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Abstract

Background: In 2017, an estimated 17.3 million adults in the United States experienced at least one major depressive episode,
with 35% of them not receiving any treatment. Underdiagnosis of depression has been attributed to many reasons, including
stigma surrounding mental health, limited access to medical care, and barriers due to cost.

Objective: This study aimed to determine if low-burden personal health solutions, leveraging person-generated health data
(PGHD), could represent a possible way to increase engagement and improve outcomes.

Methods: Here, we present the development of PSYCHE-D (Prediction of Severity Change-Depression), a predictive model
developed using PGHD from more than 4000 individuals, which forecasts the long-term increase in depression severity. PSYCHE-D
uses a 2-phase approach. The first phase supplements self-reports with intermediate generated labels, and the second phase predicts
changing status over a 3-month period, up to 2 months in advance. The 2 phases are implemented as a single pipeline in order to
eliminate data leakage and ensure results are generalizable.

Results: PSYCHE-D is composed of 2 Light Gradient Boosting Machine (LightGBM) algorithm–based classifiers that use a
range of PGHD input features, including objective activity and sleep, self-reported changes in lifestyle and medication, and
generated intermediate observations of depression status. The approach generalizes to previously unseen participants to detect
an increase in depression severity over a 3-month interval, with a sensitivity of 55.4% and a specificity of 65.3%, nearly tripling
sensitivity while maintaining specificity when compared with a random model.

Conclusions: These results demonstrate that low-burden PGHD can be the basis of accurate and timely warnings that an
individual’s mental health may be deteriorating. We hope this work will serve as a basis for improved engagement and treatment
of individuals experiencing depression.

(JMIR Mhealth Uhealth 2022;10(3):e34148) doi: 10.2196/34148
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Introduction

Major depressive disorder is a leading cause of disability
worldwide, impacting the lives of more than 264 million people
globally, according to the World Health Organization [1]. The
COVID-19 pandemic has further increased the number of people
experiencing depressive symptoms [2]. Despite its prevalence,
depression often remains undiagnosed and untreated. In 2017,
an estimated 17.3 million adults in the United States experienced
at least one major depressive episode, with 35% of them not
receiving any treatment [3].

Underdiagnosis of depression has been attributed to many
reasons, including stigma surrounding mental health, limited
access to medical care, and barriers due to cost [4]. Undiagnosed
and untreated depression has significant economic consequences,
adding an economic burden of over US $200 billion annually
in the United States alone [5]. Thus, it is essential to make the
detection and monitoring of depression symptoms easier and
more affordable.

An increasingly explored and promising way to accomplish this
is through person-generated health data (PGHD) in the form of
self-reports and data from consumer-grade wearable devices
[6]. Multiple studies have shown that early indicators of changes
in depression status can be detected from PGHD in the form of
social media use [7] or physical activity patterns [8]. For
example, a recent study, using consumer wearable devices to
track the sleep of 368 participants, found several strong
associations (Z-scores up to 6.19) between sleep features and

self-reported depression [9]. Another study showed that activity
features collected for 23 participants could accurately (κ=0.773)
classify individuals with depression from controls, and predict
changes in depression status over a 2-week period [10].
Although these studies are limited in sample size and time
duration to generalize across larger populations, they
demonstrate the potential of this approach versus more
burdensome active assessments [11].

In this work, we present PSYCHE-D (Prediction of Severity
Change-Depression), a 2-phase prediction model that uses
PGHD to predict longitudinal changes in an individual’s
depression severity level (Figure 1). Input data include
self-reported sociodemographic data and medical history, and
objective behavioral data derived from consumer-grade
wearables. The presented model has been developed using the
largest longitudinal cohort study ever considered for depression
at the time of publication [12], collecting PGHD over a 1-year
period from more than 10,000 participants.

In previous work, we presented initial results [13] for the first
phase of the model, and exploratory results for the second phase
are also available [14]. These initial results demonstrate the
feasibility of the PSYCHE-D approach, yet the stepwise
development approach creates the possibility of data leakage
between the phases and therefore misleading results. This work
presents results from an improved pipeline that eliminates the
leakage, thus ensuring generalizable results and laying the
foundation for a very low–burden, consumer-facing,
personalized system that could improve engagement and
outcomes in people with depression.

Figure 1. A schematic overview of the PSYCHE-D (Prediction of Severity Change-Depression) model. Phase 1c uses screener survey responses
(regarding sociodemographics and chronic comorbidities at baseline), self-reported lifestyle and medication changes (LMC) survey data from the month
in which the Patient Health Questionnaire-9 (PHQ-9) label is generated, and data from consumer-grade wearables to categorize each individual’s likely
PHQ-9 category. In the second phase, this generated information is combined with the initial PHQ-9 category, screener survey responses, additional
LMC self-reports, and consumer-grade wearable device person-generated health data (PGHD) to make the final prediction of whether the individual is
likely to have experienced increased depression severity over the 3-month period. Red blocks represent Phase 1, and blue blocks represent Phase 2. C:
collected. G: generated.

Methods

Data Collection
The data used in this work are part of the DiSCover (Digital
Signals in Chronic Pain) Project (ClinicalTrials.gov identifier:

NCT03421223). The DiSCover Project is a 1-year longitudinal
study consisting of 10,036 individuals in the United States, who,
between January 2018 and January 2020, provided data from
consumer-grade wearable devices and completed surveys about
their mental health and lifestyle changes quarterly and monthly,
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respectively. Detailed design and baseline participant
characteristics are described in the report by Lee et al [12].

The data subset used in this work comprises the following:

1. Wearable PGHD: Step and sleep data from the participants’
consumer-grade wearable devices (Fitbit) worn throughout
the study were collected.

2. Screener survey: Prior to the study, participant self-reported
sociodemographic information, as well as comorbidities
were collected.

3. Lifestyle and medication changes (LMC) survey: Every
month, participants were requested to complete a brief
survey reporting changes in their lifestyle and medication
over the past month.

4. Patient Health Questionnaire-9 (PHQ-9) score: Every 3
months, participants were requested to complete the PHQ-9,
a 9-item questionnaire that has proven to be a reliable and
valid measure of depression severity [15].

From these input sources, we defined a range of input features,
both static (defined once, remain constant for all samples from

a given participant throughout the study, eg, demographic
features) and dynamic (varying with time for a given participant,
eg, behavioral features derived from consumer-grade wearables).
Feature extraction and engineering are described in Multimedia
Appendix 1.

Data Processing

Data Filtering Process
Figure 2 outlines the processing of the initial data set into the
samples used for developing the phase 1c model. Of the 10,036
enrolled participants, 9961 passed the survey response quality
control, defined as completion of the PHQ-9 for at least two
contiguous quarters, as well as the LMC survey for the same
month as the second PHQ-9. Additional filtering, based on the
density of available activity data in the 2 weeks matching the
PHQ-9 recall period, was performed according to standards
proposed in the literature [16,17]. We ultimately obtained a
total of 10,866 samples from 4036 unique participants.

Figure 2. Illustration of the participant filtering process. *Completion of the Patient Health Questionnaire-9 (PHQ-9) for the current quarter, the PHQ-9
for the previous quarter, and the lifestyle and medication changes (LMC) survey for the current month. **≥10 hours daily wear time for ≥4 days per
week in the 2-week interval. DiSCover: Digital Signals in Chronic Pain.
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Data Set Construction
Initial data exploration showed that the evolution of PHQ-9
scores over 3-month intervals was constant throughout the study
period, when grouping by demographic variables, such as sex,
age, race, and geographic location. Based on this observation,
we divided the data into 3-month long, nonoverlapping,
independent samples. We used the notations “SM0” (sample
month 0), “SM1,” “SM2,” and “SM3” to refer to relative time
points within each sample. Each 3-month sample consisted of
1 set of screener survey responses, PHQ-9 survey responses at
SM0 and SM3, LMC survey responses at SM3 (as well as SM1
and SM2, if available), and wearable PGHD for SM3 (as well
as SM1 and SM2, if available). The wearable PGHD included

data collected from 8 to 14 days prior to the PHQ-9 label
generation date (SM1 and SM2 in phase 1, SM3 in phase 2).

Modeling
Figure 1 illustrates the overall approach, and the inputs and
outputs for phase 1c and phase 2c. Figure 3 illustrates the
modeling approach, which is explained in more detail below.
The key design feature is that the models are combined into a
single combined pipeline, and participant-based train-test
partitioning is performed once at the start, in order to eliminate
the possibility of data leakage. The combined pipeline is thus
fitted on 1 set of participants and tested on another set of
previously unseen participants.

Figure 3. Schematic representation of the PSYCHE-D (Prediction of Severity Change-Depression) combined pipeline architecture, used to estimate
performance on previously unseen participants. The phase 1c model is trained on a subset of participants in the training set, and predictions for the
training and test set participants are made. The phase 2c model has the same participant split for the training and test sets. Red and yellow circles
represent samples from 2 different participants. All samples from the red participant are in the training set, and all samples from the yellow participant
are in the test set for both phases 1c and 2c. Green blocks represent data, and black blocks represent models and data processing stages. Blue arrows
represent input to classification models for training or predicting, and purple arrows represent data passage for other purposes (eg, providing true output
values for testing). Note: multiple circles represent multiple samples from the same participant. This procedure is repeated over 5 random participant-based
splits of the training and test data, to obtain confidence intervals for the combined pipeline performance.
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Phase 1c: Categorization of the Intermediate PHQ-9
The goal of the phase 1c model was to predict participants’
PHQ-9 score categories from sociodemographic, medical, and
wearable PGHD. The initial version of phase 1c is described in
the report by Makhmutova et al [13]. Here, we describe an
improved variant that has been adapted to reduce overfitting.
The Light Gradient Boosting Machine (LightGBM) algorithm
with Dropouts Meet Multiple Additive Regression Trees
(DART) boosting [18], an ensemble model of boosted regression
trees with dropout, was chosen due to its ability to handle sparse
data and the ability to tune an additional dropout parameter to
reduce overfitting. Feature selection removed highly correlated
features, and used recursive feature elimination [19] in order to
eliminate features that had lower contributions to model
performance. Model performance was primarily measured using
quadratic weighted Cohen κ [20], with adjacent accuracy (ie,
fraction of samples predicted at most one off from the target
value), balanced accuracy, and weighted F1-scores as secondary
performance metrics. We performed randomized search 5-fold
cross-validation to tune the hyperparameters of our LightGBM
model. We chose to perform a 5-fold cross-validation to reduce
the impact of overfitting. We reported the performance metrics
of the best tuned models with 95% CIs across 5 training runs
(5 outer shuffle splits). Further details on hyperparameters are
reported in Multimedia Appendix 1 and elsewhere [14]. Due to
the very large feature space that covers a range of static and
dynamic input features, we constructed the model in 3 steps.
We first performed an extensive exploration accessing the best
feature subsets of each type of input. We then carried out an
initial optimization on input sets, which combined different
types of input and considered an initial estimation of model
error. Subsequently, we conducted a final tuning to obtain the
best performing model. The output of phase 1c generated
intermediate monthly PHQ-9 score categories for SM1, denoting
sample month 1, and SM2.

Phase 2c: Prediction of Longitudinal PHQ-9 Change
In phase 2c, we predicted an increase in the PHQ-9 category
using the participants’ PHQ-9 scores from SM0, intermediate
generated PHQ-9 categories at SM1 and SM2 as well as the
generated probabilities of each PHQ-9 category for SM1 and
SM2, and LMC survey responses and wearable PGHD collected
over the 2 weeks prior to final PHQ-9 completion at SM3. We
also used the screener survey responses as input features to
control for sociodemographic factors. To compute the target
variable in each sample in the phase 2c model, we observed
whether there was an increase in the PHQ-9 category between
SM0 and SM3.

A similar model construction procedure was used for phase 2c
as for phase 1c. The feature selection procedure consisted of
reducing the initial number of input features through the removal
of highly correlated features and selecting the most important
features using recursive feature elimination with cross-validation
for the largest sets of input features, grouped by source. Then,
we performed forward sequential feature selection [21], a greedy
method that has been successfully used to develop digital
measures in mental health studies [22], to identify the optimal
features. We then again used LightGBM DART, as it has been

shown to deliver high accuracy in comparable classification
tasks [18], is able to handle sparse data, and generates
interpretable models.

Specificity and area under the precision-recall curve (AUPRC)
[23] were prioritized as performance metrics. Feature importance
was assessed using a combination of the following 2 key
metrics: “gain” importance and “split” importance [24]. Gain
importance measures the improvement in accuracy that a feature
provides, while split importance considers the number of times
the feature is used in a model. Taken together, these metrics
help us understand which features contribute the most to the
“decisions” that the model makes.

The construction of the PSYCHE-D combined pipeline
consisting of phase 1c, followed by phase 2c, is summarized in
Figure 3. The diagram also illustrates the participant-based
splitting approach used to ensure that we generate predictions
on previously unseen participants, to evaluate the approach’s
generalization capabilities. Further details are presented in
Multimedia Appendix 1.

Code Availability
The codes of the models in this study, along with their trained
weights, are available on GitHub [25].

Data Availability
Data are made available to academic researchers on Zenodo
[26].

Ethics Approval
This study received expedited review and Institutional Review
Board (IRB) approval from the Western Institutional Review
Board-Copernicus Group (IRB study number: 1181760; protocol
number: 20172916; initial approval date: December 21, 2017).

Results

Overview
In the following section, we present the performance and
informative features for the combined pipeline. Importantly,
we wanted to build the model in a manner representative of how
such a model might be deployed “in the real world.” In such a
situation, a trained model (eg, as part of an app) would need to
make predictions for participants that the model is naive to, that
is, people who have just downloaded the app and perhaps only
filled out the baseline assessments, and did not contribute data
used in the model construction. This pipeline is therefore
designed to test the generalizability of the models by eliminating
any data leakage, and using a participant-based validation
strategy, that is, the model is tested on participants that it is
completely naive to. Results for the 2 phases are presented
separately.

Intermediate Classification of Depression Severity
Acquiring PGHD on a large scale requires a low-burden data
collection approach; thus, participants were only asked to
complete the PHQ-9 at sparse intervals, once every 3 months.
Consequently, we were limited to a relatively small set of
reference labels, with 2.07 labels on average per enrolled
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participant over the course of 1 year. The first phase of our
approach thus generated more frequent intermediate depression
severity labels, which were used in combination with
self-reported reference labels to reduce the sparsity of the data
set by up to 3 times.

We were able to construct a multi-class classification model
that determines a participant’s depression severity for a given
month, by assigning an individual to 1 of 5 ordinal PHQ-9
classes describing severity from minimal to severe [15]. The
details and distributions of the observed classes are presented
in Table S1 in Multimedia Appendix 1.

The best performing model, based on the LightGBM DART
algorithm, after hyperparameter tuning, had a κ value of 0.476
(95% CI ±0.017) and an adjacent accuracy of 77.6%.

The performance of the model was not equal across all PHQ-9
severity categories. Comparing actual to predicted categories

in a confusion matrix (Figure 4), we observed that performance
was high for samples from individuals with either relatively
low (minimal or mild) or high (moderately severe or severe)
depression.

The model included features selected across all input sources,
including demographics (gender, birth year, education, and
BMI), life events and conditions at baseline (whether they had
received financial assistance, experienced trauma or given birth,
or were diagnosed with a range of chronic conditions), LMC
(changes to medications or lifestyle), and sleep-related wearable
PGHD (the number of hypersomnia nights, range of bedtime,
and average ratio of the time spent asleep to the time spent in
bed). A full list of the final features and their relative importance
is included in Multimedia Appendix 2. This model was then
used to generate intermediate PHQ-9 category labels for each
individual for SM1 and SM2.

Figure 4. Confusion matrix showing the phase 1c model’s Patient Health Questionnaire-9 (PHQ-9) score category accuracy distribution across PHQ-9
severity groups. Darker blue represents higher accuracy. Performance overall is weak, but adjacent accuracy is high, and classification performance in
samples from individuals with lower (minimal to mild) and higher (moderately severe to severe) severity is relatively high, compared to the performance
seen for intermediate severity samples.

Prediction of Longitudinal Change
The intermediate generation of depression severity labels means
that each sample consisted of the PHQ-9 depression severity at
SM0, the LMC surveys, wearable PGHD, and up to two
generated labels that provide a weak estimate of depression
severity (PHQ-9 category) at SM1 and SM2.

We posed our original aim as a binary problem as follows: can
we predict increased depression severity? We defined increased
depression severity as that when a participant changed the
PHQ-9 category between SM0 and SM3. From our 10,866
samples, 2252 (20.7%) were thus labeled as positive cases.

The construction of the second phase model was optimized
across possible input feature sets and LightGBM model
hyperparameters. As summarized in Figure 3, we noted that
with this approach, the optimization process also depended on
the outputs generated by the first phase.

We used a range of metrics to assess performance, but prioritized
sensitivity as the key metric, as our primary goal in this work
was to correctly identify the highest proportion of individuals
reporting increased depression severity. As the data set was
highly imbalanced, with 21% of individuals in the data set
reporting increased depression severity, we optimized for
performance for both the majority and minority classes. We
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thus took into account specificity and AUPRC as secondary
performance metrics, to observe the tradeoff in performance
for each class.

Based on this, the best performing model selected 13 input
features, with a sensitivity of 55.4% (95% CI ±0.8%), specificity
of 65.3% (95% CI ±4.2%), and AUPRC of 0.31 (95% CI
±0.024). In comparison, a baseline model, which randomly
assigned 20.7% positive labels, reported an AUPRC of 0.21, a
sensitivity of 19.8%, and a specificity of 80.0% (averaged across
10 runs of 1000 samples).

We examined the most important features in the second phase
of the combined pipeline and observed that the selected features
to predict relative changes in depression were similar to the
features selected to predict absolute depression in the first phase.

The most important features are presented in Figure 5, with
further details in Multimedia Appendix 2. Features that were

most frequently selected as strong predictors of an increase in
depression severity, regardless of the cohort, were
PHQ-9–related features. Specifically, the self-reported starting
PHQ-9 category and the generated intermediate PHQ-9 category
for SM1 were the most important features, as we can see in
Figure 5. Among the static demographic and socioeconomic
features, we noted that sex and having health insurance were
the most important. Various self-reported LMC features were
frequently selected, including medication changes (starting,
stopping, and changing doses) and stress-related lifestyle
changes (starting meditation and reducing stress-inducing
activities), as well as reducing or stopping alcohol consumption.
We observed that objective sleep features were again selected,
but no specific individual wearable PGHD feature (sleep or
otherwise) was sufficiently consistently selected to be included
in the final model.

Figure 5. Split feature importance of the features selected in at least three of five train-test splits in the best performing phase 2c model. Colors represent
the types of features (static screener features are blue, lifestyle and medication changes [LMC] features are orange, baseline Patient Health Questionnaire-9
[PHQ-9] features are green, and generated PHQ-9 features are red). The 95% CIs for the split feature importance are also visualized. SM: sample month.

Discussion

Principal Findings
PGHD represent a low burden direct connection to the patient
journey, and such data have already been demonstrated to be a
valuable component of models that predict health-relevant
outcomes [27,28]. We present a 2-phase approach for predicting
longitudinal deterioration in depression status. In phase 1c, we
increased the label density by generating intermediate PHQ-9
category labels using wearable PGHD and LMC information.
In the second phase, we combined self-reported and generated

PHQ-9 category labels with additional recent wearable PGHD
and LMC information to predict the deterioration of depression
status 3 months after the initial self-report. This 2-phase
approach has a very low burden and requires very little
participant interaction. The information we used as input consists
of simple self-reports and data from consumer-grade wearables.

Even though overall performance in phase 1c was not
particularly strong (κ=0.476, 95% CI ±0.017), we were
encouraged by 2 factors: the adjacent accuracy was high
(77.6%), and an examination of features in the final tuned
models showed good correspondence to factors known to be
important risk factors for depression, for example, gender,
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experience of trauma, and chronic comorbidities. Large-scale
studies have shown that these have an influence on depression
[29]. We also observed that objective sleep features were
selected. Sleep features and depressive disorders have been
previously associated using low-cost wearable devices [9],
PGHD [30], and smartphones [31]. Additionally, we observed
that performance was not even across severity groups and was
high for individuals with either relatively mild or relatively
severe depression.

In phase 2c, our best performing model achieved a sensitivity
of 55.4%, specificity of 65.3% (95% CI ±4.2%), and AUPRC
of 0.31 (95% CI ±0.024). In comparison, simulating random
assignment of 20.7% positive labels across 10 iterations of 1000
samples, we noted an AUPRC of 0.21, a sensitivity of 19.8%,
and a specificity of 80.0%. This means that sensitivity nearly
tripled, while specificity only slightly reduced. We prioritized
sensitivity because the potential consequences of false negatives
(ie, not identifying a person with deteriorating depression) is
much higher than the cost of false positives (ie, incorrectly
suspecting someone of deteriorating depression).

We observed that features from all input sources were selected
in the best performing models, but with different relative
importance. We saw that static features (ie, those defined at
enrollment, which do not change afterwards) were selected, but
were of relatively low importance. This included features that
are known to be relevant to the risk of developing depression,
including the presence of chronic comorbidities [32], ethnicity
[33], financial difficulties [34], and pregnancy [35]. We also
saw features derived from wearable devices, including trends
in sleep onset time, percentage of sleep time spent awake, and
overall number of hypersomnia days. The most important
features were those generated in phase 1c, that is, the probability
of an individual being in a given PHQ-9 class, summarizing
features from across all input sources. The intermediate labels
generated in phase 1c are inspired by the concept of “weak
labeling,” which can help reduce large-scale noisy data to a
signal useful for supervised learning (eg, the report by Zhan et
al [36]). We noted that due to data sparsity, intermediate labeling
was not always available, and thus, some samples did not have
2 intermediate PHQ-9 category labels, but sometimes had 1 or
none. Nonetheless, as LightGBM was able to deal with missing
values, the lack of intermediate labeling or missing PGHD
values did not pose problems in the phase 2c model predictions,
highlighting that the approach described in our work is indeed
low-burden and robust.

From this, we were able to deduce that the average sleep onset
time is a good determinant of increasing depression severity,

which is consistent with previous research [9], but that
variability in sleep is participant specific and not necessarily a
good predictor for generalizing to other participants.

Limitations
The work presented here demonstrates the potential of a
PGHD-based model for predicting long-term changes in
depression status in new individuals. This initial approach
nevertheless has several limitations in practice, which will be
addressed in future work.

The model relies on the completion of several self-reported
surveys over time. Participants were highly engaged with the
year-long research study, but to lower the barrier to participation,
the number of surveys could be reduced or replaced with
alternative sources of data. For example, instead of LMC
surveys, medication change data could be obtained through
electronic health records [37] or through other consumer-grade
wearables that incorporate engagement, such as the Oura ring,
which allows participants to annotate days with a number of
tags like medication [38].

The performance of PSYCHE-D was below our initial
expectations, despite more than triple sensitivity versus a random
model, and was weaker than the initial nongeneralized
performance [13,14]. However, further validation and
prospective data collection could seek to build off this “out of
the box” performance using an active learning approach to
improve individualized performance [39,40]. We also plan to
perform further validation with independently generated data
[41]. The study design also limits us to making predictions of
depression status change over a 3-month time window. Thus,
future work will focus on testing predictions beyond that time
horizon.

We will also explore the application of PSYCHE to other aspects
of mental health like anxiety [31], fatigue [42], and stress [22].

Outlook and Conclusion
Effective treatments for depression exist, but they must be
delivered in a timely manner, as the benefits of early intervention
are established for both older [43] and younger [44] patients.
Moreover, the objectivity of our system provides a
nonstigmatizing environment to engage people about depression
[4]. We hope that this demonstration of the ability to predict
long-term changes in depression using a low-burden
PGHD-based approach will have great potential to deliver value
to patients.
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