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Abstract

Background: Major chronic diseases such as cardiovascular disease (CVD), diabetes, and cancer impose a significant burden
on people and health care systems around the globe. Recently, deep learning (DL) has shown great potential for the development
of intelligent mobile health (mHealth) interventions for chronic diseases that could revolutionize the delivery of hedth care
anytime, anywhere.

Objective: Theaim of this study is to present a systematic review of studies that have used DL based on mHealth data for the
diagnosis, prognosis, management, and treatment of major chronic diseases and advance our understanding of the progress made
in this rapidly developing field.

Methods: A search was conducted on the bibliographic databases Scopus and PubMed to identify papers with a focus on the
deployment of DL algorithms that used data captured from mobile devices (eg, smartphones, smartwatches, and other wearable
devices) targeting CV D, diabetes, or cancer. The identified studies were synthesized according to the target disease, the number
of enrolled participants and their age, and the study period as well as the DL agorithm used, the main DL outcome, the data set
used, the features selected, and the achieved performance.

Results: In total, 20 studies were included in the review. A total of 35% (7/20) of DL studies targeted CVD, 45% (9/20) of
studies targeted diabetes, and 20% (4/20) of studies targeted cancer. The most common DL outcome was the diagnosis of the
patient’s condition for the CVD studies, prediction of blood glucose levels for the studies in diabetes, and early detection of
cancer. Most of the DL algorithms used were convolutional neural networks in studies on CVD and cancer and recurrent neural
networks in studies on diabetes. The performance of DL was found overall to be satisfactory, reaching >84% accuracy in most
studies. In comparison with classic machine learning approaches, DL was found to achieve better performance in almost all
studiesthat reported such comparison outcomes. Most of the studies did not provide details on the explainability of DL outcomes.

Conclusions: Theuse of DL can facilitate the diagnosis, management, and treatment of major chronic diseases by harnessing
mHealth data. Prospective studies are now required to demonstrate the value of applied DL in real-life mHealth tools and
interventions.

(JMIR Mhealth Uhealth 2022;10(4):€32344) doi: 10.2196/32344
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Introduction

Background

Chronic, nhoncommunicable diseases are the leading cause of
mortality and disability worldwide. According to the World
Health Organization, cardiovascular disease (CVD) is the
number 1 cause of death worldwide, taking an estimated 17.9
million lives each year [1]. In 2020, there were approximately
10 million deaths because of cancer [2]. Diabetes is another
major chronic disease, with the number of people diagnosed
with it increasing dramatically from 108 millionin 1980 to 422
million in 2014 [3]. As a consequence of the prevalence of
chronic diseases, health care systems around the globe struggle
to provide efficient medical care to those patients.

Mobile health (mHealth) has recently emerged as a new
paradigm for providing efficient medica care anytime,
anywhere. The wide uptake of mobile phones or other mobile
electronic communication devices by people has fueled the
advancement of their capabilities. Nowadays, mobile devices
such as smartphones, smartwatches, and wearable devices can
enablerobust sensing and processing of health parametersalong
with communication of health information to patients and
caregivers. As a result, they reinforce better daily
self-management of chronic diseases by the patientsthemselves
[4] and facilitate remote medical management [5]. In thislight,
the value of mHealth for chronic diseases has been depicted in
several research works [6].

The regular use of mHealth devices around the clock has
allowed for the generation of large data sets that can be
harnessed by data anaytics frameworks toward developing
more intelligent mHealth interventions able to identify arange
of medical risk factors, improve clinical decision-making, and
revolutionize the delivery of hedth care services [7,8]. The
challenge is that the sets of data captured by mHealth devices
(eg, sensed data) are often too complex, unstructured, and
heterogeneous, thereby creating obstacles in their processing
and interpretation through traditional datamining and statistical
learning approaches. Deep learning (DL), which isfounded on
artificial neural networks, appears as a key technology for
providing suitable algorithmic frameworksin thisdirection [9].
DL alowscomputational modelsthat are composed of multiple
processing layersto learn representations of datawith multiple
levels of abstraction and requires little engineering by hand
[10]. DL models have demonstrated grest potential in different
domains of health care and have shown excellent performance
in computer vision, natural language processing, and mining of
electronic health records as well as mHealth modalities and
sensor data analytics [11].

Objectives

Despite the potential of DL for mHealth, there have not been
targeted reviews in this field. Other reviews have been broad
[8,12], not closely related to mHealth [11,13], or not focused
on major chronic diseaseswith thelargest prevalence worldwide
[14]. In this context, the aim of this paper is to provide a
systematic review of the currently available literature and
identify recent studies that have used DL based on mHealth
data for the diagnosis, prognosis, management, and treatment
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of major chronic diseases (ie, CVD, diabetes, and cancer). Our
ultimate goal is to advance the understanding of researchers,
caregivers, and engineers of the progress made in this rapidly
developing field.

Methods

Search Strategy

A search was conducted on the web-based bibliographic
databases Scopusand PubMed in March 2021 to identify studies
published during the last 10 years that incorporated DL in the
context of mHealth for CVD, diabetes, and cancer.

Eligibility Criteria

The inclusion criteria for study selection were as follows: (1)
DL agorithm or algorithms should be used and quantitative
outcomesin terms of their performance should be presented in
the study; (2) the DL algorithm in the study should harness
mHealth data acquired through a mobile or wearable device;
(3) the study should focus on the diagnosis, prognosis,
management, or treatment of one of the major chronic diseases
with the largest prevalence worldwide (CVD, diabetes, or
cancer); and (4) the paper describing the study must have been
published in English. Case reports, letters to editors, preprint
papers, qualitative studies, surveys or reviews, simulation
studies, and studies describing protocols were excluded from
the review.

Study Selection

The following string—(deep learning) OR (neural networks)
AND (mobile health) OR (smartphone) OR (mobile phone) OR
(mobile device) OR (mobile app) OR (smartwatch) OR
(wearable) OR (sensor) AND (health)—was used for searching
within thetitle, abstract, and keywords of the manuscripts. The
retrieved records from Scopus and PubMed were imported into
the Mendeley (Mendeley Ltd) bibliography management
software to identify duplicates. Authors AT, HK, DK, AK, LK,
and AA independently screened the papers that were obtained
asaresult of the aforementioned search string to minimize bias
in the selection process and reduce possible errors. In case of
disagreements, these were resolved through discussion between
the authors to reach a consensus. The screening procedure took
placein 2 stages. Inthefirst stage, the abstracts of the candidate
papers for inclusion were screened by the authors according to
the defined inclusion and exclusion criteria. In the second stage,
the authors read the full manuscripts of the eligible papers, as
identified in the first stage, and selected the final papers for
inclusion.

Theincluded studies were synthesized by the authors according
to the target disease, the number of enrolled participants and
their age, and the study period aswell asthe DL algorithm used,
the main outcome of the algorithm, the data set used, the features
selected, and the achieved performance. Thissystematic review
was conducted following the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) guidelines
[15]. A completed PRISMA checklist is shown in Multimedia
Appendix 1[16].
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94.71% (3597/3798) of records were screened after the removal

Results of 5.29% (201/3798) duplicates. Of those 3597 articles, 3546
Overview (98.58%) were excluded because they did not meet the eigibility
criteria. After reading the full texts of the remaining 51 articles,

Theliterature search resulted in 2556 articlesfrom Scopusand e nymber of ligiblearticleswas reduced to 20 (39%). Reasons
1242 articles from PubMed (3798 articlesin total) A total of for the exclusion of articles are shown in Figure 1.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram. CVD: cardiovascular disease; DL: deep
learning; mHealth: mobile health.
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Table 1. Characteristics of the included studies (N=20).

Triantafyllidis et al

Study Target disease Participants, N Age Study period
Al-Makhadmeh et al [17] cvD?2 10 N/Ab No
Ali et a [18] CVvD 597 (2 data sets combined with 303  29-79 years No
and 294 participants)
Dami et al [19] CVD Four databases: (1) 70,000 partici-  N/A Participants in database 3
pants, (2) 20,000 participants, (3) were followed for 12
139 patients with hypertension, and months
(4) 303 participants
Deperlioglu et a [20] CVvD N/A N/A Usability study for 4
months
Fuetal [21] CVD 20,000 N/A No (tested in the real
world)
Hudaet al [22] CVvD 47 N/A No
Torres-Soto et a [23] CVD 163 Mean 68 (cardioversion cohort), 56 No
(exercise stress test cohort), and 67
(ambulatory cohort) years
Cappon et al [24] Diabetes 6 20-80 years 8 weeks
(TIDMS
Cheneta [25] Diabetes(T1IDM) 6 20-80 years 8 weeks
Efat et a [26] Diabetes 25 N/A Data collected during a 2-
month period
Faruqui et a [27] Diabetes 10 patientsin the smartphonegroup  21-75 years 6 months
(T2DMY (overweight or obese)
Goyal et al [28] Diabetes 30 N/A No (tested in the real
world)
Joshi et al [29] Diabetes 46 17-80 years No
Sanchez-Delacruzeta  Diabetes 15 29-62 years No
[30]
Sevil et a [31] Diabetes 25 Mean 24.88 (SD 3.15) years 430-hour experiment
Suriyal et a [32] Diabetes N/A N/A No
Ech-Cherif et a [33] Cancer N/A N/A No
Guo et a [34] Cancer N/A N/A No
Hu et a [35] Cancer 917 N/A No
Uthoff et al [36] Cancer 99 Mean 40 (SD 14.1) years No (tested in the real

world)

8CVD: cardiovascular disease.
ON/A: not applicable.

°T1DM: type 1 diabetes mellitus.
dr2DM: type 2 diabetes mellitus.

Only 25% (5/20) of the studies reported the integration of their
developed model into a DL-empowered system or application
that was tested in redl life [20,21,28,33,36]. However, none of
the studies presented a clinical validation of the deployed
systems and applications (eg, through randomized controlled
trials).

Approximately 25% (5/20) of the DL studies used an unseen
external data set for evaluation purposes to eliminate possible
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bias and build models that could be generalized
[20,23,33,36,37]. Different performance outcomeswerereported
in the identified studies using DL algorithms (Table 2). None
of the included studies used any guidelines for reporting the
development and outcomes of the models such as TRIPOD
(Transparent Reporting of aMultivariable Prediction Model for
Individual Prognosisor Diagnosis) [38]. All theincluded studies
(20/20, 100%) are briefly described below in terms of purpose,
data and algorithms used, and evaluation outcomes.
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Table 2. Algorithms and outcomes of the included studies (N=20).

Triantafyllidis et al

Study DL2 outcome DL algorithm Data used Features selected  Performance Comparison with classic
MLP algorithms

Al-Makhad- Detection of Higher-order 123 instancesand 23 Ecc? blood pres- 99.5% sensitivity No

meh et a heart disease Boltzmenndeep  attributes collected g chest painty-

[17] belief neural net-  from 10 patients us- pology, cholesterol

work ing sensor devices level, vessl infor-
from data sets avail- mation, minimum
ablein UCI® reposi- - and maximum
tory heart rate, angina,
and depression
symptoms

Alietal [18] Detection of Feedforward net-  Cleveland and Hun-  Demographic (age 84% accuracy svM' (71.8%), logistic
heart disease work that uses garian data sets and sex), clinical regression (73.7%), ran-

backpropagation  available from UCI  (chest pain type, dom forest (73.7%), deci-
techniques and repository contain-  number of major sion tree (74.8%), and
gradientagorithms  jng EMRE and sen-  Vessels colored by naive Bayes (80.4%)
(ensemble ap- sor data (physiologi-  fluoroscopy, and
proach) cal measurements)  EXercisetest re-

sults), and sensor

(resting blood

pressure and fast-

ing blood sugar)

Dami et a Prediction of car- Combination of Four databases: (1) Age, sex, weight,  88% accuracy, 87%  Logistic regression,

[19] diovascular deep belief net- Kaggleheart disease height, body sur-  F-measure, and 87%  SVM, and random forest
eventsto prevent \york and LSTMP  dataset archive, (2) facearea, BMI, precision (56% accuracy on aver-
scDYand heart RN database from smoker or not, sys- age)
attacks Shahid Beheshti tolic blood pres-

Hospital Research  sure, diastolic
Center, (3) database blood pressure, inti-
from PhysioNet site  ma mediathick-
including patients  ness, left ventricu-
from the Naples lar massindex, and
Federicoll Universi-  gjection fraction
ty Hospital in Italy,

and (4) UCI4 data

set Archive from

1988

Deperlioglu  Classification of ~ Autoencoder neu-  pasCALIB-training NO 96.03% accuracy for  SVM, naive Bayes, deci-

et a [20] heart sounds ral networks heart sound data sets normal diagnosis, sion tree, and AdaBoost

and A-training heart 91.91% accuracy for  (84.2%-93.3% accuracy)
sound data sets extrasystolediagnosis,
and 90.11% accuracy
for murmur diagnosis
Fuetad [21] cvDK detection A hybridof a Thetest setincludes No 95.53%-99.97%accu- No
CNN' andanRNN 15,437 anonymous racy of CVD
ECG recordingscol-
lected from several
tertiary hospitalsin
China
Hudaeta  Arrhythmiadetec- CNN MIT-BIH™ arrhyth-  NO 94.03% accuracy in -~ No
[22] tion mia data set ob- classifying abnormal
tained from Phys- cardiac rhythm
ioNet

Torres-Soto ~ Arrhythmiaevent Pretrainingusing  Data available Regionsof theups-  98% sensitivity, 99% Random forest (32%

etd [23] detection convolutional de-  through synapse lopefrom thesys-  specificity, and 96%  sensitivity, 79% specifici-

noising autoen- (Synapse ID: tolic phaseto be F1 ty, and 39% F7)
codersfollowed by syn21985690) informative for

CNN, transfer
learning, and auxil-
iary signal quality
estimation

AF" class-specific
predictions
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Study DL2 outcome DL algorithm Data used Features selected  Performance Comparison with classic
mLP agorithms
Capponeta Prediction of LSTM RNN OhioT1DM dataset CGM, injectedin-  RMSEP 20.20 and No
[24] short-time blood containing CGM®  Sulinasreported 34 19 for 30- and 60-
glucose levels data, lifestyledata Y thepump, and  minyte prediction, re-
(diet, exercise, and ~ Seif-reported medls - gectively
deep), galvanicskin  and exercise
response, skin tem-
perature, and magni-
tude of acceleration
Chenetal Prediction of Dilated RNNs TheOhioTIDM data CGM, insulindos- 15.299 to 22.710 No
[25] short-time blood set of continuous es, carbohydrate  RMSE for different
glucose levels glucose monitoring  intake, andtimein-  participants
dataand thecorre-  dex; additional da-
sponding daily taincluded exer-
events from 6 pa cise, heart rate, and
tientswithtype1di- skin temperature
abetes
Efat et al Risk leve classfi-  Artificial neura 2-month datafrom  Patients' age, sex, 84.29% accuracy, No
[26] cation of patients network 25 patientswith dia-  sugar level, heart  82.35% sensitivity,
with diabetes betes pulse, food intake, and 86.11% specifici-
seeptime, andex- ty
ercise or calorie
burn
Faruqui et al Predictionof dai- LSTM RNN 10 patientswith dia- Daily mobile 33.33% (patient 7) to K NN" regression (10%-
[27] ly glucose levels betes (T2DM% be-  healthlifestyledata  86.67% (patient 2) ac- 5694 accuracy)
ing overweight or ~ ondiet, physical  curacy
obese activity, weight,
and previous glu-
cose levels from
the day before
Goyd etal  Regl-time DFUS  Faster R-CNNE Transfer learning Low-level features 91.8% mean average  SVM (70.3% precision)
[28] localization with ImageNet suchasedgedetec- precision
(Stanford Vision tion, corner detec-
Lab) and Microsoft tion, texture de-
COCO data set; scriptors, shape-
1775 images of based descriptors,
DFUs and color descrip-
tors
\[Jgg?i etal Clonti nuousbl ?od LMBP! NIR' optical spec-  NO AVgE 6.09%, Multiple pc;l ynclémia(lj re-
glucose monitor- X gression—AvgE an
ing troscopy data MARD™6.07% MARD were 4.88% and
4.86% for serum glucose
examination
Sanchez- Diabeticneuropa- Classifiers com- Raw datafrom5ac- Acceerometer data 85% accuracy No
Delacruzet  thy detection binedwithmultilay- celerometers
a [30] er perceptron
Sevil et d Classificationof RNN Datasetsnot avail- 23 selected infor-  94.8% classification  KNN, SVM, naive
[31] activity into 5 able mation featuresare accuracy Bayes, decision tree, lin-
stages for deter- reported in the pa- ear discrimination, and
mining the ener- per out of 2216 ensemble learning
gy expenditure (75.7% 10 93.1% accura-
for diabetesthera cy)
Py
Suriyal eta  Diabetic MobileNetsin Dataset availablein  No 73% accuracy, 74%  No
[32] retinopathy detec- TensorFlow with  Kaggle database sensitivity, and 63%
tion the help of RM- specificity

Sprop and asyn-
chronous gradient
descent

https://mhealth.jmir.org/2022/4/e32344 JMIR Mhealth Uhealth 2022 | vol. 10 | iss. 4 | €32344 | p. 6

(page number not for citation purposes)

RenderX


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MHEALTH AND UHEALTH

Triantafyllidis et al

Study DL2 outcome DL algorithm Data used Features selected  Performance Comparison with classic
MLP algorithms
Ech-Cherif  Benignandmadig- Resource-con- Three databases: Cancerousor not  91.33% accuracy No
etal [33] nant cancer detec-  strained, mobile-  permNet, 1SICY
tion ready deep neural  Archive, and Der-
network mofit Image Library
Guoeta Identification of Ensemble method Four data setswere  Normal samplesas  91.6% accuracy and  No
[34] cervixandnon-  that consistsof 3 used inthisstudy:  cervix imagesand 89% F; score
cervix images DL architectures.  MobileODT, Kag-  from the anoma-
RetinaNet, deep gle,and COCO2017 lous samples as
SVDD? andacus- fortrainingandvali- - noncervix images
tomized CNN dation, and SEVIA®
for testing
Hueta [35] Detectionof cer- Automatedvisual Microsoft COCO No specific fea ROC® curve (AUC®) No
vical precancer  evaluation, Reti-  images, 7334 train-  tureswerereported o 9 g5
naNet, and Adam ingimages, 970vali- in the paper
optimization algo-  dation images, and
rithm 1058 test images
Uthoff etal  Early detectionof oy, vee-M® 170 image pairs WLI®and ARI¥  Senditivity, specifici-  No
[36] precancerousand  penwork pretrained provided the most ty, positive predictive

cancerouslesions
inthe oral cavity

on the ImageNet
data set

information about
type of lesion and
size of the affected
area

values, and negative
predictive values
(81.25%-94.94%);
0.908 AUC

3DL: deep learning.

BML : machine learning.
CUCI: University of California, Irvine.
decG: electrocardiogram.
®EMR: electronic medical record.
fsvm: support vector machine.
9SCD: sudden cardiac death.

hLSTM™: long short-term memory.

'RNN: recurrent neural network.
IPASCAL: Pattern Analysis, Statistical Modeling, and Computational Learning.
KevD: cardiovascular disease.
|CNN: convolutional neural network.
MMIT-BIH: Massachusetts I nstitute of Technology—Beth Israel Hospital.
NAF: atrial fibrillation.
9CGM: continuous glucose monitoring.
PRM SE: root mean squared error.
%T2DM: type 2 diabetes mellitus.
'KNN: k-nearest neighbor.
SDFU: diabetic foot ulcer.
'R-CNN: region-based convolutional neural network.
YL MBP: Levenberg-Marquardt Backpropagation.
YNIR: near-infrared.
WAVQE: average error.
*mARD: mean absolute relative difference.
YISIC: International Skin Imaging Collaboration.
23V DD: support vector data description.

#3EVIA: smartphone-enhanced visual inspection with acetic acid.
DROC: receiver operating characteristic.

&AUC: areaunder the curve.

&y/GG-M: visual geometry group multi-scale.

FBWLI: white-light imaging.

& AFI: autofluorescence imaging.
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CVD Studies

Hudaet al [22] introduced alow-cost, low-power, and wireless
electrocardiogram (ECG) monitoring system with DL-based
automatic arrhythmia detection. The model was based on a1D
convolutional neural network (CNN) that provided an accuracy
of 94.03% in classifying abnormal cardiac rhythm on the
Massachusetts Institute of Technology—Beth Israel Hospital
Arrhythmia Database.

Deperlioglu et a [20] described a secure Internet of Health
Things system to provide real-time support to physicians for
the diagnosis of CVDs. Heart sounds were classified using
autoencoder neural networks (AENSs), and the developed
solution demonstrated better results than those reported in the
literature studied.

In the study by Ali et al [18], a DL-based ensemble model was
used for the detection of heart disease in 597 patients. More
specifically, afeedforward neural network was used to perform
binary classification of the presence or absence of disease. An
84% accuracy in this classification task was achieved by using
publicly available data sets containing sensed data in terms of
physiological measurements (such asblood pressure and fasting
blood sugar) aswell as el ectronic health record data (including
exercise test results, chest pain information, and demographic
information).

In the study by Al-Makhadmeh et al [17], the authors proposed
the use of a Boltzmann deep belief model to detect whether a
patient has heart disease. The model was based on dataacquired
from 10 patients (publicly available data set), including ECG
and blood pressure measurements as well as other diagnostic
information such as chest pain and appearance of angina or
depression symptoms. A sensitivity of 99.5% was achieved.

Another approach to shed light on the occurrence of arterial and
cardiovascular events was examined in the study by Dami et al
[19]. A long short-term memory (LSTM) neural network and
a deep belief network were used to predict arterial events over
the course of a few weeks before the event using ECG
recordings and time-frequency features of ECG signals. The
proposed LSTM and deep belief network approach had
significantly better performance when compared with all other
DL approaches and traditional classifications.

Furthermore, in the study by Torres-Soto et al [23], the authors
developed DeepBeat, a multitask DL method to detect
arrhythmia events for atria fibrillation in real time using
wrist-based photoplethysmography devices. The proposed
approach exploited transfer learning, and the resulting models
had a sensitivity of 0.98, specificity of 0.99, and F, score of

0.93.

In the study by Fu et al [21], an Internet of Things and cloud
service system was designed that collected high-quality ECG
data and diagnosed 20 types of CVDs using a DL model that
was a hybrid between a CNN and a recurrent neural network.
The model achieved >0.98 area under the receiver operating
characteristic curve score on 17 of the diagnostic items.

https://mhealth.jmir.org/2022/4/e32344

Triantafyllidis et al

Diabetes

For diabetes, there were also several approaches showing
impressive performance using DL. For example, in the study
by Sevil et a [31], the authors proposed DL with LSTM to
determine physical activity states for use in automated insulin
delivery systems. The approach exploited a muilti-sensor
wristband and achieved 94.8% classification accuracy.

In another approach by Suriyal et a [32], DL was used for the
detection of diabetic retinopathy using mobile devices for
real-time screening without requiring an internet connection.
The approach exploited a TensorFlow deep neural network,
with areported accuracy of 73%.

Goyal et a [28] proposed an automated method for the detection
and localization of diabetic foot ulcers (DFUS) based on images.
The model was robust enough, with a mean average precision
of 91.8%, and the trained model could run on simple hardware
with a speed of 48 milliseconds for inferencing a single image
and with a model size of 57.2 MB. The model was based on
transfer learning that was initially trained with ImageNet
(Stanford Vision Lab) and Microsoft COCO data sets and with
DFU imagesin the final step. The authors also deployed these
models on an Android phone to create real-time object
localization for DFUSs.

Joshi et a [29] proposed a wearable consumer device called
iGLU 2.0, which was based on a DL model for glucose level
prediction asanoninvasive, precise, and cost-effective solution
to monitor blood glucose levels and control diabetes. The
proposed glucometer used the concept of short-wave,
near-infrared spectroscopy to predict blood glucose levels. The
results were comparable with those of the serum glucose
examination, an invasive laboratory examination.

A glucose prediction model was also devel oped in the study by
Chen et a [25]. The authors used anew DL technique based on
a dilated recurrent neural network model to predict future
glucose levels for a prediction horizon of 30 minutes. Using
thismodel, it was shown that the accuracy of short-time glucose
predictions could be significantly improved.

The study by Efat et d [26] introduced asmart health monitoring
tool for patientswith diabetes. The objective of the authorswas
to use continuous sensor monitoring and processing with neural
networksto provide acontinuous eval uation of the patient health
risk status.

In the study by Cappon et al [24], an LSTM model for the
prediction of blood glucose concentration in patients with type
1 diabetes was proposed. The applied model was based on
continuous glucose monitoring data collected from 6 patients
aswell asinsulin dose and self-reported meals and exercise. A
root mean squared error of 20.20 for prediction of glucose over
the next 30 minutes and of 34.19 for prediction over the next
hour was highlighted as the performance outcome of their work.

In the study by Faruqui et a [27], the authors used a DL model
based on LSTM and developed a transfer learning strategy (to
copewith data scarcity and improve the model’s personalization
capabilities) to dynamically forecast daily glucose levels. The
patient data used for their moddl werethe daily mHealth lifestyle
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data and the glucose levels from the day before. The model
achieved considerable accuracy in predicting the next day
glucose level based on the Clark Error Grid and —10% to +10%
range of the actual values on data collected from 10 patients
who had been monitored daily for over 6 months.

In the study by Sanchez-Delacruz et al [30], the detection of
diabetic neuropathy through the application of a multilayer
perceptron combined with additional classifiers on raw
accelerometer data was proposed. A total of 15 individuals (10
with diabetic neuropathy and 5 healthy) wearing 5
accelerometerswereinstructed to walk. The algorithm was able
to reach 85% accuracy in diabetic neuropathy recognition.

Cancer

Several studies also focused on cancer. In the study by Hu et al
[35], the authors exploited anew DL algorithm called automated
visual evaluation for analyzing cervigram images captured by
commodity mobile phones to detect cervical precancer. This
approach achieved a receiver operating characteristic curve
(areaunder the curve) of 0.95.

In another approach by Uthoff et a [36], the authors used a
CNN to enable early detection of precancerous and cancerous
lesionsinthe oral cavity with the potential to reduce morbidity,
mortality, and health care costs. To achieve this, the authors
used a custom Android app that synchronized an external
light-emitting diode and image capture for autofluorescence
imaging and white-light imaging on a smartphone. The
sensitivity, specificity, positive predictive value, and negative
predictive value of the approach ranged from 81.25% to 94.94%.

DL techniques have aso been applied for triaging skin cancer
detection. The authors in the study by Ech-Cherif et a [33]
manually trained a resource-constrained deep CNN called
MobileNetV 2 to identify the binary classification of skinlesions
using benign and malignant as the 2 classes. When the model
was tested on an unseen library of images using an iOS mobile
app, it was found that all images were correctly classified.

In the study by Guo et a [34], the authors combined the
assessment of 3 DL architecturesto determine whether animage
contained acervix. The study showed that the ensemble method
outperformed individual DL methods. Such data quality
algorithms could be used to clean large data sets and provide
quality assurance for machine learning (ML) agorithms in
routine clinical use.

Architectures of DL Modéds

DL approachesin mHealth can be efficient by taking advantage
of thelarge volumes of datagenerated through the use of mobile
and sensing devices. In Table 3, we provide details regarding
the DL architectures and parameters or hyperparameters used
in the selected studiesto shed light on the most promising ones
used in practice. It is apparent that there is no single best DL
architectureto be used for mHealth considering that the selection
of the most appropriate DL architectureis mainly data driven.

Regarding the hyperparameters of the studied models, thelayers
varied between 3 and 50. In most cases, softmax or sigmoid
activation functions were used and applied primarily to
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classification problems, the losses L1 and L2 were <0.01 and,
in some cases, Adam optimization was used.

Huda et al [22] proposed a CNN model architecture that
consisted of 1D convolution, max-pooling, batch normalization,
and dropout layers. The flattened layer output was passed
through afully connected layer with dropout and asecond fully
connected dense layer. A softmax layer with 14 outputs was
then used for arrhythmia classification.

Torres-Soto et al [23] focused on detecting arrhythmia events
using unsupervised transfer learning through convolutional
denoising autoencoders (CDAES). The authors applied a 2-stage
training to address the unbalanced data problem common to
biomedical applications, exploiting a multitask CNN
architecture, transfer learning, and an auxiliary signal quality
estimation task for atria fibrillation event detection from
spatially segmented physiological photoplethysmography
signals. Unsupervised pretraining was performed using CDAEs.
The authors then used convolutional and pooling layersin the
encoder and upsampling and convolutional layersin the decoder.
To obtain the optimal weights, they were randomly initiated
according to the He distribution, and the gradient was calcul ated
using the chain rule to backpropagate error derivatives through
the decoder network and then through the encoder network.
Using anumber of hidden unitslower than theinputsforcesthe
autoencoder to learn a compressed approximation. The loss
function used in pretraining was the mean squared error and
was optimized using a backpropagation algorithm. Finaly, 3
convolutional layers and 3 pooling layers were used for the
encoder segment, and 3 convolutional layers and 3 upsampling
layers were used for the decoder segment of the CDAE. A
Rectified Linear Unit (ReLU) was applied as the activation
function, and Adam was used as the optimization method. Each
model wastrained with mean squared error lossfor 200 epochs,
with areduction in learning rate of 0.001 for every 25 epochs
if the validation loss did not improve.

For cervical precancer detection using a smartphone [35], a
Resnet-50 architecture was proposed. Thewhole process started
with image augmentation methods (random image scale, random
horizontal or vertical flip, random rotation, random shearing,
random trangdlation, and transforming the red channel of the
image through a y transformation with y randomly chosen).
Nonmaximum suppression after processing was then followed
after cervix or precancerous cervix object detection. The model
parameterswereinitialized with weights pretrained on Microsoft
COCO images. All model parameterswere then fine-tuned using
the visual inspection with acetic acid training data. For the
optimization strategy, the authors used the Adam optimization
algorithm, fixing the clipnorm parameter at the default of 0.001,

and they also used alearning rate of 1 x 10™°. The metrics used
for hyperparameter (number of iterations and batch size)
optimization were the mean average precision and validation
classification loss.

For smartphone-based oral cancer screening [36], classification
using a CNN was applied. For the CNN training, methods
commonly used in network training were used, including transfer
learning and data augmentation. For data augmentation, the
original images were rotated and flipped to feed the network
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with more training data. In addition, transfer learning was
applied using a visual geometry group multi-scale network
pretrained on the ImageNet data set. The network was modified
for thetask by replacing thefinal dense layer and softmax layer
and then training the network with the available data set.

Goyal et a [28] used transfer learning from massive data sets
in nonmedical backgrounds such as ImageNet and Microsoft
COCO datasetsfor theinitial training of their image model for
DFU localization. The authors used two CNNs, MobileNet and
Inception-V2, and set the weight for L2 regularizer as 0.00004
and batch normalization with a decay of 0.9997 and epsilon of
0.001. A batch size of 24 was used along with the optimizer as
RM Sprop with alearning rate of 0.004 and decay factor of 0.95.

https://mhealth.jmir.org/2022/4/e32344
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The momentum optimizer value was set at 0.9 with a decay of
0.9 and epsilon of 0.1.

The DL approach was used for physical activity classification
for automated insulin delivery systems[31], combining different
layers including fully connected, LSTM, softmax, regression,
Rel. U, and dropout layers. In addition, the authors used the L2
regul arization term to reduce therisk of overfitting (value 0.05).

In another approach, a TensorFlow deep neural network was
used for the detection of diabetic retinopathy [32]. The neural
network had 28 convolutional layersand, after each layer, there
was abatch normalization and RelL.U nonlinear function except
for the final layer. The MobileNets training was performed in
TensorFlow with the help of RMSprop and asynchronous
gradient descent.
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Table 3. Model architecturesin the included studies (N=20).

Triantafyllidis et al

Study

DL? parameters

DL hyperparameters

Al-Makhadmeh et al
(17]

Ali et al [18]

Dami et a [19]

Deperlioglu et a [20]

Fueta [21]

Hudaet al [22]

Torres-Soto et a [23]

Cappon et al [24]

Chen et dl [25]

Efat et al [26]

Faruqui et a [27]

Goyal et a [28]

Deep belief network, trained the features using the Boltzmann
machine classifiers by computing the energy consumption of
the network

Ensemble DL model composed of 5 layers: the input layer, 3
hidden layers, and the output layer; fully connected hidden
layer with 20 nodes

A deep belief network selected and represented a set of fea-
tures from the hybrid feature vector and then passed it to the

LSTME neural network. The LSTM neural network consists
of 5layers, including input layers, a hidden layer (with 100
hidden units), 2 fully connected layers, a softmax layer, and
an output layer

Autoencoder neural network with ahidden layer size of 10.
Softmax layer was used

A hybrid of CNN® and RNN'; 32 convolutional layers (input
for CNN) grouped into 8 stages, where each stage was a cas-
cade of four 1D convolutional layerswith akernel size of 16.
Thefinal prediction layer was afully connected dense layer

1D convolution (CNN), max-pooling, and batch normalization.
Theflattened layer output was passed through afully connect-
ed layer and asecond fully connected dense layer. In addition,
asoftmax layer with 14 outputs was used

Convolutional and pooling layersin the encoder and upsam-
pling and convolutional layersin the decoder; 3 convolutional
layers and 3 pooling layers for the encoder segment, and 3

convolutional layers and 3 upsampling layers for the decoder

segment of the CDAEY
A bidirectional LSTM input layer composed of 128 cells
having alook-back period of 15 minutes (ie, 3 samples); 2

LSTM layers composed of 64 and 32 cells, respectively; and
afully connected layer consisting of asingle neuron computing

the BG' level prediction at 2 different PHY (ie, 30 and 60
minutes)

A 3-layered DRNN!' with 32 cellsin each layer

RNN

LSTM with 5-60 layers and 5-40 number of neuronsin the
feedforward neural network

Faster R-CNN™ with ResNet101, Faster R-CNN with Incep-

tion-ResnetV/ 2, Faster R-CNN with InceptionV2, and R-FCN"
with ResNet101

Cross-entropy loss of 0.0178, L1 loss of 0.0187, and L2 loss
of 0.025

Ada optimizer used and alearning rate with avalue of 0.03;
ReL UP activation function

sGDYfor optimizing cross-entropy asthe default lossfunction

Scaled conjugate gradient algorithm and cross-entropy cost
function was used in the coding layer. The coefficient for the
L2 weight regularizer was 0.001, the coefficient for the spar-
sity regularization term was 4, and the sparsity proportion was
0.05

Before each convolutional layer, a nonlinear transformation
occurs, which isacombination of batch normalization, ReLU
activation, and a dropout

Used dropout layers

Weightswere randomly initiated according to He distribution,
and Adam was used as the optimization method. Each model

was trained with MSE" loss for 200 epochs, with areduction
in learning rate of 0.001 for every 25 epochsif the validation
loss did not improve

BLSTMK architecture, hyperparameters, and |ook-back period
were chosen by trial and error to compromise between model
complexity and accuracy

1, 2, and 4 dilationsimplemented for the 3 layers from bottom
to top, respectively

In forward propagation, the sigmoid activation function was
applied and, for backpropagation, the margin of error of the

output was measured, and the weights were adjusted accord-
ingly

Dropout rate of 0.10-0.45. An allowable unit change of 0.01
for the dropout rate parameter and of 1 for the number of
neuronsin LSTM and feedforward layers was selected. A total
of 35 x 55 x 35 = 67,375 combinations were tested before
finding the optimal hyperparameters

For Faster R-CNN, the weight was set for L2 regularizer as
0.0, initializer that generated a truncated normal distribution
with SD of 0.01 and batch normalization with decay of 0.9997
and epsilon of 0.001. For training, a batch size of 2 was used,
optimizer as momentum with manual step learning rate and
aninitial rate of 0.0002, 0.00002 at epoch 40, and 0.000002
at epoch 60. The momentum optimizer value was set at 0.9.
For training R-FCN, the same hyperparameters were used as
with Faster R-CNN with the only changebeingin thelearning
rate set as 0.0005
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Study DL2 parameters DL hyperparameters
Joshi et al [29] DNN® with 10 hidden layers Sigmoid activation functions
Sanchez-Delacruz et 23 assembled algorithmswere tested by combining themwith  The base function was applied to the input values, and the
al [30] the deep RNA multilayer perceptron. The best resultswere  softmax was used as the activation function
obtained with the combination of FilteredClassifier and the
DL model
Sevil et a [31] Combination of different layers, including fully connected, L2 regularization=0.05
LSTM, softmax, regression, ReLU, and dropout layers
Suriyal et a [32] MobileNet CNN with 28 layers. Thefirst layer wasafully  After each layer, there was batch normalization and aReLU
connected layer nonlinear function except at thefinal layer. Training wasdone

in TensorFlow with the help of RM Sprop and asynchronous
gradient descent

Ech-Cherif eta [33] Used the MobileNetV2 model, excluded the classification Used pretrained model MobileNetV2. Adam optimizer was
layer, and replaced it with adense layer that has two classes:  used with astarting learning rate of 0.4. For each experiment,
benign and malignant the learning rate was decayed by half every 2 epochs. All ex-

periments were run for 55 epochs. Selected batch size was 32

Guo et a [34] 4 sequentially connected convolutional blocks followed by 2 /AP
fully connected layers and softmax for the last layer

Hu et al [35] ResNet-50 architecture Number of iterations and batch size optimization were mean
average precision and vaidation classification loss

Uthoff et a [36] 4 sequentially connected convolutiona blocksfollowed by 2 N/A
fully connected layers

8DL: deep learning.

PRel U: Rectified Linear Unit.

€L STM: long short-term memory.

dSGD: stochastic gradient descent.

€CNN: convolutional neural network.

RNN: recurrent neural network.

9CDAE: convolutional denoising autoencoder.
PMSE: mean squared error.

'BG: blood glucose.

IpH: prediction horizon.

KBLSTM: bidirectiona long short-term memory.
'DRNN: dilated recurrent neural network.
MR-CNN: region-based convolutional neural network.
"R-FCN: region-based fully convolutional network.
°DNN: deep neural network.

PN/A: not applicable.

. . . . Inthework by Dami et a [19], the combination of adeep belief
Comparlson W't[h Clasic ML Algorllthms network with LSTM was able to reach 88% accuracy in the
Herein, a presentation of how the DL algorithms used compare  prediction of cardiovascular events on data from 4 databases,
withclassic ML algorithms, asreported insomeof theincluded  whereasclassic ML agorithmssuch aslogistic regression, SVM,

studies, is provided. This comparison primarily aims to show  and random forest achieved 56% accuracy on average.
whether DL models could bring significant performance gains,

which could be critical for their wide adoption by health care
providersin routine clinical practice.

In the paper by Deperlioglu et a [20], AEN was compared
thoroughly with additional ML algorithmsin other studies. For
the PASCAL dataset, AEN performed better than all other ML
In the work by Ali et al [18], the feedforward network for the  agorithms it was compared with, such as artificial neural
detection of heart disease based on medical record data and  networks (82.80-86.50 accuracy), CNN (97.9 accuracy), SVM
physiological measurementswas compared with support vector (90,50 accuracy), naive Bayes (93.33 accuracy), decision tree
machine (SVM), random forest, decisiontree, and naive Bayes.  (72.76 accuracy), and others. For the PhysioNet data set, AEN
The feedforward network achieved 84% accuracy, whichwas  performed better than all other ML algorithms, such as CNN
substantially better than the accuracy of classic ML algorithms  (79.50-97.21 accuracy), SVM (83.00 accuracy), wavel et entropy
(72%-80%). (77.00 accuracy), deep-gated RNA (55.00 accuracy), and others.
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DeepBeat in the work by Torres-Soto et al [23] was compared
with random forest. However, the sensitivity using random
forest was 0.32, the specificity was 0.79, and the F, score was
0.39 versus 0.98 sensitivity, 0.99 specificity, and 0.96 F, score
for the proposed DL methodol ogy.

In the work by Faruqui et al [27], the forecast of daily blood
glucose levels through LSTM was achieved with a maximum
accuracy of >86% in comparison with the 56% accuracy of
k-nearest neighbor regression.

In thework by Goyal et a [28], thelocalization of DFUs based
onimaging datathrough Faster region-based CNN had a91.8%
average precision. The application of SVM was ableto achieve
only a 70.3% precision.

Joshi et al [29] applied L evenberg—Marquardt Backpropagation
for blood glucose monitoring and achieved an average error of
6.09% in the detection of serum glucose values through
near-infrared spectroscopy. However, the use of multiple
polynomial regression resulted in asignificantly lower average
error of 4.88%. This was the only study that showed that a
classic ML approach was better than a DL approach.

In the work by Sevil et a [31], the authors compared the
performance of their recurrent neural network with k-nearest
neighbor, regression SVMs, decision trees, naive Bayes,
Gaussian process regression, ensemble learning, and linear
discrimination and regression, which achieved 75.7% to 93.1%
accuracy, whereas the proposed approach achieved a
classification accuracy of 94.8%.

Explainability Aspects

When developing models for decision support, there is a need
to provide transparent and trustworthy models able to produce
not only reliable but al so explainable predictions[39]. However,
a known problem with DL models is that they lack
interpretability and explainability, which hinders their wide
adoption in clinical practice.

Explainability deals with the implementation of transparency
and traceability of statistical black - box ML methods. Although
attempts to tackle problems related to explanation and
interpretability have existed for several years now, there has
been an exceptional growth in research effortsin the last couple
of years [40]. Approaches for explainability include keeping
track of how algorithms are used, which features are the most
important for predicting the target variable, and how the
algorithm used can be improved, thereby providing hints and
cluesto guide further devel opments and enabling the detection
of erroneous reasoning through techniques of advanced
visualization and signal processing. The challenge is hard as
explanations should be sound and complete in statistical and
causal terms and yet comprehensible to users, subject to
decisions.

Thisdifficulty isalso demonstrated in the presented works under
review in several cases (eg, inthe study by Guo et al [34]). The
authors visually analyzed the error cases to better understand
why the results were wrong. In only 5% (1/20) of the studies
[24], the authors exploited Shapley Additive Explanations (ie,
anewly developed approach to interpret DL model predictions
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[41]). Focusing on predicting glucose concentration in type 1
diabetes, the Shapley Additive Explanationsidentified that high
values of continuous glucose measurements resulted in high
predicted blood glucose levels and that high insulin negatively
affected the model output.

Discussion

Principal Findings

This work presented a systematic literature review of the
applications of DL in mHealth for three major chronic diseases
that pose asignificant international burden: CV D, diabetes, and
cancer. To the authors’ knowledge, this is the first systematic
review of DL in mHealth for these diseases. The principal
outcome of this review isthat DL approaches have been used
effectively for a variety of diagnostic and predictive tasks in
mHealth. More specificaly, the most common DL outcomes
were found to be (1) diagnosis of the patient’s condition for
CVDs, (2) prediction of blood glucose levels for diabetes, and
(3) early detection of cancer.

CNNSs and recurrent neural networks were the DL agorithms
used in most studies. It is worth mentioning that CNNs have
been successfully applied to deal with not only computer vision
medical tasks but also other tasks based on nonimaging data,
such as detection of arrhythmia[22,23] or CVD [21]. Overal,
the performance of DL approacheswasfound to be satisfactory
considering that >84% accuracy was achieved in most studies.

In comparison with classic ML approaches, DL was found to
achieve better performance in almost all studies that reported
such comparison outcomes. This finding shows the value and
potential of DL in mHealth for realizing highly intelligent
mHealth systems and interventions that could significantly
improve clinical decision-making processes. Nevertheless, the
authors of this paper acknowledge that DL modelsrequire more
effort compared with ML models for the preprocessing part,
especialy when the architecture is based on transfer learning,
acommon method in most of theimage-processing architectures.

Thediversity of theidentified DL modelsin themHealth studies
confirms that, for the selection of the most appropriate DL
architecture, the one-size-fits-all approach does not apply, a
finding that has also been indicated in DL reviews for other
fields [42,43]. Another remark is that the architectures of the
models in the mHealth studies, as well as the methodologies
used for training, were not stated in a consistent manner. This
renders the comparison of various approaches between works
nontrivial for the interested researcher. None of the included
studies used guidelines for reporting the development or
outcomes of the models, which could have facilitated the
assessment and interpretation of their findings [44].

Most of the included studies dealt with the retrospective
technical validation of DL approaches. More thorough external
validation is required to prove the generalizability of the DL
findings considering that only aminority of the DL studies used
an unseen external data set for eval uation purposes. Furthermore,
no randomized controlled trials or other types of clinical
validation studies with intelligent digital health interventions
relying on DL approaches were found in this review [45]. In
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this respect, further work by the research community is needed
to develop DL-empowered systems and applications and prove
their clinical effectiveness in health care settings within
prospective clinical studies.

Although DL wasfound to be an effective approach in mHealth
for chronic diseases, the explainability of DL outcomes has
been scarce. It is apparent that future work is required on the
explainability of the DL models developed for chronic diseases
as only 5% (1/20) of the studiesin this review considered this
important dimension [24]. Leveraging explainable modelswould
enhancetrust in artificial intelligence and help clinicians make
informed judgments [46,47], thereby promoting the real-life
use of those modelsin daily clinical practice. Equally important
for the devel oped modelsisto support their fairness by ensuring
that they mitigate inequalities between individuals and groups
of individuals, in particular differences in sex or gender, age,
ethnicity, income, education, and geography. In the reviewed
studies, mitigation of differences was missing in most cases,
merely because of the lack of adequate data. However, if DL
models are to be used in daily practice, they should aso
guarantee fairness and universality [48,49].

Limitations

This review should be interpreted within the context of its
limitations. The authors used alimited set of termsfor the search
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of the literature, including keywords such as DL and neural
networks, combined with keywords related to mHealth.
Keywordsfor specific DL agorithmswere not used. Thismight
have inadvertently omitted studies that could have contributed
to the progress made in DL applications for mHealth. Articles
were searched in a limited number of databases (ie, PubMed
and Scopus); two of the most widely used databases
internationally nonetheless. No hand search was conducted on
any studies reported in other reviews or the included studies,
and there was no assessment of theinterrater reliability between
the authors. A meta-analysis was not possible because of the
heterogeneity of the included studies. On the basis of the
selected inclusion and exclusion criteria, a small number of
eligible studies were included and examined in this review,
which limits the generalizability of the findings.

Conclusions

This review found that DL approaches for chronic diseases
could bethevehiclefor thetrandation of big mHealth datainto
useful knowledge about patient health. Nevertheless, to unlock
thefull potential of DL, the research community needsto move
beyond the conduction of retrospective validation studies and
provide robust evidence of the added clinical value of DL -based
toolsin real-life settings compared with standard care.
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AEN: autoencoder neural network

CDAE: convolutional denoising autoencoder

CNN: convolutional neural network

CVD: cardiovascular disease

DFU: diabetic foot ulcer

DL: deeplearning

ECG: electrocardiogram

LSTM: long short-term memory

mHealth: mobile health

ML: machinelearning

PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
RelL U: Rectified Linear Unit

SVM: support vector machine

TRIPOD: Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis
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