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Abstract

Digital health technologies, such as smartphones and wearable devices, promise to revolutionize disease prevention, detection,
and treatment. Recently, there has been a surge of digital health studies where data are collected through a bring-your-own-device
(BYOD) approach, in which participants who already own a specific technology may voluntarily sign up for the study and provide
their digital health data. BYOD study design accelerates the collection of data from a larger number of participants than cohort
design; this is possible because researchers are not limited in the study population size based on the number of devices afforded
by their budget or the number of people familiar with the technology. However, the BYOD study design may not support the
collection of data from a representative random sample of the target population where digital health technologies are intended to
be deployed. This may result in biased study results and biased downstream technology development, as has occurred in other
fields. In this viewpoint paper, we describe demographic imbalances discovered in existing BYOD studies, including our own,
and we propose the Demographic Improvement Guideline to address these imbalances.

(JMIR Mhealth Uhealth 2022;10(4):e29510) doi: 10.2196/29510
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Introduction

Digital health tools, including mobile health (mHealth) and
wearable devices, can provide researchers with high-frequency
data that are more representative of a person’s health state during
their daily life than what can be collected in a clinical setting
[1,2]. The enormous benefits of acquiring data outside of the

clinic have led researchers to adopt new study designs to
incorporate digital health data collection tools. Digital
biomarkers constitute a type of biomarker that is developed
from digitally collected data, such as wearable devices and
smartphones, to evaluate functions and processes in the body
and that can typically be recorded outside of a lab setting to
provide continuous and more holistic information [3]. In
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particular, the bring-your-own-device (BYOD) study design
has become increasingly popular because it gives researchers
the ability to collect large-scale data at a low cost from
participants who already own personal electronic devices, such
as smartphones and wearable devices. During the COVID-19
pandemic, there has been growing interest in using digital health
data to track illness, either for COVID-19 detection or to support
telemedicine [4-6]. To process all this data, artificial intelligence
algorithms, specifically machine learning algorithms, are being
developed to detect health conditions by learning from
previously collected data.

Machine learning algorithms rely on data to train models; they
are susceptible to biases that result in poor predictions for
segments of the population if the training data are not
representative of the population where the model is intended to
be used [7]. Therefore, one key aspect of machine learning is
the data collection process, whereby researchers identify the
target population and select a representative, random sample of
the population from which to collect unbiased data [8]. BYOD
studies are particularly susceptible to bias in the data collection
process because the recruitment pool is limited to people who
already own a device, and this population is generally not the
only one where the tools are ultimately intended to be used in
practice. In BYOD studies, a nonrepresentative study population
excludes key socioeconomic and physiologic circumstances
that can covary with race, ethnicity, or both. For example,
disease prevalence and pathophysiology often vary by race and
ethnicity (eg, COVID-19 infection and mortality rates [9-11],
manifestation of metabolic disease [12-14], cardiovascular
disease [15,16], and sleep irregularities [17,18]), which can
result in differences in how the newly developed technologies
will perform. As a specific example, optical sensors to measure
blood oxygen saturation may fail in people with more melanin
and for people with the sickle cell trait [19-21], both
characteristics common in Black populations, for two completely
separate reasons. To address such problems, representative
digital health data are needed for building generalizable machine
learning models that are as accurate under deployment as they
are in the initial testing phase. Like other fields that have
discovered that bias in data used to train models has led to biased
models, we fear that digital health will face similar challenges
if the bias inherent in BYOD studies is left unaddressed [22,23].
In this viewpoint paper, we seek to raise awareness of
demographic imbalances in several BYOD studies and propose
a guideline based on our own BYOD case study to directly
improve the demographic balance of BYOD digital health
studies.

Demographic Imbalances in Existing
BYOD Studies

BYOD is a term used to describe studies in which participants
contribute data from self-owned personal electronic devices.
We collected a sample of BYOD studies using multiple search
terms on PubMed and Web of Science, including “bring your

own device,” “(consumer) wearable device study,” “remote
mobile study,” and “mHealth,” and performed manual review
and filtering, which generated 15 relevant studies. Although we
note that this is not a systematic approach to compiling all
published BYOD studies, and we acknowledge the potential to
overlook studies that have successfully recruited a representative
study population, here we demonstrate that many existing
BYOD studies have gender and race imbalances when compared
to the broader US demographic profile. Of the 15 studies
identified, 4 (27%) did not report any demographics on ethnicity
or race, and none of the remaining 11 (73%) studies achieved
participant demographic proportions representative of the overall
US demographic profile (Multimedia Appendix 1).

One of the most pre-eminent BYOD studies was a substudy of
the All of Us research initiative [24] by the US National
Institutes of Health (NIH). In that substudy, wearable device
data were collected from participants who owned Fitbit devices
between 2008 and 2019 and who consented to share their data.
More than 80% of participants in the overarching All of Us
study were from historically underrepresented groups in
biomedical research. As a strong juxtaposition, 70% of the
participants in the All of Us BYOD substudy identified as White
non-Hispanic, while only 4% and 3% identified as Black and
Asian, respectively (Figure 1 and Multimedia Appendix 2). The
ethnicity distribution in the All of Us study tells a similar story,
with over 90% of the participants identifying as non-Hispanic
or non-Latino, and only 6% identifying as Hispanic or Latino.
Even in this diverse, large-scale study that had specifically
targeted recruitment toward underrepresented groups, equitable
demographic representation was limited by the BYOD study
design.

Similar to other BYOD studies, we discovered demographic
imbalances in our own CovIdentify study (Multimedia
Appendices 3 and 4). The unique circumstances of the evolving
COVID-19 pandemic led to a rapid launch of our study, where
we aimed to develop an intelligent testing strategy using digital
biomarkers extracted from personally owned commercial
wearable devices under resource-constrained conditions (limited
testing, rural areas, etc). However, after our rapid study launch,
we found that the communities most vulnerable to COVID-19
[9,25] were not well-represented in our study.

To mitigate this demographic imbalance and to ensure the
inclusion of participants from underserved communities, we
developed the Demographic Improvement Guideline and
correspondingly altered our recruitment process. Although we
developed this guideline retrospectively after the discovery of
demographic imbalances in our study, we are calling for future
research to take proactive measures during the BYOD study
design as well as responsive measures during participant
recruitment and retention efforts. Many BYOD studies
acknowledge demographic imbalance as a limitation, and we
believe a concerted effort is needed to enact change to reduce
bias in digital health data used in research.
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Figure 1. Comparing demographic distributions from various bring-your-own-device (BYOD) studies (listed on the y-axis, above the dotted line), the
national census, and the National Vital Statistics System. Studies with an asterisk did not separate ethnicity and race and, therefore, have percentages
that sum up to be greater than 100. Other studies did not report a breakdown for all the ethnicity and race groups and, therefore, resulted in an aggregated
percentage less than 100.

Demographic Improvement Guideline

Overview
The goal of BYOD studies is to develop new device-based
technologies and interventions to improve the health or
well-being of populations. In order for these interventions to
be fit for purpose, the research and development should include
the populations where the technologies will ultimately be used,
or their exclusion should be well-justified and should not
introduce bias or harm. There may be cases where demographic
imbalances (ie, sampling bias) would not be problematic in a
BYOD study, for example, if both of the following conditions
apply: (1) the manifestation of the disease as measured by the
wearable device does not differ across race, ethnicity, or age
and (2) the technology works the same for all people across the
entire population. In such cases, the researcher would not need
to focus efforts and resources on obtaining a representative
demographic distribution in the study population.

However, it is known that (1) most diseases do not manifest in
the same way across different demographics and (2) smart
devices do not work equally well or are not equally accessible
across all demographics. As such, we cannot conclude that a
biased sampling strategy is generally an appropriate choice.
There will certainly be exceptions where the study population
is appropriately focused on a certain group (eg, only including
females in pregnancy-related studies), which can be achieved
by applying inclusion and exclusion criteria for study
participation. In this case, before a biased sampling strategy is
chosen, the researcher is obligated to prove the null hypothesis
for differences in disease manifestation and device function
between the biased sample and the population where the
technology is intended to be used. We purport that this step is
often an even larger barrier than designing an equitably sampled
study population. Next, we describe two concrete examples of
times when equitable sampling was not prioritized and resulted
in incorrect study conclusions.

The first condition for considering sampling bias is when domain
knowledge from a field gives a priori indication that disease

prevalence and pathophysiology may vary by race, ethnicity,
or both, for example, COVID-19 infection and mortality rates,
metabolic disease, cardiovascular disease, and sleep
disturbances, among others [9-18]. Coronary artery disease is
a historical example of the unintended and harmful effects that
biased study populations can have on study conclusions: most
early coronary artery disease studies consisted of homogenous
male populations and, as a result, differences in symptoms for
men and women were not discovered until follow-up studies
included female populations [26,27]. Often there is insufficient
a priori knowledge of differences in disease manifestation across
age, gender, race, ethnicity, etc. As a result, the effect of biased
sampling on study conclusions is frequently unknown.
Furthermore, data quality and sampling often vary across
demographics, particularly in mobile and wearable device
studies, which further complicates determining the most
appropriate sampling method. For example, use of wearable
devices, ranging from commercial wearable devices to more
sophisticated health monitoring devices, is lower among adults
over 50 years of age compared to adults aged 18 to 34 years.
Young, healthy, and more educated individuals are more likely
to own wearable devices [28].

The second condition for considering sampling bias is when
the technology used for data collection has not been validated
systematically (ie, it has either not reported demographic
distributions of the test population or has uncertainty in its
measurements). For example, a study published in 2020 in the
New England Journal of Medicine compared values of blood
oxygen saturation in occult hypoxia measured via pulse oximetry
with arterial oxygen saturation in arterial blood gas, the gold
standard, to determine the validity of the pulse oximetry
measurements [19]. The study obtained nearly 50,000 pairs of
measurements from more than 8000 White patients and 1000
Black patients. The frequency of occult hypoxia detection via
pulse oximetry was three times lower for Black patients than
White patients. Given the prevalent use of pulse oximetry in
medical decision-making, the implication of sensors reporting
varying results based on an individual’s skin tone is concerning.
The study points to the need for manufacturers of optical heart
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rate and blood oxygen saturation sensors to disclose the
demographic distribution of the populations that were used to
test the sensors. Since the primary sensor on most of the
wrist-worn commercial wearable devices (eg, Apple Watch,
Fitbit, and Garmin) relies on a similar optical sensor, ensuring
that the measurements are accurate for anyone who wears the
device is crucial. Because the performance of technology across
demographic characteristics is not systematically evaluated and
published for most commercial wearable devices, the technology
and models derived from them may fail to generalize across
demographic characteristics [20,29].

This guideline is relevant to studies in which sampling bias
resulting in demographic imbalance could challenge the validity
and generalizability of a BYOD study’s conclusions. The
method can be implemented iteratively in the study design and
execution process, and includes the following steps:

1. Identify one or more populations at risk of being omitted
from the study for whom the technology may ultimately be
used and determine if BYOD study design is appropriate
for the research question.

2. If the BYOD study design is insufficient for addressing
issues associated with demographic imbalance, modify the
study design using internal and external resources to
improve dissemination of information and improve
engagement with the target populations.

3. Launch the study and monitor study demographics in real
time to adjust downstream efforts accordingly.

Identify Populations of Interest
To identify the populations that are at risk of being omitted, a
literature review can reveal a baseline expectation of
demographic distributions from prior studies using similar
devices and advertisement strategies. To support this, it is
necessary for publication venues and funding agencies to require
detailed demographic reporting of BYOD studies. In addition
to the proactive measures mentioned above, researchers should
conduct early and ongoing systematic analyses of their study
demographics and iteratively adapt their strategies accordingly.

Modify Study Design
Capabilities to disseminate information, provide physical
resources, and improve engagement with the target population
can be assessed and developed internally and externally. Internal
resources may involve organizations within the research
institution that have experience recruiting underrepresented
populations or have ties with the underrepresented groups.
Another internal approach may be choosing the devices to be
included in the study, considering whether these devices have
widespread use in the underrepresented groups, and augmenting
and using capabilities of available devices (eg, using sensors
of more widely available smartphones to capture physiology
and activity characteristics instead of consumer wearables) [30].
External resources may include community groups that are
representative of the target population, government and
nongovernmental organizations that work with the
underrepresented communities, or donors who can donate
devices that can be distributed to the target population. Other
external resources may include clinician referral, which can

help establish trust with the target population and improve
retention of study participants [31].

For national or international studies, researchers can partner
with nationwide organizations, launch social media advertising
campaigns, or both [32-34]. For regional studies, researchers
can connect with institutional and local resources to learn about
and connect with community groups. Researchers may recruit
a liaison to aid in establishing partnerships with external
organizations and establish a community advisory board to
interact directly with community groups to contribute to the
study design and advocate for participation in the study.

One existing challenge is a dearth of funding to support
equitable digital health study design, including the purchase of
personal electronic devices, such as wearables and smartphones.
Funders should be aware of this challenge and develop funding
opportunities to support equitable digital health research. Given
that acquiring funding is a well-known challenge, there are
methods by which researchers can alter study design to reduce
costs. This can include altering the study to follow a subset of
the study population based on specific cases and controls. One
method is the implementation of a randomized withdrawal
design where participants who are inactive at the beginning of
the study are excluded so that participants who are active are
presented in the actual randomized study [35]. This could limit
the number of participants that researchers need to follow up
on and provide a more robust data set, but this may also skew
demographics. Another challenge is to ensure that the distributed
devices are used as intended, given that they require a certain
level of digital literacy and need to be consistently worn and
charged over time. As such, participant compensation amount
and timing as well as wear tracking should be included as
considerations in the study design and should be supported by
funding agencies [36].

Launch Study and Reassess Study Population
After study modifications, the study is ready for deployment.
Depending on the funding received and study design changes,
the resulting study may be a hybrid study where devices are
provided for the target population. During this launch phase,
researchers should regularly assess their demographic
distributions to determine whether their strategy is effective. If
the strategy is not effective, researchers can restrategize with
their internal and external community partners and identify
aspects of the study that may be deterring participant
engagement or recruitment. Finally, study teams should continue
to engage with the study population after the end of the study
to convey findings and future opportunities for participation in
research.

A Case Study on Practically Implementing
the Demographic Improvement Guideline

Overview
The following subsections provide details about the responsive
implementation of the Demographic Improvement Guideline
after the launch of the CovIdentify study (Institutional Review
Board No. 2020-0412). The study aimed to develop machine
learning algorithms to detect COVID-19 and influenza from
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wearable device data, with a long-term vision of developing an
intelligent diagnostic testing strategy using digital biomarkers
extracted from personally owned commercial wearable devices
under resource-constrained conditions (limited testing, rural
areas, etc). In April 2020, CovIdentify began enrolling
participants. Following informed consent, participants
contributed their wearable device data (eg, Fitbit, Garmin, and
Apple Watch) and reported daily symptoms for 12 months via
a downloadable app, email, or text message.

Identify
Following the rapid launch, exploratory data analysis revealed
major differences between CovIdentify demographics and the
demographics of COVID-19–positive cases and deaths in the
United States [30], as well as overall US demographics based
on the 2020 US Census. The communities hardest hit by the
COVID-19 pandemic, including Black and African American
as well as Hispanic and Latinx communities, also had the lowest
representation (Figure 2) [9,37,38].

Figure 2. Visualization of the Demographic Improvement Guideline. Step 1. Identify the populations at risk of being omitted from the study and for
whom the technology may ultimately be used. Step 2. Modify study design based on internal and external resources to disseminate information and
improve engagement with the target populations. Step 3. Launch the study, monitor study demographics in real time, and adjust downstream efforts
accordingly. Researchers should reassess their study population demographics to ensure that target distributions are achieved and restrategize accordingly.
The red dashed lines in the bar charts are visual representations of the acceptable threshold for each subgroup population.

Modify
To address this imbalance, we designed the Demographic
Improvement Guideline mitigation strategy in partnership with

Duke University’s Clinical and Translational Science Institute
(CTSI), an NIH-funded center that connects researchers with
local community partners and improves the reach and efficacy
of research [39]. We piloted this method in the Durham, North
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Carolina community from June through October of 2020. The
CTSI facilitated connections between our research team and
local community and faith leaders, including groups working
to address COVID-19–related health disparities affecting the
Latinx and African American communities. This engagement
enabled our team to learn directly from community members,
researchers, and health care professionals in order to improve
our advertisement and recruitment strategies to (1) increase
awareness about the study and (2) distribute wearable devices
that were donated to our study and purchased through research
funding. To expand awareness of the study, our team gave
presentations to community groups regarding the advantages
of continuous health monitoring, the uses of participant
information in this study, and imbalances in our current study
population that would make it difficult for our team to develop
generalizable study findings. We also recruited a liaison to the
Latinx community, translated our website to four additional
languages, ran multilingual social media advertisements
featuring diverse images and videos, and posted messages about
the study on various social media platforms.

Launch Study and Reassess Study Population
To support the purchase of devices and social media advertising
campaigns, we applied for nearly 30 funding opportunities from
government, nonprofit, and industry sources. We were awarded
a Duke Bass Connections Fellowship, a North Carolina
Biotechnology Institute grant, and a Duke MEDx/CTSI award
that enabled us to purchase 65 wearable devices for distribution.
We also received a donation of 300 additional devices from a
previously completed study. We attended 12 community events,
including food and medication distribution events for
low-income members of the Durham community, and distributed
250 free wearable devices in a socially distant manner to ensure
safety during the COVID-19 pandemic. It should be noted that
this was a hybrid BYOD design because participants were still
required to own a smartphone to connect their wearable device
to the study. We also worked with wearables companies to set
up reduced device pricing with a direct link from our study’s
main webpage to improve accessibility. Together, these efforts
resulted in a 250% increase in the representation of Black and
African American participants and a 49% increase in the Latinx
and Hispanic population within 4 months of the implementation
of the guideline (Figure 3).

Figure 3. Percent increase in CovIdentify study population participants compared to June 21, 2020.

Discussion

In this viewpoint paper, we discussed the need for digital health
studies to sample from populations representative of the target
population to ensure equitable performance of predictive or
machine learning models. We explored demographic imbalances
in BYOD studies and proposed the Demographic Improvement
Guideline to address these imbalances with an implementation
example from the CovIdentify study. We believe that future
efforts and funding in this space can further improve equitable
digital health study design and data collection. Further, we
recommend that researchers carefully consider the financial
incentives and personal motivations provided to participants by
the study to identify driving factors for participation and
engagement.

By developing the Demographic Improvement Guideline, we
aim to facilitate improvement of future BYOD study design
through fostering relationships and trust with local community
groups. These methods are not limited to BYOD studies only.
We can translate these methods to non-BYOD studies as well.
In addition, we believe that implementing existing
community-based engagement methods, such as training
recruiters and providing face-to-face screening, can improve
both recruitment methods and adherence to studies [40-43]. We
also emphasize the need for increased funding opportunities in
this area to enable the development of equitable algorithms and
models that are representative of all individuals.

One limitation of the Demographic Improvement Guideline
was the condition under which it was developed. While the
guideline is a proactive recommendation, the implementation
within our case study was retrospective to our findings.
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Therefore, shifts in our study design, such as donating
commercial wearable devices to underrepresented groups, have
resulted in a non-BYOD (ie, hybrid) study. Furthermore, due
to the evolving nature of the pandemic and the resulting rapid
launch of the CovIdentify study, factors mentioned in the
guideline may not be applicable to all study designs. Here, we

intend to present the guideline as one unique potential solution
of the many possible solutions to address demographic
imbalances in BYOD studies. This experience underscores the
importance of addressing potential demographic inequities prior
to a BYOD study launch.
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