that more than 300,000 health apps
were available in app stores, with a market growth of 25% each
year [6,7]. The use of mobile apps along with wearables and
external sensors has enabled self-monitoring of one’s health.
They unobtrusively collect physiological data to provide better
health outcomes and can also play an important role for patients
living in remote areas with limited access to health care [4].
mHealth apps have been classified either as active or passive
[8]—the former generate or derive health data using sensors,
whereas the latter rely on manual user input.

The mHealth domain has seen a steady rise in smart wearable
and fixed devices [9] that can be used to gather more detailed
and accurate insights into people’s health [10]. According to
Forbes, by 2022, their demand is expected to grow annually by
approximately 20% [11]. This introduction of sensors has also
opened up new avenues for health care where these devices can
continuously monitor one’s health without manual interference.
This constant monitoring can also help detect anomalies that
may not manifest during a visit to a health care professional
and can permit caregivers to remotely monitor their patients
[12-14]. Several wearables have been developed for specific
support in the mHealth domain and are augmented by novel
solutions, such as virtual reality implemented on mobile devices
[15]. Built-in sensors such as inertial measurement units (IMUs),
microphones, cameras, and GPS modules can also provide
insights into one’s health and have been previously used for
managing conditions such as sleep apnea [16]. Bluetooth Low
Energy (BLE) has been widely adopted for transferring data,
and several apps have been developed that pair BLE devices
with smartphones for fetching health insights. The popularity
of BLE and the availability of low-cost BLE devices has opened
up new avenues for continuous health monitoring in a more
user-friendly manner [12]. Such sensors provide an effective
platform for collecting real time metrics conveniently and less
intrusively, which may be useful in medical research [17].
Recently, they have also been suggested for use in low-cost
mHealth systems such as those for diagnosing pneumonia [18].
Similar suggestions have also been made for physiological
measurements such as heart and respiration rates, blood oxygen
saturation, and blood pressure for application in health
interventions [19]. Recent studies in this area include the use
of BLE devices for managing diseases ranging from asthma
[20] to tissue pain and mobility issues [21]. Several studies have
reviewed mHealth apps and explored them from various
perspectives, such as their impact on health outcomes [22],

usability [23], and even the use of integrated smartphone sensors
for monitoring health conditions [16]. Despite limitations around
the accuracy of the apps and peripheral such as measurement
errors caused by darker skin tones and higher BMI [24] and
poor energy expenditure estimations by apps [25], they remain
mostly well received [26].

A study by Wisniewski et al [27] researched around the
attributes of health apps where they selected 120 top-rated apps
from Google and Apple app stores in different categories and
evaluated them manually. Their study revealed that most apps
fell under the category of self-monitoring of health or diagnostic
data by client apps (World Health Organization classification
1.4.2) [1], indicating a higher interest in, and availability of,
self-monitoring apps.

The Use of Built-in and External Sensors

Overview
Most smartphones host several built-in sensors such as IMUs
and GPS modules and support different wireless communication
technologies such as Bluetooth and Wi-Fi. Many mHealth apps
provide features such as workout tracking, medication
reminders, and general health monitoring using external or
built-in smartphone sensors, whereas others offer other features
that may require manual data entry and include apps such as
meal trackers and weight loss coaches.

Built-in Sensors
A recent assessment of health apps from curated health app
libraries indicated that cameras were the most frequently used
sensors where they were used for assessing one’s heart rate and
even for automated skin cancer diagnosis [16]. Similarly, the
use of microphones has been used in apps that provide
respiratory therapy [28,29]. Algorithms have also been
developed for processing IMU readings to monitor movement
and activity levels in a noninvasive manner and are now widely
used for applications in fall detection and gait analysis to track
the progression of diseases such as Parkinson disease [30].
These algorithms and functions have been integrated with other
data collection mechanisms described below to create complex
and robust health apps, with a common example being popular
fitness trackers that use external heart rate sensors along with
the onboard IMUs and GPS modules.

BLE Standard
BLE standard was originally designed with a focus on low cost,
bandwidth, power consumption, and complexity and has allowed
developers to design products that are more affordable than
other wireless technologies such as Wi-Fi and Zigbee [31]. BLE
uses profiles to define its functionality, which can cover
operation procedures such as the Generic Attribute (GATT)
profile, which describes procedures for exchanging data between
devices and defines data models for the same. As several
implementations can be made using GATT to exchange different
types of data, the Bluetooth Special Interest Group (SIG) has
defined a set of use cases and specific profiles that cover the
required procedures and data structures. These have been defined
using GATT services and characteristics and include profiles
for securely transferring health-related metrics [32] such as
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heart rate and blood pressure. Given that predefined profiles
may not completely cover all apps, the Bluetooth SIG also
permits device manufacturers to create their own vendor-specific
profiles.

GATT provides a framework for data transfer and device
operations, and apps based on BLE are required to comply with
its specifications [31]. Data are exchanged between devices
using the smallest addressable data units described by

GATT—attributes. These are identified by 128-bit universally
unique identifiers (UUIDs), which can also be represented using
16- (uuid16) or 32-bit (uuid32) shortened versions, with all
currently SIG-assigned UUIDs being the uuid16 type [33]. The
attributes are organized into nested blocks—services, which
may contain 0 or more related characteristics, which, in turn,
may also contain 0 or more descriptors [31]. As an example,
Figure 1 describes the Bluetooth SIG-defined heart rate service
specification [34].

Figure 1. Hierarchy of Bluetooth Low Energy heart rate service with uuid16 attribute representation (adapted from Bluetooth Specification—Heart
Rate Service [34]).

As the GATT structure is strictly enforced for all
BLE-compatible devices, any client app that intends to exchange
data with them needs to either discover each exposed service
or be aware of relevant services and characteristics. For specific
use cases, apps would require UUID descriptions in their code
for connecting with peripherals and identifying the services and
subsequently reading exposed characteristics. Thus, an analysis
of Android packages to extract these UUIDs would help us to
identify not only those apps using peripherals to collect health
metrics but also the use of standard and vendor-specific services.
Apps have been previously analyzed to identify the use of BLE
peripherals; however, the focus of existing works in the domain
has been around security assessment and identification of
vulnerabilities [35]. Tools such as BLEScope [35] and
BLECryptracer [36] have been created for the same; however,
they have not been used to identify the types of services
supported by health apps.

Objectives
Recent exploration of the domain has also revealed
interconnectivity and convenience as 2 factors impacting user
experience [37]. This is even more important today, given the

thousands of health apps with overlapping features and the user
tendency to use more than one app [2]. Although they are mostly
data driven, there is limited work around the analysis of existing
mHealth apps to identify what data are collected and how, an
understanding of which can help develop better health apps and
eventually improve technology adoption. Therefore, our
objective is to analyze a set of free mHealth apps to investigate
the use of peripherals along with built-in sensors as an indicator
of the collected data and provided features.

Methods

Overview
The Google Play Store is the official hub for downloading
Android apps and offers over 100,000 mHealth apps [38]. Given
the availability of several curated health app repositories, we
explored the app categories described in one major curated app
list—MyHealthApps [39]. Through a search on the Play Store
using terms identified from this library, we identified apps that
we then downloaded and analyzed. Figure 2 shows a high-level
overview of the methodology, which is discussed in detail later.
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Figure 2. Data collection methodology. mHealth: mobile health; UUID: universally unique identifier.

Identifying and Collecting mHealth Apps
We referred to the categories and subcategories of mHealth
apps defined by the MyHealthApps library to guide our search,
and we identified 15 categories with their respective
subcategories listed in Table 1. We wrote a script around a Play
Store scraper [40] that returned apps from the United States
with English as the default language and gave us detailed
information about the apps, and the results indicated that not
all apps matching the search terms were related to health but
included other genres also such as News & Magazines and Tools.
Although several apps of interest fell under the Health & Fitness
or Medical categories, many were classified under other groups
and were excluded from our list. For example, the search term
Blood Pressure returned a set of 250 apps with 113 health and
fitness apps and 89 medical apps (as of November 2020). Our
selection criteria for the apps had the following four key
conditions to include a large set of more popular, accessible,

and quality mHealth apps: free apps, rating >3.5, number of
installs >5000, and health and fitness or medical apps

However, as we also wanted to include comparatively new apps
along with well-established ones, we did not consider a
minimum number of ratings.

After filtering the list and removing duplicates, the remaining
apps were downloaded to our test machine from a mirror site
[41], following which files except those with the .apk extension
were discarded. We investigated the use of built-in sensors such
as accelerometers, gyroscopes, GPS modules, and even the
smartphone’s camera modules in the identified apps. By
analyzing app permissions, it is possible to infer to some extent
what features these apps provide and how data are gathered.
We were particularly interested in the use of GPS (coarse and
fine locations), Bluetooth, Camera, Body Sensors, Microphones,
and Activity Recognition permissions.
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Table 1. App categories, the number of subcategories, and the total number of apps in each category (November 2020).

Apps (N=38,780), n (%)Search terms (subcategories; n=157), nApp category

2745 (7.08)11Bones and muscles

1493 (3.85)6Breathing and lungs

3237 (8.35)13Cancer

1247 (3.21)5Diabetes

499 (1.29)2Endocrine

3238 (8.35)13Heart, circulation, and blood

249 (0.64)1HIV

250 (0.64)1Kidneys

749 (1.93)3Medication

3991 (10.29)16Mental health

5469 (14.1)22Nervous system and brain

748 (1.93)3Skin

5744 (14.81)23Staying healthy

3493 (9.01)14Stomach, bowel, and continence

5728 (14.77)24Senses, mobility, and learning

Data Extraction From mHealth Apps

App Data Set
Our query fetched a list of 38,130 apps (as of November 2020),
which were then filtered to remove duplicates in each app set
and those not meeting the inclusion criteria, giving us a much
smaller list of apps for analysis [42] (N=3330). Of the 3330
apps, 12 (0.36%) apps were not found on the mirror site and 67
(2.01%) returned zip files that were discarded.

Extracting UUIDs From Packages
To analyze the downloaded apps, we used a popular static
analysis tool—AndroGuard [43], which allowed us to decompile
Android packages to extract relevant details. These apps need
to be aware of the relevant services, characteristics, and
descriptors to connect with peripherals. However, apart from
statically defined UUID strings, apps can also construct them
from a base ID and a shortened version at runtime. Although
tracking these IDs may be necessary to identify all the possible
uses of standard services, not all apps follow this approach.
Analyzing the downloaded packages with AndroGuard helped
us identify the following:

• The set of permissions and hardware features requested by
the apps (to help understand how data are collected by the
apps)

• Apps requesting Bluetooth permission (for identifying apps
that may use external peripherals)

• Statically defined UUIDs for apps using Bluetooth (for
understanding the use of predefined or vendor-specified
profiles)

The Use of Internal Sensors
As access to device hardware and other features may have
security implications, Android restricts access by mandating
the use of permissions declared in the app’s manifest file [44].

AndroGuard was used to identify built-in sensors accessed by
mHealth apps through the declared permissions. Although the
Android developer documentation recommends only using
permissions necessary for the app to work as one of the best
practices [45], some developers may request access to extra
sensors and hardware without actually using them—a sign of
a poorly developed app. However, such edge cases were not
considered in this study.

iOS Apps
Although iOS apps also contribute to the mHealth app numbers,
we limited our search to Android because of technical limitations
around downloading these apps and the lack of open tools for
decompiling and analyzing them. However, permission checks
could be performed to indicate the types of hardware features
used by these apps. We randomly selected 30 apps from the list
of Android apps and searched for them on the iOS app store.
Of these 30 apps, 25 (83%) were available on iOS, which were
downloaded using Apple’s Configurator tool and unpacked to
identify the hardware features used in the apps based on the app
permissions.

Overall, in each step of the exploratory analysis, custom tools
were built and used to automate app downloads, static analysis,
data manipulation, and management. Data were then manually
checked to ensure accuracy.

Results

The Use of Internal Sensors
From the analyzed set of 3251 apps, we found several apps
using the coarse (ACCESS_COARSE_LOCATION) and fine
(ACCESS_FINE_LOCATION) locations, suggesting the use of
distance tracking as a possible feature. Similarly, several
instances of activity recognition for tracking step counts
(ACTIVITY_RECOGNITION) and a few for body sensors
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(BODY_SENSORS) were found. Smartphone cameras have also
been widely used, as indicated by the presence of over 600 apps
that requested the appropriate permission (CAMERA). Table 2
lists the number of apps using these permissions. Figure 3 shows
the use of different sensors in each subset. We found that the

camera being more popular across most search categories with
GPS following closely, with the highest use seen in the Staying
Healthy category. The high use of cameras is consistent with
previous app reviews [16] and is discussed in the next section.

Table 2. Apps and requested permissions (N=3251).

Apps, n (%)Permissions (simplified)

557 (17.13)Coarse location

598 (18.39)Fine location

669 (20.57)Camera

36 (1.11)Body sensors

123 (3.78)Activity recognition

340 (10.45)Audio recording
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Figure 3. Built-in sensors used in apps across different categories.

The Use of Bluetooth Peripherals
Apps need to know the UUIDs of the services exposed by BLE
peripherals to communicate with them and transfer data, and
we found that 10.74% (349/3251) of the apps requested
Bluetooth access. Table 3 lists the percentage of apps in each
search category using Bluetooth. The Bluetooth SIG permits
the use of vendor-specific UUIDs for different use cases, and
50.9% (259/509) of the discovered UUIDs were known and

include service, characteristic, and descriptor identifiers. The
unknown IDs include vendor-specific UUIDs along with those
not related to Bluetooth operations; as these are not available
publicly, further separation of this set was not possible.

We mapped the known UUIDs to the apps that used them, which
allowed us to identify the most commonly used UUIDs and
therefore, services. Client Characteristic Configuration
(00002902-0000-1000-8000-00805f9b34fb) was found to be
the most common, with 116 apps using the same UUID.
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However, not many standard health-related services were
identified, and we note that only the Heart Rate Measurement
(41/3251, 1.26%) and the Heart Rate Service (40/3251, 1.23%)
UUIDs were found in the top 10, with 1.2% (30/3251) of the
analyzed apps using these services (Table 4).

We analyzed the permissions requested in the 25 iOS app
versions of the selected Android apps. Given that the apps
provided the same features, the permissions were not expected
to differ and were mostly identical in the main categories of

interest—Bluetooth, Camera, Microphone, Activity Recognition,
and Location (Multimedia Appendix 1). A few minor deviations
were observed on both platforms where some permissions did
not match (eg, 2 Android variants requested near-field
communication, which was not available on iOS). We could
not analyze the BLE UUIDs in the apps because of the lack of
open tools such as AndroGuard on iOS. However, given that
both iOS and Android versions of an app are connected to
similar hardware, the UUIDs are expected to be the same for
the same group of apps.

Table 3. Percentage of apps in each category using Bluetooth.

Percentage of apps using Bluetooth, n/N (%)App category

16/216 (7.4)Bones and muscles

29/188 (15.4)Breathing and lungs

23/326 (7.1)Cancer

59/374 (15.8)Diabetes

12/91 (13.2)Endocrine

72/495 (14.5)Heart, circulation, and blood

14/71 (19.7)HIV

4/67 (6)Kidneys

16/258 (6.2)Medication

53/505 (10.5)Mental health

80/649 (12.3)Nervous system and brain

4/67 (6)Skin

145/1340 (10.8)Staying healthy

58/454 (12.8)Stomach, bowel, and continence

49/391 (12.5)Senses, mobility, and learning

Table 4. Services and the number of apps using them (N=3251).

Apps, n (%)Generic Attribute service

41 (1.26)Heart rate measurement

26 (0.79)Glucose measurement

14 (0.43)Running speed and cadence

13 (0.39)Cycling speed and cadence

13 (0.39)Blood-pressure measurement

12 (0.36)Body composition measurement

10 (0.3)Weight measurement

Discussion

Overview
End users tend to deal with multiple mHealth apps to manage
their health and well-being, with even health care providers
referring to more than one app as one may not provide all the
details they need [2]. These apps do not share a consistent user
interface, sensors, or a common mHealth data model, leading
to poor overall user experience. To address this problem, there
is a need for a comprehensive mHealth data collection model
and catalog of sensors to develop robust app development

guidelines and frameworks. This study represents the first step
in this road map. We reviewed data collection in 3251 mHealth
apps to understand what health data are collected and how apps
collect them with a focus on built-in and external
Bluetooth-based sensors.

Data Collection
Our findings indicate that although there is an increasing use
of smart wearables and the increasing popularity of peripherals,
not many apps use them to collect health data. Similarly, not
many apps were found to use built-in smartphone sensors. Our
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results are consistent with a recent study by Wisniewski et al
[27], where most apps relied on manual entry with limited
support for any wearables. Their reliance on manual reviews
limited their study to 120 apps for mental health, which we were
able to extend by automating the app review process. However,
one drawback of our approach is that we cannot conclusively
determine where the data were being used or what they were
used for.

Our results show 20.57% (669/3251) and 18.39% (598/3251)
of the apps used the camera and GPS modules, respectively,
which are also the most used sensors across each app category,
with the highest occurrence in the Staying Healthy set. This was
expected as this category includes apps around diet and exercise
where images and location data may be used for tracking meals
and physical outdoor activities. We also expected a similar trend
favoring cameras in the Heart, Circulation and Blood category.
We were also surprised by the relatively high use of location
and images in Nervous System and Brain apps, which may
indicate the increasing acceptance of these data types in different
apps. This can be an indication of useful features, such as
scanning an item (eg, medication) or tracking movement.
However, it may also indicate poor app design where access to
sensors is requested without actually using them. Unsurprisingly,
the lowest occurrence of these sensors was found in more
medical apps as opposed to health and fitness apps, where
categories such as HIV and Kidneys may not have any use of
currently available built-in sensors at all. Apps were also found
to use the microphone with the highest occurrence in the Staying
Healthy category where its use can range from call features to
speech analysis to tracking one’s sleep.

Given the popularity of health wearables and peripherals, we
expected to find a significant number of apps supporting them
for passive data collection. However, our results indicated the
opposite. We found 10.74% (349/3251) of the apps requesting
Bluetooth access, of which only about half of the discovered
UUIDs were found to be the standard Bluetooth services with
the remaining unknown. Apart from unrelated IDs, this also
indicates that most devices and apps used proprietary algorithms,
limiting their compatibility and use [46]. However, of those that
were known, very few were related to health, with the highest
occurrence being the Heart Rate Measurement service in 40
apps (1.2%). Vendor-specific IDs (almost 50% of the reported
apps using Bluetooth, n=250, 49.1%) may be used for any
purpose, as defined by device manufacturers, making it difficult
to identify the data transferred through those services. Besides
the possibility of the UUIDs not being detected, this suggests
that despite the growing popularity of wearables, they are
restricted to a few manufacturers with limited apps using
proprietary services and formats.

As we rejected apps with low ratings and downloads, we may
also have skipped several bespoke apps used for specific cases
or by small groups. These can include apps developed for
research studies and specialized devices that may not be widely
available. Similarly, as Google restricts search results to 250
items per search term, we were also limited in our app search.
The analyzed data also indicated the presence of other known
health-related services in a smaller number and showed the use

of Heart Rate, Glucose, and Body Composition as the more
common services provided by peripheral devices.

Data Sharing
mHealth devices and apps have been found to be useful for
collecting clinical insights [47], which shows their potential not
only in personal use but also in clinical apps where integration
with electronic health records can help improve health outcomes.
Newer apps integrate with frameworks such as Apple Health
or Google Fit that allow data aggregation and sharing; however,
they also require installation of more than one app—a challenge
that deters end users. Here, a platform integrating a diverse set
of apps, health records, and sensors could improve this aspect
of mHealth apps with functionality and usability blending in
seamlessly, potentially improving health outcomes.

Tools and Data Set
In addition to app analysis, our contribution also includes the
raw data set, including collected app details along with the
extracted data comprising app permissions and identified
UUIDs. Our tool for downloading and analyzing apps is also
included in our repository, which is available on GitHub [48],
and would be beneficial for future studies related to mHealth
app analysis.

Overall, our results suggest a more common use of manual entry
(where automated data collection is possible), which, apart from
being less reliable, also degrades user experience, leading to
more users abandoning health apps [49]. Although usability is
subjective, limited support for passive data collection with
internal and external sensors can have a negative impact on app
experience, which can lead to reduced adoption by end
users—sidestepping any benefits the apps could offer. Therefore,
it is critical to understand the importance of peripherals and
built-in sensors in modern health solutions and integrating them
in a clinically acceptable manner with health apps.

However, the main limitation of our work arises from automated
data extraction, where we could not capture more nuanced
details such as where the data from these sensors are being used
and requires further investigation. Many valid health apps such
as reference apps, management apps (weight and diet), and
calculators (body composition, drug dosage, etc) may also be
classified under other categories such as Education and Books
& Reference and were rejected. Similarly, because of the
difference in app numbers in each category, a comparison
between them may be biased.

Given the presence of over 300,000 apps in app stores, analyzing
all of them was not feasible and using a curated app list was a
better approach for identifying different apps as they would be
closer to the domain than manually searching through thousands
of apps. As more health apps are widely available today for
managing one’s health, we believe that our results are relevant
where accuracy of health data and wider integration would be
important for better health care delivery. Although app analysis
can be performed manually, we chose to automate the process,
which ignored possible data sources such as developer
descriptions and user reviews. Similarly, our results are based
on limited app categories where the use of sensors and wearables
may not be feasible (eg, Medication or Mental Health), and we
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acknowledge that these results may not be generalizable to the
entire domain. Therefore, there is also a need to explore new
apps of current sensors in these areas to improve data collection.

Given the potential of mHealth apps to improve an end user’s
health, adherence to regular use is essential, which can only be
ensured if such apps are intuitive and convenient to use. In the
larger context of a connected, Internet of thing–enabled
ecosystem, apps would play an important role as an interface.
This indicates a need to integrate more peripherals with health
apps to collect user data, which, along with built-in sensors,
could ultimately help improve health outcomes. To that end,
we envision a connected ecosystem of mini health apps, sensors,
and health records as a key mHealth technology of the future.
We plan to use these results to develop a single mHealth
platform for aggregating several wearables and health apps as
mini health services, which we believe would provide a much
better experience to end users. We have built a prototype of
such a platform with health micro-mHealth apps [50], an
introduction to which is planned in our upcoming work followed
by a study to understand its impact on user experience and
technology adoption.

Conclusions
Given that user studies on app experience have highlighted
convenience and data interconnectivity and aggregation as
important factors, automating data collection can improve user
experience, especially in apps requiring access to health metrics.

However, a limited number of apps in our search were found
to do so, indicating the need for more focus on integrating more
peripherals and built-in sensors for health apps.

Our analysis of 3251 apps indicates that <10.74% (n=349) of
the apps use smart devices and wearables to gather health
metrics from users. In this set, extracted UUIDs show that very
few apps used standard health-related Bluetooth services, with
the most popular service being Heart Rate Measurement. Several
apps have been found to use custom services that affect the
interoperability of devices with different apps. Here, using
standard profiles may be beneficial, as more apps would be able
to interact with these devices, giving end users more options.
Similarly, several apps were found to request access to device
hardware features, such as GPS and camera, indicating the
increasing acceptance of these devices. However, their numbers
remain small, indicating the need for more research into using
them in health apps.

Although manual entry may be inevitable for some apps, a
significant number of apps requiring manual data entry were
found in our set, highlighting the need to focus more on
developing mHealth apps that automate health data collection.
As several apps for research and health studies have been
published, a better approach for developing and consuming
mHealth apps is required. Overall, our findings can guide the
design of future mHealth apps and has a positive impact on
improving mHealth data collection in these apps.
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