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Abstract

Background: Behavioral representations obtained from mobile sensing data can be helpful for the prediction of an oncoming
psychotic relapse in patients with schizophrenia and the delivery of timely interventions to mitigate such relapse.

Objective: In this study, we aim to develop clustering models to obtain behavioral representations from continuous multimodal
mobile sensing data for relapse prediction tasks. The identified clusters can represent different routine behavioral trends related
to daily living of patients and atypical behavioral trends associated with impending relapse.

Methods: We used the mobile sensing data obtained from the CrossCheck project for our analysis. Continuous data from six
different mobile sensing-based modalities (ambient light, sound, conversation, acceleration, etc) obtained from 63 patients with
schizophrenia, each monitored for up to a year, were used for the clustering models and relapse prediction evaluation. Two
clustering models, Gaussian mixture model (GMM) and partition around medoids (PAM), were used to obtain behavioral
representations from the mobile sensing data. These models have different notions of similarity between behaviors as represented
by the mobile sensing data, and thus, provide different behavioral characterizations. The features obtained from the clustering
models were used to train and evaluate a personalized relapse prediction model using balanced random forest. The personalization
was performed by identifying optimal features for a given patient based on a personalization subset consisting of other patients
of similar age.

Results: The clusters identified using the GMM and PAM models were found to represent different behavioral patterns (such
as clusters representing sedentary days, active days but with low communication, etc). Although GMM-based models better
characterized routine behaviors by discovering dense clusters with low cluster spread, some other identified clusters had a larger
cluster spread, likely indicating heterogeneous behavioral characterizations. On the other hand, PAM model-based clusters had
lower variability of cluster spread, indicating more homogeneous behavioral characterization in the obtained clusters. Significant
changes near the relapse periods were observed in the obtained behavioral representation features from the clustering models.
The clustering model-based features, together with other features characterizing the mobile sensing data, resulted in an F2 score
of 0.23 for the relapse prediction task in a leave-one-patient-out evaluation setting. The obtained F2 score was significantly higher
than that of a random classification baseline with an average F2 score of 0.042.

Conclusions: Mobile sensing can capture behavioral trends using different sensing modalities. Clustering of the daily mobile
sensing data may help discover routine and atypical behavioral trends. In this study, we used GMM-based and PAM-based cluster
models to obtain behavioral trends in patients with schizophrenia. The features derived from the cluster models were found to be
predictive for detecting an oncoming psychotic relapse. Such relapse prediction models can be helpful in enabling timely
interventions.
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Introduction

Background
Schizophrenia is the most common psychotic disorder, affecting
up to 20 million people worldwide [1] and accounting for more
than 13.4 million years of life lived with a disability [2]. It can
be caused by a combination of genetic, environmental, and
psychosocial factors. Patients with schizophrenia experience a
range of positive symptoms (hallucinations, delusions, etc),
negative symptoms (anhedonia, social withdrawal, etc), and
cognitive dysfunctions (lack of attention, working memory,
executive function, etc) [3,4]. The disorder is highly disabling
and often has consequences such as impairment of education,
employment, and social contact [4]. Adults with schizophrenia
also have an increased risk of premature mortality than the
general population [5]. Therefore, proper treatment and
management of schizophrenia are important to limit the negative
impact of the disorder on the individual’s life.

Schizophrenia is usually treated with a combination of
antipsychotic medications and psychosocial treatments.
However, patients undergoing treatment can still experience
psychotic or symptomatic relapse, an acute exacerbation of
schizophrenia symptoms [6]. A previous study found that the
cumulative first and second relapse rates were 81.9% and 78%,
respectively, within 5 years of recovery from the first episode
of schizophrenia and schizoaffective disorder [7]. The risk of
relapse is found to be significantly higher after treatment
reduction or discontinuation [6]. Relapse poses severe health
risks for the individuals and can jeopardize their treatment
progression and daily functioning. Each relapse episode is
associated with a risk of self-harm and harm to others [8].

To monitor a patient’s health status and recovery, routine clinic
visits for continual assessment are recommended. Clinical
interviews and questionnaire tools were used during the visit
to assess current health symptoms and provide timely
intervention to prevent relapses [9]. However, relapses may
occur between the visits, during which a patient’s health status
is not assessed. In addition, patients may have limited insight
during a psychotic relapse and may struggle to report it to the
treatment team or a significant other. Therefore, improving
treatment adherence and preventing relapses have become a
focus of schizophrenia management. Toward the effort of relapse
prevention, there has been significant interest in mobile
sensing-based behavioral monitoring models for automatic
relapse risk prediction.

Previous Studies
Smartphone apps and wearable devices have been used in
several previous studies to collect passive sensing data and track
daily behaviors, which can then be used to model the
relationship between behaviors and mental well-being. For
example, in the StudentLife study, an Android sensing app

collected passive sensing data from 48 college students, and the
inferred behavioral features from the collected data were found
to be correlated with academic performance and self-reported
mental health conditions [10]. In a study on depression severity,
the mobile sensing-based features, such as daily behavioral
rhythms, variance of patient’s location, and phone use, were
found to be related to depressive symptom severity [11]. The
use of mobile sensing to collect long-term monitoring data has
also been demonstrated to be feasible and acceptable for patients
with schizophrenia disorders [12-15]. Surveys have found that
people with schizophrenia commonly access digital devices for
communication and support related to the disorder, which again
shows the applicability of using mobile sensing as a platform
to monitor schizophrenia symptoms [16].

Mobile sensing data have been used to model behaviors and
predict psychotic relapses in patients with schizophrenia. If an
oncoming relapse can be detected with high accuracy, timely
medical interventions can be provided to mitigate the associated
risks. Researchers have found anomalies in daily behavior
assessed from mobile sensing before relapses and developed
relapse prediction models with promising accuracy [17-19]. In
a pilot study, the Beiwe app collected mobile sensing data from
15 patients with schizophrenia for 3 months, during which 5
patients experienced relapses [17]. The researchers found that
the rate of anomalies in mobility and social behavior increased
significantly closer to relapses. In the CrossCheck project, a
mobile sensing app was developed to collect self-reporting
ecological momentary assessment and continuous passive
sensing data from 75 outpatients with schizophrenia [20]. On
the basis of this data set, Wang et al [18] compared different
machine learning models for relapse prediction, with several
feature extraction windows, and identified the best classifier
and prediction settings for detecting an oncoming relapse. The
best performance was obtained using a support vector machine
(with radial basis function kernel) model and a feature extraction
window of 30 days, leading to an F1 score of 0.27 on the relapse
prediction task. Similarly, the Adler et al [21] used an anomaly
detection framework based on an encoder-decoder
reconstruction loss to predict psychotic relapse in schizophrenia.

Concerning current mental health status, the extent to which an
individual adheres to work, sleep, social, or mobility routine
(ie, a regular behavioral pattern) largely impacts their mental
well-being and symptom severity of mental disorders [11,22,23].
Behavioral stability features that measure the adherence to
routines have been proposed as relapse predictors in some of
the previous studies. Features computed in our previous study
measured behavioral stability by calculating the temporal
evolution of daily templates of features derived from mobile
sensing data (daily templates are time series obtained with
representative feature values at regular time intervals in a given
day; eg, time series of hourly feature values) [19]. Tseng et al
[24] also showed the effectiveness of using behavioral
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rhythm-based features to predict different symptom severities.
Stability features such as deviation of daily templates were
found to be significant predictors of schizophrenia symptoms,
such as depression. He-Yueya et al [25] also proposed a stability
metric for behaviors with a fine temporal resolution by
calculating the distance between 2 cumulative sum functions
describing behaviors in a certain minute of the day. The
computed stability index had similar predictive power as the
state-of-the-art behavioral features (mean and SD of each
behavior) in the study by Wang et al [26], while being
complementary. In all the previous studies using behavioral
stability to model relapse prediction, the measured stability was
limited to the behaviors observed within a short feature
extraction window (eg, few weeks only). An individual’s routine
behaviors were not fully represented owing to the short time
window considerations. A summary of behavioral patterns can
rather be obtained when large time windows are considered.

In this study, instead of measuring behavioral patterns using
the variance of day-to-day behaviors, we identify the overall
cluster of behaviors for an individual using multimodal mobile
phone data and unsupervised machine learning and derive
features based on the distance of behaviors observed in a day
compared with the individual’s most representative routines.
The identified behavioral clusters for an individual could
represent their weekday routine, weekend routine,
low-phone-use routine (no sensor reading), and so on. The
identified clusters provide a representation of the long-term
behavioral trends across the patients, which are not directly
captured by short-term behavioral rhythm features, as used in
previous studies. Furthermore, clusters obtained from the mobile
sensing data represent quantized behaviors, and features derived
from these clusters are robust to the insignificant variations in
behavior compared with the short-term behavioral rhythm
change features. Typical behavioral routines for individuals can
be found via the clustering analysis of their daily behaviors.
Previously, clustering has been applied for identifying mobility
patterns using GPS sensing data and evaluating anomalies
accordingly [21,26]. However, to the best of our knowledge,
clustering analysis has not been performed for characterizing
the overall behavioral patterns of patients with schizophrenia,
using multimodal mobile sensing data toward relapse prediction
tasks.

Goal of This Study
In this study, we aim to (1) develop a method to characterize
patients’ daily behaviors using multimodal smartphone sensor
data, (2) understand the relationship between behavioral patterns
and psychotic relapse events in schizophrenia, and (3) evaluate
the predictive power of the identified behavioral pattern-based
features for relapse prediction. We propose multivariate time
series clustering of daily templates obtained from mobile sensing
data to obtain behavioral patterns. Then, the features derived
from clustering are used in the relapse prediction task. The paper
is organized as follows. In the Methods section, we describe the
method used to cluster multidimensional daily templates from
mobile sensing data, model selection approach for clustering,
and feature extraction and relapse prediction modeling. In the
Results section, we present the results obtained from the
clustering models, association of the obtained clustering-based

behavioral features with relapses, and evaluation of the
developed relapse prediction model. The obtained results are
discussed and future directions are outlined in the Discussion
section.

Methods

Ethics Approval
This study was approved by the ethical review committee of
Dartmouth College (#24356) and the institutional review board
of North Shore-Long Island Jewish Health System (#14-100B)
[20].

Data Preparation
The data used in this study were obtained from the CrossCheck
project (clinical trial registration: ClinicalTrials.gov,
NCT01952041 [27]), which was conducted at the Zucker
Hillside Hospital in New York City, New York [20,24,26,28,29].
Informed consents were obtained from the participants. The
inclusion criteria for the participants are described in the study
by Ben-Zeev et al [20]. The CrossCheck app collected mobile
sensing data from 75 outpatients with schizophrenia with a data
collection period of >12 months per patient. Of the 75 patients,
63 (84%) patients completed the data collection (n=27, 43%
men and n=36, 57% women; average age 37.2, SD 13.7 years;
range 18-65 years), and a total of 27 relapse events occurred in
32% (20/63) of the patients during the monitoring period. Some
patients had multiple incidences of relapses, but as the
monitoring period was long, each of the incidences was treated
as a unique event if separated by a month. A relapse incident
was defined as one that has occurred under one or more of the
following seven criteria: psychiatric hospitalization, increased
frequency or intensity of services, increased medications or
dosages or >25% changes in Brief Psychiatric Rating Scale
scores, suicidal ideation, homicidal ideation, self-injury, and
violent behavior resulting in harm to self or others [18]. A total
of 6 mobile sensing modalities including physical activity,
sociability, and ambient environmental readings were obtained
using the app. Different features were extracted from these
mobile sensing modalities, as presented by Tseng et al [24].
From these features, a total of 21 passive sensing features were
selected for our proposed clustering-based behavioral
characterization: acceleration, distance traveled, sleep duration,
ambient sound, ambient light, conversation duration, phone
unlock duration, and different types of call log, SMS text
message log, and app use. All the features were transformed to
an hourly resolution by averaging the observations within 1
hour. For features that were obtained with lower resolution (eg,
every few hours), for example, distance traveled from morning
to noon, the feature values were split to each hour spanned by
the time represented by these feature values. With hourly
resolution for each of the 21 features considered and these
hourly feature values considered as separate feature space, the
resulting data set had a dimension of 504 (21×24). Observational
data for a total of 18,436 days were collected for all the patients.
Per-patient feature normalization (min-max normalization
between 0 to 1) was performed to adjust for differences between
patients. From the normalized data set, principal component
analysis on the full data set (with data from all the patients) was
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performed for dimensionality reduction. The first 200 principal
components were retained, which explained 96.9% of the total
variance.

Clustering Models
We evaluated two different clustering methods: Gaussian
mixture model (GMM) and partition around medoids (PAM),
to cluster the features from the mobile sensing data and obtain
behavioral representations. The 2 clustering models differ in
how the similarity between different points are assessed,
representing different ways in which behaviors across days can
be compared with each other, and therefore, produce different
cluster outputs.

GMM Clustering

Model Introduction

The GMM is a probabilistic model that assumes data are
generated from a finite set of Gaussian distributions. Gaussian
mixture probability density is the weighted sum of k component
Gaussian densities [30]. The GMM can address correlation
between attributes by selecting the optimal covariance matrix
for each cluster and has been used in previous behavioral
clustering problems [31]. Moreover, it can derive the probability
of each sample in its assigned Gaussian distribution. In this
study, we used the GMM implementation from the scikit-learn
package in Python to obtain a clustering model for the mobile
sensing data [32]. The parameters of the GMM were obtained
using the expectation-maximization algorithm [33]. We selected
the number of clusters and covariance matrix type based on
Akaike information criterion (AIC) score and Bayesian
information criterion (BIC) score of all the candidate models
(see more details in Multimedia Appendix 1 [34,35]).

Model Output

Three output variables for each of the data points (observations),
offering GMM-based clustering features for the data points,
were generated based on the developed GMM: cluster label,
assigned cluster likelihood score, and weighted average
likelihood score.

Cluster label is represented by integers from 1 to k (k is the
number of clusters selected in the GMM). Cluster likelihood
scores derived from the model measure how irregular each day
(represented by a data point) is by calculating its deviation from
the Gaussian mixtures. If we consider the center of each
Gaussian as a typical routine, the farther out a point is in this
Gaussian space, the higher the chances that the point represents
an anomalous day or behavior.

The likelihood of a data point in a multivariate Gaussian
distribution can be computed by calculating the probability of
observing a point farther than the given point. In other words,
the cumulative distribution function is evaluated at a given data
point, which can be obtained using Mahalanobis distance metric.
Note that the squared Mahalanobis distance from a point to the
center of a Gaussian distribution has been proven to follow a
chi-squared distribution with p df, where p is the number of
variables [36]. Therefore, the likelihood of a point in the
Gaussian distribution is equivalent to the cumulative probability

of observing a value larger than the given Mahalanobis distance
in a chi-squared distribution with p df.

The assigned cluster likelihood score of the data point was
obtained as the probability of each point to its assigned cluster.
The weighted average likelihood score was computed as the
weighted (with the cluster’s corresponding weights) sum of the
probability of a given point belonging to each of the Gaussian
classes. Intuitively, the assigned cluster likelihood score
measures how similar a day is to its closest routine. The
weighted average likelihood score measures how similar a day
is to all routines. As the weighted average likelihood score
accounts for cluster weights, a point that is closer to a more
populous cluster will be considered less anomalous. A 2D
illustration of the likelihood scores is provided in Figure S1 in
Multimedia Appendix 1.

PAM With Dynamic Time Warping Clustering

Model Introduction

GMM measure the similarity between observations (data points)
using point-wise alignment of different features in the
observation. However, the dissimilarity between 2 observations
could be overestimated owing to an outlier (eg, because of faulty
sensor measurements) or when there is a small time-shift or
speed difference between observations. For example, 2 daily
templates with a similar pattern but a shift of 1 hour would be
expected to represent similar behavioral representations, but
these templates would likely be considered dissimilar from the
GMM. To allow flexible similarity assessments, we used
dynamic time warping (DTW) to determine the optimal
alignment of indices of the 2 time series that minimizes the
distance between the time series [37]. The DTW distance can
be paired with a distance-based clustering method such as a
PAM clustering model [38]. The PAM model searches for k
representative objects (medoids) from the data and creates
clusters so that the total dissimilarity of points within clusters
is minimized. We compared the number of clusters k based on
the sum of the squared DTW distance of every data point with
its cluster medoid and the elbow method (see more details in
Multimedia Appendix 1).

Model Output

From the fitted PAM model, similar to the procedure after GMM
fit, we generated three output features characterizing each data
point: cluster label, assigned cluster distance score, and weighted
average distance score. Similar to the GMM-based likelihood
score computation, the cluster distance scores evaluate how
dissimilar each object is from a representative data point or
from all representative data points. The assigned cluster distance
score is the DTW distance of each data point (representing a
daily template) to its cluster medoid. A lower value indicates
that a day conforms better to its most similar routine. Weighted
average distance score was obtained by summing the DTW
distance to all medoids scaled by the corresponding cluster sizes.
A lower value indicates that a day conforms better to all possible
routines. DTW distance from the previous day’s daily template
was also calculated as a potential relapse predictor.
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Analyzing Cluster Results
After obtaining the output variables from the cluster models,
we evaluated whether there were significant changes in any of
these cluster output variables closer to relapse events. To
quantify this change, we first defined different key periods to
focus before a relapse. Similar to a previous study, we defined
NRx as x days near relapse period (before the relapse event)
and pre-NRx as all days before relapses that were not in NRx
(healthy period) [21]. We evaluated the cluster outputs for NR7,
NR14, NR20, and NR30 periods to test different window sizes.
Cliff δ was computed to estimate the size of the change in the
likelihood scores (GMM output) and distance scores (PAM
model output) between the NRx and pre-NRx periods for each
patient separately [39]. Cliff δ was chosen because of the
nonnormality and variance heterogeneity of our data, for which
the Cliff δ is a suitable metric. It is calculated as follows:

In the formula, #(x1 > x2) counts the number of values in group
1 (NRx period) that is larger than a value in group 2 (pre-NRx
period) for all value pairs, and n1 and n2 are the sample sizes.

This effect size ranges from −1 to 1, where 1 indicates that all
values in the NRx period are larger than all values in the
pre-NRx period, and −1 indicates vice-versa. As proposed by
Romano et al [40], the effect can be considered to be
nonnegligible if the absolute value is >0.147. Cliff δ is suitable
to compare continuous variable output such as likelihood scores
and distance scores.

Relapse Prediction

Relapse Prediction Approach
We framed relapse prediction as a binary classification problem
similar to the earlier studies [19,41]. On the basis of the mobile
sensing features derived from a feature extraction window
(current and immediately past observations from a patient), we
predicted whether the patient is likely to experience a relapse
in an oncoming period (prediction window). Similar to previous
studies [19,41], we used a 4-week period as the feature
extraction window and a 1-week period as the prediction
window (Figure 1). Thus, mobile sensing observations from the
past 4-week period were used in the relapse prediction model
to predict whether there will be a relapse in the next week.

Figure 1. Sequential relapse prediction approach used in this study. Features are extracted from a period of 4 weeks to predict if a relapse might occur
in the coming week.

Features

Overview

Mobile sensing data contain features that characterize behavioral
patterns in the relapse prediction model. In this study, we
evaluated the contribution of the clustering features derived
from the GMM and PAM models for the psychotic relapse
prediction task. We briefly describe the baseline features (based
on an earlier study [19]) and clustering-based features that are
added to the relapse prediction model.

Baseline Features

These consist of all the features as used in the study by
Lamichhane et al [19] along with distance-based and
duration-based mobility features and screen use-based features.
The CrossCheck data set contains information about when the

screen of the patient’s smartphone is active. A single screen-use
modality that represents the time spent using the phone (phone
screen was active) was derived. Using this modality, the mean
and SD of daily averages in a given feature extraction window
were computed as features for the relapse prediction model.
Similarly, for mobility-based features, we computed four
different mobility modalities: distance traveled from home
(home information obtained based on the clustering of the GPS
locations), total movement, average time spent in a location,
and total time spent at home. Then, for each mobility-based
modality, we computed the mean and SD of the daily averages
as features characterizing a feature extraction window.

Clustering-Based Features

We extended the baseline feature set with our proposed
clustering-based features for the relapse prediction task. These
features are listed in Table 1.
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Table 1. Features used in relapse prediction models. Baseline features are derived from a previous study [19]. We evaluated if the clustering-based
features could improve relapse prediction by complementing the daily behavioral rhythm change-based features represented in the baseline features.

FeaturesFeature set and modalities

Baseline features

Mean daily template features (mean, SD, max, range, skewness, and kurtosis), SD template
features (mean), absolute difference between mean and maximum template (max), distance
between normalized mean templates, weighted distance between normalized mean tem-
plates, distance between normalized maximum template and mean template, and daily
averages (mean and SD)

Accelerometer magnitude; ambient light; distance
traveled; call duration; sound level; and conversation
duration

Mean and SD of EMA items in feature extraction window10-item EMAsa

Mean and SD of daily averages in feature extraction windowScreen use, distance-based mobility features: distance
from home and total movement, and duration-based
mobility features: time spent at a location and time
spent at home

Clustering features

Mean and SD of GMM label and GMM likelihood scores, number of cluster transitions,
and number of cluster states

GMMb features

Mean and SD of PAM label, PAM distance scores, and DTWd difference from the previous
day; number of cluster transitions; and number of cluster states

PAMc features

Age and education yearsDemographic features

aEMA: ecological momentary assessment.
bGMM: Gaussian mixture model.
cPAM: partition around medoids.
dDTW: dynamic time warping.

Classifier
For our relapse prediction pipeline, we used a balanced random
forest (BRF) classifier with a low overall model complexity
(using 11 decision trees). As a classifier, BRF is suitable for
learning from an imbalanced data set, as is the case in our
relapse prediction task and provides meaningful prediction
probabilities in different decision fusion schemes (eg, in
situations where only a limited number of sensor modalities are
available for a patient). The number of decision trees to be used
was heuristically chosen to limit the model size (lower number
of trees), while still having a number of trees to maintain
diversity for the generalizability of the ensemble model. We
used the BRF implemented in the imbalanced-learn library in
Python [42], allowing the default unrestricted depth of trees and
squared root of number of features considered for best split in
the trees. Similar to the approach used by Lamichhane et al [19],
features were quantized into discrete bins before being provided
as input to the classifier. The number of bins was set as a
hyperparameter, and for the set number of equal-width bins, the
count of feature values in each bin was retained as the processed
feature values. The approach of feature quantization was found
to be helpful in relapse prediction, probably by ignoring small
insignificant changes while retaining large feature variations
representing significant behavioral deviations. We used
leave-one-patient-out cross-validation for the evaluation of the
model. The number of bins to be used was a hyperparameter
for the classification model and was set with cross-validation
within the training set (nested cross-validation). The number of
bins for feature quantization considered in hyperparameter
tuning were 2, 3, 4, 5, 10, and 15, and the tuning procedure is
further described in Multimedia Appendix 1.

Relapse Labels
For our relapse prediction pipeline, as the relapse dates are not
a fixed discrete event, a hard label and earlier indications of an
oncoming relapse are also valuable, we considered the entire
month preceding the date of indicated relapse as a relapse period
for classification. Thus, any prediction of relapse within a
4-week period before the relapse was considered as a useful
output from the prediction model, as has also been used in
previous study on relapse prediction [21]. A relapse prediction
generated up to a month before the relapse would be observable
and potentially actionable for interventions, as behavioral
changes associated with relapse could manifest up to a month
preceding a relapse [18].

Personalization
Human behavior and behavioral change manifestations of
relapse can be person-dependent. Lamichhane et al [19]
proposed a method for personalizing a relapse prediction model
based on feature selection adapted to a particular test patient.
The adaptation occurs using a personalization subset. This is
illustrated in Figure 2. For a test patient, within the
leave-one-patient-out cross-validation approach, the data from
patients closest in age to the given test patient comprised the
personalization subset. We included age-based personalization
as a first step toward personalized relapse prediction, as
behavioral tendencies could be dependent on age, among other
factors. Age has been reported to be a significant factor in
univariate regression modeling of relapse behaviors in patients
with schizophrenia [43], and age dependence of psychosocial
functions, substance use behaviors, psychotic symptoms,
hospitalization risks, and so on, have been reported in the
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context of psychotic relapse in patients with schizophrenia [44].
We evaluated the gains from age-based personalization
compared with a nonpersonalized model to empirically establish
if age-based personalization could be helpful in behavioral
modeling and relapse prediction. As relapse incidents are rare,
all the relapse incidents in the training data set were included
as a part of the personalization subset. For training a classifier
toward the test patient, the optimal features were selected using
the personalization subset. We used this approach for training
our relapse prediction model, and used the correlation between
features and target labels as the feature selection criteria. The

number of features to be selected was set as a hyperparameter
in our classifier, and this dictated the threshold for correlation
value used for feature selection. For example, if the number of
features to be selected is 5, the threshold for correlation
coefficient (absolute value) is selected such that top-5 features
with the highest correlation with the labels are retained. The
number of features to be used was selected from 3, 5, 10, and
15, and the features and size of the personalization subset was
selected from 50, 75, 100, 125, 150, 200, and 300 for the
hyperparameter tuning (further described in Multimedia
Appendix 1).

Figure 2. Personalization approach for the relapse prediction model [19]. A personalization subset, consisting of data from patients who are closest in
age to the test patients, is used to identify the best feature sets, using which a (personalized) relapse prediction model can be trained.

Evaluation Metric
We evaluated relapse prediction performance to assess the
contributions from clustering-based features. Any improvement
in the relapse prediction performance when clustering-based
features are added to the baseline features would establish the
value of clustering-based features to represent behavioral trends
and detect anomalies relevant for relapse prediction. Similar to
the study by Lamichhane et al [19], we used F2 score for model
evaluation to slightly prioritize recall over precision (detecting
a relapse is slightly prioritized over generating a false positive).
F2 score is given as follows:

We also report the obtained precision and recall scores together
with the F2 scores.

Results

Clustering Results
We trained GMM and PAM models to obtain cluster centers
and identify different behavioral routine representations. The
model selection procedure is explained in Multimedia Appendix
1, and model comparison metrics for GMM and PAM are plotted
in Figures S2 and S3 in Multimedia Appendix 1. For GMM,
after evaluating AIC and BIC scores, model selection was
narrowed to 8 to 14 clusters with full covariance matrix. Among
the models with equally good AIC and BIC scores, the models
with 9 and 13 clusters achieved the best model stability and
least overlap between Gaussian classes. The final model
selection was 9 clusters because lower number of clusters allows
for higher interpretability. The number of clusters for the PAM

model was also selected to be 9 based on the distance
dissimilarity metric and elbow method.

See Figures S4 and S5 in Multimedia Appendix 1 for the output
from the GMM and PAM models, including cluster size, average
likelihood scores (for GMM), distance scores (for PAM; Figure
S4 in Multimedia Appendix 1), and kernel density plots that
illustrate the distributions of likelihood scores and distance
scores (Figure S5 in Multimedia Appendix 1).

To evaluate how well the days in each cluster conform to a
routine—the one represented by the cluster center—we
measured the spread of each cluster using the trace of the
covariance matrix of all cluster samples. Results are illustrated
in Figure 3. Clusters with small covariance trace had low
within-cluster variability. The GMM cluster model resulted in
a more extreme distribution of cluster spread (higher range of
covariance trace) because it allowed the clusters to overlap
(despite our model selection approach to limit overlaps), whereas
the PAM model created partitions in the data.

By averaging all daily templates (data points) in every cluster,
it was possible to observe the cluster profiles. For example,
Figure 4 illustrates the average daily templates of two example
signal modalities: acceleration and conversation. The GMM
performed better in stratifying daily templates based on the
overall level of activity in these signal modalities. The PAM
model had high variance in each cluster because it allows for a
more lenient dissimilarity measurement. Although the daily
templates in each cluster have different levels of signal activity,
they generally follow the same pattern as a normal circadian
rhythm; for example, the conversation signal activity peaking
during the day and being at minimum during the night.

Table 2 summarizes the average profile for each cluster, ordered
from the most common to the least common cluster.
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Figure 3. Trace of the sample covariance matrix for each cluster obtained with Gaussian mixture model (GMM) and partition around medoids (PAM)
clustering approach. A low covariance matrix trace indicates more homogeneous clusters, that is, clusters with lower within-cluster variability.

Figure 4. Average daily templates of two signal modalities acceleration (top) and conversation time (bottom) in the clusters obtained from the Gaussian
mixture model (GMM) and partition around medoids (PAM) models. Different clusters capture different behavioral patterns.
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Table 2. All cluster profiles obtained from the GMMa and PAMb models in descending cluster size. Different clusters are associated with peculiar
behaviors specific to that cluster as it can be observed from the typical profile of signal modality in that cluster.

PAM cluster
size (days)

PAM cluster profileGMM cluster
size (days)

GMM cluster profileCluster size
rank

3318Low acceleration, conversation, volume, and sleep
duration and very low variability in sleep and
volume templates

5217No app use, high conversation and SMS text
messaging, and other attributes are approximately
average

1

3300High volume and SMS text messaging and con-
stantly low sleep template

3993Highest app use and phone calls; high accelera-
tion, conversation, SMS text messaging, distance
moved, and volume; early wake up (at approxi-
mately 7 AM); and no sleep during the day

2

2728Conversation and volume sharply increase after
6 AM, highest volume, low phone use before 7
AM, wake up at approximately 7 AM, and sleep
at approximately 9 PM

2580Almost all sensor readings near 03

2699High app use, SMS text messaging, and distance
moved around midnight and below average accel-
eration

1883Highest acceleration, low phone calls, early wake
up (at approximately 7 AM), and no sleep during
the day

4

2378Lowest acceleration (close to 0) and app use and
constantly high screen time and sleep duration

1484High acceleration after midnight, high phone calls
and SMS text messaging, high overall volume
even at night, and late sleep and wake up

5

1686High phone calls and SMS text messaging, screen
time sharply increases after 6 AM, wake up at
approximately 9 AM, sleep at approximately 11
PM, and awake during the day

1298Below average volume and distance, wake up after
11 AM, and sleep during the day

6

1405Below average screen time and long sleep time
(wake up around noon)

1046Activity level and phone use are high during the
day, inactive at night, short sleep duration, high
number of phone calls, and acceleration increases
after 3 PM

7

752Low phone call, SMS text messaging, and screen
time; high volume at night; and constant long
sleep (wake up in the afternoon)

523No app use; low conversation, SMS text messag-
ing, and volume; and long sleep even during the
day

8

170High app use and distance moved during noon;
templates in this cluster have high dissimilarities

412Accelerometer readings close to 0; low app use,
conversation, and volume; phone screen is con-
stantly on; and long sleep duration even during
the day

9

aGMM: Gaussian mixture model.
bPAM: partition around medoids.

Association With Relapses
Of the 27 relapse events in total, clustering features were missing
before 3 (11%) events owing to missing signal modalities. For
11 (46%) of the remaining 24 relapses, anomalies in clustering
features were observed qualitatively in the time series of these
features before and after the relapse. Most of these anomalies
represented a transition to a cluster with inactive sensor readings;
for example, GMM cluster 3 and PAM cluster 1 (Figure 5). We
hypothesized that the patients, for whom we see their assigned
cluster labels near relapse period being assigned to the cluster
of inactive sensor recordings, most likely had their phone turned
off a few days before the relapse. This transition to an inactive
cluster was associated with an increase in likelihood scores
(GMM-based feature) and a decrease in distance scores (PAM
model-based feature) because these clusters were more compact
and points did not deviate very much from the cluster centers.

Our cluster analysis between the NRx and pre-NRx periods
showed that, on average, likelihood scores increased and

distance scores decreased closer to relapses (Figure 6). This
trend was robust with respect to different window sizes, and
the largest change was observed with NR20 window size.
Asterisks indicate that the absolute Cliff δ value between the 2
periods is >0.147 (ie, effect is nonnegligible; refer to Analyzing
Cluster Results in the Methods section). Note that the plots were
made using all patients’ data collectively. Individual patient’s
plots would show a large difference between the near-relapse
window and healthy period. Average Cliff δ values across all
relapse events are presented in Table S1 in Multimedia
Appendix 1.

We evaluated the relapse prediction pipeline discussed in
Relapse Prediction in the Methods section, with and without
the clustering-based features. The highest F2 score of 0.23 was
obtained when the baseline features were complemented with
the clustering-based features, which was significantly higher
than the F2 score from random classification baseline (0.042)
and the F2 score obtained using the baseline features only (0.18).
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Figure 5. Time series plots of cluster assignment as obtained from the Gaussian mixture model (GMM) and partition around medoids (PAM) models
(left pane) and weighted average likelihood score and distance score of a sample patient (right pane). Changes in cluster features are seen near the
relapse instance (shown with the vertical red line).

Figure 6. Boxplot of the clustering features (likelihood scores from Gaussian mixture model on top and distance scores from partition around medoids
model at the bottom) in x days near relapse (NRx) and all days before relapses not in NRx (pre-NRx) periods. Bars indicate nonnegligible effect size.
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Significant Features
With the best relapse prediction obtained using all features, we
identified the most important features within this feature set
based on how often a feature was selected in the
leave-one-patient-out cross-validation. The selection count for
a feature was incremented by 1 if it was selected for use in a
particular cross-validation loop for a test patient. It should be

noted that the number of features selected in each
cross-validation loop was different because the number of
features was a hyperparameter selected using nested
cross-validation. Then, we normalized the total selection count
of each feature at the end of the cross-validation by the number
of cross-validation loops. The results obtained are presented in
Table 3.

Table 3. The top 10 significant features in the relapse prediction pipeline based on the entire feature set (baseline and clustering-based features). The
frequency of selection of a particular feature across the cross-validation loop is used to assess the most significant features for relapse prediction. It is
to be noted that different numbers of features are selected in each cross-validation loop, as the number of features to be used is a hyperparameter tuned
with a nested cross-validation loop.

Frequency (normalized)Features

0.19Baseline feature–distance template skewness

0.17Clustering feature–mean PAMa label

0.14Clustering feature–mean PAM weighted distance

0.14Baseline feature–conversation template skewness

0.12Clustering feature–number of transitions

0.10Clustering feature–SD GMMb label

0.10Clustering feature–SD PAM label

0.10Clustering feature–mean GMM assigned cluster likelihood

0.08Baseline feature–conversation template kurtosis

0.08Baseline feature–volume template range

aPAM: partition around medoids.
bGMM: Gaussian mixture model.

Discussion

Principal Findings
In this study, we used clustering models to obtain behavioral
representation from mobile sensing data, which could be useful
for relapse prediction. The two clustering models explored in
this study, GMM and PAM, grouped observations using
different notions of distance or similarity between data points,
and therefore, captured different behavioral representations
(Table 2; Figure 4). These representations can be useful in
downstream applications such as relapse prediction.

The GMM defines distance based on one-to-one matching
between the hourly observation of mobile sensing data in the
daily template. The clusters identified from the GMM have a
widely varied distribution of cluster spread (Figure 3). With
some compact clusters (represented by low cluster covariance)
being identified within the GMM, the remaining data points
that do not belong to any of these compact clusters are
considered as a large-spread cluster with no typical cluster
profile. These large-spread clusters also contain the compact
clusters (cluster overlaps); a point belonging to compact clusters
also shows high likelihood of belonging to the large-spread
cluster. As we wanted the clusters to capture distinct behavioral
trends, we evaluated Bhattacharyya distances to identify the
best clustering model with least overlap between identified
clusters. The PAM model with DTW distance allows a more
lenient match of daily templates of behaviors as represented by

the mobile sensing-based features. Such a lenient matching fits
the context of this study because DTW is able to adjust for
spikes, speed differences, or time shifts when evaluating
dissimilarity between 2 daily templates of behaviors. However,
the clusters obtained from the PAM model contain more
dissimilarities. Then, it is more difficult to summarize the cluster
profiles for qualitative model interpretation.

Overall, GMM-based modeling can identify highly dense or
populous clusters with very specific behaviors associated with
these clusters and some dispersed clusters that do not have a
typical cluster profile. For example, cluster 3 and cluster 9
identified from the GMM (Table 2) represented 2 types of
typical routines. Cluster 3 from the GMM had almost all sensor
readings, except sleep, close to 0, likely representing an inactive
or sedentary day, and cluster 9 had the days with the phone
screen always turned on, likely representing a day with high
mobile phone use. The PAM model also had a cluster with
mostly inactive days and constantly long screen time (cluster
5). However, this cluster had higher cluster variance. When the
average cluster profile of this cluster was observed (Figure 4),
some days that did not strictly follow the patterns of inactive
day and long screen time were also assigned to the cluster. In
terms of behavioral features, this implies that clusters obtained
from a PAM model are likely to cluster together the behaviors
that do not always show homogeneity based on qualitative
observations. This is because of the flexibility of the PAM model
in allowing unparalleled alignment between behavior time series.
Nonetheless, it might be beneficial to consider PAM-based
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modeling for the previously mentioned features: ability to
discount spikes and speed differences or time shifts when
evaluating dissimilarity between 2 daily templates of behaviors.
Similarity (or dissimilarity) between behaviors may not always
be fully represented by hourly alignment and comparison of
mobile sensing data across days.

The behavior of a particular day, represented by the mobile
sensing data template for that day, was characterized in a
clustering model with different clustering-based features such
as Gaussian likelihood and DTW distance to the cluster centers.
Days with assigned cluster likelihood scores close to 1 and
assigned cluster distance scores close to 0 tend to belong to a
dense cluster with a small spread. For example, cluster 3 from
the GMM and cluster 5 from the PAM model have the highest
likelihood and lowest distance to its assigned cluster,
respectively (Figure S4 in Multimedia Appendix 1). They also
have low within-cluster variability, as measured by the trace of
sample covariance (Figure 3). On the other hand, days
characterized by low likelihood scores and high distance scores
tend to be more dispersed and do not conform well to a specific
routine. For example, cluster 5 and cluster 7 in GMM and cluster
9 in the PAM model have such properties. Overall, GMM
clustering and PAM clustering tend to produce clusters with
different behavioral representations in the assigned clusters,
and this is reflected in the clustering-based features such as
likelihood scores and cluster distance that are assigned to
characterize each day.

In terms of relapse prediction, clustering-based features can
capture long-term behavioral trends across the patients. This
representation can complement existing approaches to
behavioral representation for psychotic relapse prediction in
schizophrenia; for example, based on the use of daily behavioral
rhythm change features as proposed by Lamichhane et al [19].

We compared the clustering-based features before and near the
relapse periods and observed significant differences in some
features. This was also seen qualitatively in a time series plot
of clustering-based features, indicating that an upcoming relapse
for a patient is associated with changes seen in clustering-based
features (Figure 5). Clustering-based features were helpful in
relapse prediction models (Table 4).

When clustering-based features were used together with daily
behavioral rhythm change features, a significant gain in relapse
prediction performance was obtained (F2 score improved from
0.18 to 0.23). These F2 scores and the associated improvements
are significant, considering that a random classification baseline
gives an F2 score of 0.042 on average. A Wilcoxon signed-rank
test on performances in multiple classifier initializations for
classification with and without clustering features yielded a
significantly high score for classification when clustering
features were included (P=.002). Clustering-based features were
among the top features when significance of features for the
relapse prediction task was evaluated (Table 3). Features such
as mean cluster labels and number of transitions of labels were
among the top (most frequently selected) features. Thus, both
the information about which behavioral clusters the observations
from the current period of monitoring belong to (likely
representing behavioral clusters that are not normal behaviors)
and how often transitions between different behavioral clusters
occur (representing the patient showing frequent behavioral
variations) are likely predictive of an oncoming relapse.
Clustering-based features alone also proved to be valuable for
relapse prediction. GMM-based and PAM-based clustering
features only used in the relapse prediction pipeline led to an
F2 score of 0.16 and 0.16 for relapse prediction, respectively
(Table 4). Therefore, clustering-based features are found to be
a useful approach to obtain behavioral representations and can
be used in clinical applications such as relapse prediction.

Table 4. Relapse prediction performance with different feature sets. The baseline features introduced in the previous study [19] are complemented with

clustering-based features for evaluation. The performance of both the GMMa-based and PAMb-based feature sets are also separately evaluatedc.

F2 score (precision/recall)Method

0.23 (0.063/0.662)All features

0.18 (0.055/0.400)Baseline features [19]

0.14 (0.035/0.487)Clustering features

0.16 (0.042/0.487)GMM features

0.19 (0.042/0.525)PAM features

0.19 (0.052/0.525)GMM+baseline features

0.16 (0.045/0.438)PAM+baseline features

aGMM: Gaussian mixture model.
bPAM: partition around medoids.
cRandom classification baseline: mean score 0.042 (SD 0.020).

Comparison With Previous Studies, Limitations, and
Future Research
To the best of our knowledge, this is the first study that used
clustering analysis to group behavioral patterns of individuals
with schizophrenia. Compared with previous studies that used

hourly data to train the relapse prediction models, our study,
based on clustering features to represent different behavioral
patterns, has better model interpretability. Clustering analysis
allows clinicians to understand different types of patient routines
and their frequencies. In terms of schizophrenia, cluster
transitions observed before relapses could suggest which types
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of behavior are potential relapse-related behavioral signatures.
Then, intervention strategies to prevent relapses can be made
accordingly.

Researchers have studied how missing data are related to
relapses and anomalies in mental health conditions. In the data
set that we used for evaluation in this study, some
passive-sensing daily templates have consecutive hours with
missing data from almost all signal modalities. In an anomaly
detection study, Adler et al [21] used mean imputation, whereas
here, we filled missing values with zeros. Filling missing data
with mean values may ignore the potential relationship between
missing data and anomalies. In reality, it is highly possible that
outpatients may turn off their phone when they experience
relapse symptoms. We observed that there are more days from
an inactive sensor reading cluster closer to relapses. The
increased prevalence of inactive days also caused likelihood
scores to increase and distance scores to decrease before
relapses. Initially, we hypothesized that adhering to any routine
or cluster center might reduce the risk of relapse, but it turned
out that some routines, such as missing sensing data, are actually
associated with a higher risk of relapse.

Although the clustering features successfully improved relapse
prediction results, the only observable relapse signature was an
increase in likelihood score or a decrease in distance score and
a transition to an inactive cluster. For the relapse events that
were not indicated by sensor inactiveness, we did not find any
nontrivial changes in any specific feature before the relapse.
Similarly, the relapse prediction performance with the best F2
score of 0.23 is relatively low. However, investigations of
mobile sensing-based relapse prediction in mental health
disorders are relatively new, and further improvements in this
field can be expected as more data sets become available and
improvements in machine learning models for the specific task
of relapse prediction are made. In the study by Borges et al [45],
relapse prediction in bipolar disorder was developed using
clinical assessment features during patient visits. A high F score
(F1) of up to 0.80 was reported. The relapse rate was quite high
(relapse in >60% of the included patients) in the data set used
by the authors, and the relapse prediction was performed at a
patient level (instead of a weekly prediction model in free-living
conditions, as in our case), which might have led to high
performance.

In this study, we obtained patient-independent clusters; that is,
generalized behavioral clusters, by pooling data from all the

patients. We generalized that there are certain types of routines
across all outpatients with schizophrenia. Future studies can
focus on establishing personalized cluster models. As suggested
in the study by He-Yueya et al [25], every patient’s relapse
signatures and the extent to which they adhere to their daily
routine are different. The same study found that individual-level
models can achieve better performance in predicting symptom
severity. Our model also found that participants have different
routines, as their frequencies of staying in different clusters
largely varies. Moreover, although most patients had high
likelihood scores and low distance scores closer to relapses,
some other patients demonstrated the opposite trend.
Generalized behavioral models might not fully represent and
discount the effect of different confounding variables such as
job type, sex, current health, and so on, which could impact
behavioral trends. Although we used model personalization in
relapse prediction, we considered only age as a covariate of
behavioral trends. Personalized cluster models that account for
different aspects of interpersonal differences would further help
mitigate possible biases in behavioral representations owing to
confounding variables. Personalized relapse prediction models
will also be required to test the effectiveness of the
individual-level clusters. However, sufficient data for each new
patient are needed to find cluster models specific to the patient,
and thus, clinical deployment for new patients will be delayed.
Cluster adaptation from generalized cluster models to
personalized cluster models, as more patient-specific data
become available, needs to be investigated in future studies.

Conclusions
In this study, we proposed a methodology to compute clustering
models on 24-hour daily behavior of outpatients with
schizophrenia and showed that information extracted from the
cluster model improved relapse prediction. New features were
generated from the cluster models by measuring the deviation
of every observation from the cluster centers representing typical
behavioral patterns. Two different clustering models were
investigated. The GMM allows for cluster overlap and has a
more extreme cluster dispersion. The PAM model with DTW
distance creates partitional clusters that are more generalized
toward new data, but fails to identify dense clusters. The
clustering-based features helped to improve relapse prediction
model performance. In future studies, we will further investigate
personalized clusters and relapse prediction models.
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