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Abstract

Background: Major chronic diseases such as cardiovascular disease (CVD), diabetes, and cancer impose a significant burden
on people and health care systems around the globe. Recently, deep learning (DL) has shown great potential for the development
of intelligent mobile health (mHealth) interventions for chronic diseases that could revolutionize the delivery of health care
anytime, anywhere.

Objective: The aim of this study is to present a systematic review of studies that have used DL based on mHealth data for the
diagnosis, prognosis, management, and treatment of major chronic diseases and advance our understanding of the progress made
in this rapidly developing field.

Methods: A search was conducted on the bibliographic databases Scopus and PubMed to identify papers with a focus on the
deployment of DL algorithms that used data captured from mobile devices (eg, smartphones, smartwatches, and other wearable
devices) targeting CVD, diabetes, or cancer. The identified studies were synthesized according to the target disease, the number
of enrolled participants and their age, and the study period as well as the DL algorithm used, the main DL outcome, the data set
used, the features selected, and the achieved performance.

Results: In total, 20 studies were included in the review. A total of 35% (7/20) of DL studies targeted CVD, 45% (9/20) of
studies targeted diabetes, and 20% (4/20) of studies targeted cancer. The most common DL outcome was the diagnosis of the
patient’s condition for the CVD studies, prediction of blood glucose levels for the studies in diabetes, and early detection of
cancer. Most of the DL algorithms used were convolutional neural networks in studies on CVD and cancer and recurrent neural
networks in studies on diabetes. The performance of DL was found overall to be satisfactory, reaching >84% accuracy in most
studies. In comparison with classic machine learning approaches, DL was found to achieve better performance in almost all
studies that reported such comparison outcomes. Most of the studies did not provide details on the explainability of DL outcomes.

Conclusions: The use of DL can facilitate the diagnosis, management, and treatment of major chronic diseases by harnessing
mHealth data. Prospective studies are now required to demonstrate the value of applied DL in real-life mHealth tools and
interventions.

(JMIR Mhealth Uhealth 2022;10(4):e32344) doi: 10.2196/32344
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Introduction

Background
Chronic, noncommunicable diseases are the leading cause of
mortality and disability worldwide. According to the World
Health Organization, cardiovascular disease (CVD) is the
number 1 cause of death worldwide, taking an estimated 17.9
million lives each year [1]. In 2020, there were approximately
10 million deaths because of cancer [2]. Diabetes is another
major chronic disease, with the number of people diagnosed
with it increasing dramatically from 108 million in 1980 to 422
million in 2014 [3]. As a consequence of the prevalence of
chronic diseases, health care systems around the globe struggle
to provide efficient medical care to those patients.

Mobile health (mHealth) has recently emerged as a new
paradigm for providing efficient medical care anytime,
anywhere. The wide uptake of mobile phones or other mobile
electronic communication devices by people has fueled the
advancement of their capabilities. Nowadays, mobile devices
such as smartphones, smartwatches, and wearable devices can
enable robust sensing and processing of health parameters along
with communication of health information to patients and
caregivers. As a result, they reinforce better daily
self-management of chronic diseases by the patients themselves
[4] and facilitate remote medical management [5]. In this light,
the value of mHealth for chronic diseases has been depicted in
several research works [6].

The regular use of mHealth devices around the clock has
allowed for the generation of large data sets that can be
harnessed by data analytics frameworks toward developing
more intelligent mHealth interventions able to identify a range
of medical risk factors, improve clinical decision-making, and
revolutionize the delivery of health care services [7,8]. The
challenge is that the sets of data captured by mHealth devices
(eg, sensed data) are often too complex, unstructured, and
heterogeneous, thereby creating obstacles in their processing
and interpretation through traditional data mining and statistical
learning approaches. Deep learning (DL), which is founded on
artificial neural networks, appears as a key technology for
providing suitable algorithmic frameworks in this direction [9].
DL allows computational models that are composed of multiple
processing layers to learn representations of data with multiple
levels of abstraction and requires little engineering by hand
[10]. DL models have demonstrated great potential in different
domains of health care and have shown excellent performance
in computer vision, natural language processing, and mining of
electronic health records as well as mHealth modalities and
sensor data analytics [11].

Objectives
Despite the potential of DL for mHealth, there have not been
targeted reviews in this field. Other reviews have been broad
[8,12], not closely related to mHealth [11,13], or not focused
on major chronic diseases with the largest prevalence worldwide
[14]. In this context, the aim of this paper is to provide a
systematic review of the currently available literature and
identify recent studies that have used DL based on mHealth
data for the diagnosis, prognosis, management, and treatment

of major chronic diseases (ie, CVD, diabetes, and cancer). Our
ultimate goal is to advance the understanding of researchers,
caregivers, and engineers of the progress made in this rapidly
developing field.

Methods

Search Strategy
A search was conducted on the web-based bibliographic
databases Scopus and PubMed in March 2021 to identify studies
published during the last 10 years that incorporated DL in the
context of mHealth for CVD, diabetes, and cancer.

Eligibility Criteria
The inclusion criteria for study selection were as follows: (1)
DL algorithm or algorithms should be used and quantitative
outcomes in terms of their performance should be presented in
the study; (2) the DL algorithm in the study should harness
mHealth data acquired through a mobile or wearable device;
(3) the study should focus on the diagnosis, prognosis,
management, or treatment of one of the major chronic diseases
with the largest prevalence worldwide (CVD, diabetes, or
cancer); and (4) the paper describing the study must have been
published in English. Case reports, letters to editors, preprint
papers, qualitative studies, surveys or reviews, simulation
studies, and studies describing protocols were excluded from
the review.

Study Selection
The following string—(deep learning) OR (neural networks)
AND (mobile health) OR (smartphone) OR (mobile phone) OR
(mobile device) OR (mobile app) OR (smartwatch) OR
(wearable) OR (sensor) AND (health)—was used for searching
within the title, abstract, and keywords of the manuscripts. The
retrieved records from Scopus and PubMed were imported into
the Mendeley (Mendeley Ltd) bibliography management
software to identify duplicates. Authors AT, HK, DK, AK, LK,
and AA independently screened the papers that were obtained
as a result of the aforementioned search string to minimize bias
in the selection process and reduce possible errors. In case of
disagreements, these were resolved through discussion between
the authors to reach a consensus. The screening procedure took
place in 2 stages. In the first stage, the abstracts of the candidate
papers for inclusion were screened by the authors according to
the defined inclusion and exclusion criteria. In the second stage,
the authors read the full manuscripts of the eligible papers, as
identified in the first stage, and selected the final papers for
inclusion.

The included studies were synthesized by the authors according
to the target disease, the number of enrolled participants and
their age, and the study period as well as the DL algorithm used,
the main outcome of the algorithm, the data set used, the features
selected, and the achieved performance. This systematic review
was conducted following the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) guidelines
[15]. A completed PRISMA checklist is shown in Multimedia
Appendix 1 [16].
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Results

Overview
The literature search resulted in 2556 articles from Scopus and
1242 articles from PubMed (3798 articles in total). A total of

94.71% (3597/3798) of records were screened after the removal
of 5.29% (201/3798) duplicates. Of those 3597 articles, 3546
(98.58%) were excluded because they did not meet the eligibility
criteria. After reading the full texts of the remaining 51 articles,
the number of eligible articles was reduced to 20 (39%). Reasons
for the exclusion of articles are shown in Figure 1.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram. CVD: cardiovascular disease; DL: deep
learning; mHealth: mobile health.

Applications of DL and Outcomes

Overview
Table 1 shows the primary characteristics of the included studies
in terms of target disease, number of participants, and their age

as well as study duration (where applicable). Of the 20 DL
studies, 7 (35%) targeted CVDs, 9 (45%) targeted diabetes, and
the remaining 4 (20%) targeted cancer. An interesting finding
is that the number of participants included in the DL studies for
diabetes was small (range 6-46) compared with CVD (range
10-70,000) and cancer (range 99-917).
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Table 1. Characteristics of the included studies (N=20).

Study periodAgeParticipants, NTarget diseaseStudy

NoN/Ab10CVDaAl-Makhadmeh et al [17]

No29-79 years597 (2 data sets combined with 303
and 294 participants)

CVDAli et al [18]

Participants in database 3
were followed for 12
months

N/AFour databases: (1) 70,000 partici-
pants, (2) 20,000 participants, (3)
139 patients with hypertension, and
(4) 303 participants

CVDDami et al [19]

Usability study for 4
months

N/AN/ACVDDeperlioglu et al [20]

No (tested in the real
world)

N/A20,000CVDFu et al [21]

NoN/A47CVDHuda et al [22]

NoMean 68 (cardioversion cohort), 56
(exercise stress test cohort), and 67
(ambulatory cohort) years

163CVDTorres-Soto et al [23]

8 weeks20-80 years6Diabetes

(T1DMc)

Cappon et al [24]

8 weeks20-80 years6Diabetes (T1DM)Chen et al [25]

Data collected during a 2-
month period

N/A25DiabetesEfat et al [26]

6 months21-75 years10 patients in the smartphone group
(overweight or obese)

Diabetes

(T2DMd)

Faruqui et al [27]

No (tested in the real
world)

N/A30DiabetesGoyal et al [28]

No17-80 years46DiabetesJoshi et al [29]

No29-62 years15DiabetesSánchez-Delacruz et al
[30]

430-hour experimentMean 24.88 (SD 3.15) years25DiabetesSevil et al [31]

NoN/AN/ADiabetesSuriyal et al [32]

NoN/AN/ACancerEch-Cherif et al [33]

NoN/AN/ACancerGuo et al [34]

NoN/A917CancerHu et al [35]

No (tested in the real
world)

Mean 40 (SD 14.1) years99CancerUthoff et al [36]

aCVD: cardiovascular disease.
bN/A: not applicable.
cT1DM: type 1 diabetes mellitus.
dT2DM: type 2 diabetes mellitus.

Only 25% (5/20) of the studies reported the integration of their
developed model into a DL-empowered system or application
that was tested in real life [20,21,28,33,36]. However, none of
the studies presented a clinical validation of the deployed
systems and applications (eg, through randomized controlled
trials).

Approximately 25% (5/20) of the DL studies used an unseen
external data set for evaluation purposes to eliminate possible

bias and build models that could be generalized
[20,23,33,36,37]. Different performance outcomes were reported
in the identified studies using DL algorithms (Table 2). None
of the included studies used any guidelines for reporting the
development and outcomes of the models such as TRIPOD
(Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis) [38]. All the included studies
(20/20, 100%) are briefly described below in terms of purpose,
data and algorithms used, and evaluation outcomes.
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Table 2. Algorithms and outcomes of the included studies (N=20).

Comparison with classic

MLb algorithms

PerformanceFeatures selectedData usedDL algorithmDLa outcomeStudy

No99.5% sensitivityECGd, blood pres-
sure, chest pain ty-

123 instances and 23
attributes collected
from 10 patients us-

Higher-order
Boltzmann deep
belief neural net-
work

Detection of
heart disease

Al-Makhad-
meh et al
[17] pology, cholesterol

level, vessel infor-ing sensor devices
from data sets avail- mation, minimum
able in UCIc reposi-
tory

and maximum
heart rate, angina,
and depression
symptoms

SVMf (71.8%), logistic
regression (73.7%), ran-

84% accuracyDemographic (age
and sex), clinical
(chest pain type,

Cleveland and Hun-
garian data sets
available from UCI

Feedforward net-
work that uses
backpropagation

Detection of
heart disease

Ali et al [18]

dom forest (73.7%), deci-
number of majorrepository contain-techniques and sion tree (74.8%), and

naïve Bayes (80.4%)vessels colored by
fluoroscopy, and

ing EMRe and sen-
sor data (physiologi-
cal measurements)

gradient algorithms
(ensemble ap-
proach) exercise test re-

sults), and sensor
(resting blood
pressure and fast-
ing blood sugar)

Logistic regression,
SVM, and random forest

88% accuracy, 87%
F-measure, and 87%
precision

Age, sex, weight,
height, body sur-
face area, BMI,
smoker or not, sys-

Four databases: (1)
Kaggle heart disease
data set archive, (2)
database from

Combination of
deep belief net-

work and LSTMh

RNNi

Prediction of car-
diovascular
events to prevent

SCDg and heart
attacks

Dami et al
[19]

(56% accuracy on aver-
age)

tolic blood pres-
sure, diastolic

Shahid Beheshti
Hospital Research

blood pressure, inti-Center, (3) database
ma media thick-from PhysioNet site
ness, left ventricu-including patients
lar mass index, and
ejection fraction

from the Naples
Federico II Universi-
ty Hospital in Italy,
and (4) UCI4 data
set Archive from
1988

SVM, naïve Bayes, deci-
sion tree, and AdaBoost
(84.2%-93.3% accuracy)

96.03% accuracy for
normal diagnosis,
91.91% accuracy for
extrasystole diagnosis,

NoPASCALj B-training
heart sound data sets
and A-training heart
sound data sets

Autoencoder neu-
ral networks

Classification of
heart sounds

Deperlioglu
et al [20]

and 90.11% accuracy
for murmur diagnosis

No95.53%-99.97% accu-
racy of CVD

NoThe test set includes
15,437 anonymous
ECG recordings col-

A hybrid of a

CNNl and an RNN
CVDk detectionFu et al [21]

lected from several
tertiary hospitals in
China

No94.03% accuracy in
classifying abnormal
cardiac rhythm

NoMIT-BIHm arrhyth-
mia data set ob-
tained from Phys-
ioNet

CNNArrhythmia detec-
tion

Huda et al
[22]

Random forest (32%
sensitivity, 79% specifici-
ty, and 39% F1)

98% sensitivity, 99%
specificity, and 96%
F1

Regions of the ups-
lope from the sys-
tolic phase to be
informative for

Data available
through synapse
(Synapse ID:
syn21985690)

Pretraining using
convolutional de-
noising autoen-
coders followed by
CNN, transfer

Arrhythmia event
detection

Torres-Soto
et al [23]

AFn class-specific
predictionslearning, and auxil-

iary signal quality
estimation
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Comparison with classic

MLb algorithms

PerformanceFeatures selectedData usedDL algorithmDLa outcomeStudy

NoRMSEp 20.20 and
34.19 for 30- and 60-
minute prediction, re-
spectively

CGM, injected in-
sulin as reported
by the pump, and
self-reported meals
and exercise

OhioT1DM data set

containing CGMo

data, lifestyle data
(diet, exercise, and
sleep), galvanic skin
response, skin tem-
perature, and magni-
tude of acceleration

LSTM RNNPrediction of
short-time blood
glucose levels

Cappon et al
[24]

No15.299 to 22.710
RMSE for different
participants

CGM, insulin dos-
es, carbohydrate
intake, and time in-
dex; additional da-
ta included exer-
cise, heart rate, and
skin temperature

The OhioT1DM data
set of continuous
glucose monitoring
data and the corre-
sponding daily
events from 6 pa-
tients with type 1 di-
abetes

Dilated RNNsPrediction of
short-time blood
glucose levels

Chen et al
[25]

No84.29% accuracy,
82.35% sensitivity,
and 86.11% specifici-
ty

Patients’ age, sex,
sugar level, heart
pulse, food intake,
sleep time, and ex-
ercise or calorie
burn

2-month data from
25 patients with dia-
betes

Artificial neural
network

Risk level classifi-
cation of patients
with diabetes

Efat et al
[26]

KNNr regression (10%-
56% accuracy)

33.33% (patient 7) to
86.67% (patient 2) ac-
curacy

Daily mobile
health lifestyle data
on diet, physical
activity, weight,
and previous glu-
cose levels from
the day before

10 patients with dia-

betes (T2DMq) be-
ing overweight or
obese

LSTM RNNPrediction of dai-
ly glucose levels

Faruqui et al
[27]

SVM (70.3% precision)91.8% mean average
precision

Low-level features
such as edge detec-
tion, corner detec-
tion, texture de-
scriptors, shape-
based descriptors,
and color descrip-
tors

Transfer learning
with ImageNet
(Stanford Vision
Lab) and Microsoft
COCO data set;
1775 images of
DFUs

Faster R-CNNtReal-time DFUs

localization

Goyal et al
[28]

Multiple polynomial re-
gression—AvgE and
mARD were 4.88% and
4.86% for serum glucose
examination

AvgEw 6.09%,

mARDx 6.07%

NoNIRv optical spec-
troscopy data

LMBPuContinuous blood
glucose monitor-
ing

Joshi et al
[29]

No85% accuracyAccelerometer dataRaw data from 5 ac-
celerometers

Classifiers com-
bined with multilay-
er perceptron

Diabetic neuropa-
thy detection

Sánchez-
Delacruz et
al [30]

KNN, SVM, naïve
Bayes, decision tree, lin-
ear discrimination, and
ensemble learning
(75.7% to 93.1% accura-
cy)

94.8% classification
accuracy

23 selected infor-
mation features are
reported in the pa-
per out of 2216

Data sets not avail-
able

RNNClassification of
activity into 5
stages for deter-
mining the ener-
gy expenditure
for diabetes thera-
py

Sevil et al
[31]

No73% accuracy, 74%
sensitivity, and 63%
specificity

NoData set available in
Kaggle database

MobileNets in
TensorFlow with
the help of RM-
Sprop and asyn-
chronous gradient
descent

Diabetic
retinopathy detec-
tion

Suriyal et al
[32]
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Comparison with classic

MLb algorithms

PerformanceFeatures selectedData usedDL algorithmDLa outcomeStudy

No91.33% accuracyCancerous or notThree databases:

DermNet, ISICy

Archive, and Der-
mofit Image Library

Resource-con-
strained, mobile-
ready deep neural
network

Benign and malig-
nant cancer detec-
tion

Ech-Cherif
et al [33]

No91.6% accuracy and
89% F1 score

Normal samples as
cervix images and
from the anoma-
lous samples as
noncervix images

Four data sets were
used in this study:
MobileODT, Kag-
gle, and COCO2017
for training and vali-

dation, and SEVIAaa

for testing

Ensemble method
that consists of 3
DL architectures:
RetinaNet, deep

SVDDz, and a cus-
tomized CNN

Identification of
cervix and non-
cervix images

Guo et al
[34]

NoROCab curve (AUCac)
of 0.95

No specific fea-
tures were reported
in the paper

Microsoft COCO
images, 7334 train-
ing images, 970 vali-
dation images, and
1058 test images

Automated visual
evaluation, Reti-
naNet, and Adam
optimization algo-
rithm

Detection of cer-
vical precancer

Hu et al [35]

NoSensitivity, specifici-
ty, positive predictive
values, and negative
predictive values
(81.25%-94.94%);
0.908 AUC

WLIae and AFIaf

provided the most
information about
type of lesion and
size of the affected
area

170 image pairsCNN, VGG-Mad

network pretrained
on the ImageNet
data set

Early detection of
precancerous and
cancerous lesions
in the oral cavity

Uthoff et al
[36]

aDL: deep learning.
bML: machine learning.
cUCI: University of California, Irvine.
dECG: electrocardiogram.
eEMR: electronic medical record.
fSVM: support vector machine.
gSCD: sudden cardiac death.
hLSTM: long short-term memory.
iRNN: recurrent neural network.
jPASCAL: Pattern Analysis, Statistical Modeling, and Computational Learning.
kCVD: cardiovascular disease.
lCNN: convolutional neural network.
mMIT-BIH: Massachusetts Institute of Technology–Beth Israel Hospital.
nAF: atrial fibrillation.
oCGM: continuous glucose monitoring.
pRMSE: root mean squared error.
qT2DM: type 2 diabetes mellitus.
rKNN: k-nearest neighbor.
sDFU: diabetic foot ulcer.
tR-CNN: region-based convolutional neural network.
uLMBP: Levenberg–Marquardt Backpropagation.
vNIR: near-infrared.
wAvgE: average error.
xmARD: mean absolute relative difference.
yISIC: International Skin Imaging Collaboration.
zSVDD: support vector data description.
aaSEVIA: smartphone-enhanced visual inspection with acetic acid.
abROC: receiver operating characteristic.
acAUC: area under the curve.
adVGG-M: visual geometry group multi-scale.
aeWLI: white-light imaging.
afAFI: autofluorescence imaging.
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CVD Studies
Huda et al [22] introduced a low-cost, low-power, and wireless
electrocardiogram (ECG) monitoring system with DL-based
automatic arrhythmia detection. The model was based on a 1D
convolutional neural network (CNN) that provided an accuracy
of 94.03% in classifying abnormal cardiac rhythm on the
Massachusetts Institute of Technology–Beth Israel Hospital
Arrhythmia Database.

Deperlioglu et al [20] described a secure Internet of Health
Things system to provide real-time support to physicians for
the diagnosis of CVDs. Heart sounds were classified using
autoencoder neural networks (AENs), and the developed
solution demonstrated better results than those reported in the
literature studied.

In the study by Ali et al [18], a DL-based ensemble model was
used for the detection of heart disease in 597 patients. More
specifically, a feedforward neural network was used to perform
binary classification of the presence or absence of disease. An
84% accuracy in this classification task was achieved by using
publicly available data sets containing sensed data in terms of
physiological measurements (such as blood pressure and fasting
blood sugar) as well as electronic health record data (including
exercise test results, chest pain information, and demographic
information).

In the study by Al-Makhadmeh et al [17], the authors proposed
the use of a Boltzmann deep belief model to detect whether a
patient has heart disease. The model was based on data acquired
from 10 patients (publicly available data set), including ECG
and blood pressure measurements as well as other diagnostic
information such as chest pain and appearance of angina or
depression symptoms. A sensitivity of 99.5% was achieved.

Another approach to shed light on the occurrence of arterial and
cardiovascular events was examined in the study by Dami et al
[19]. A long short-term memory (LSTM) neural network and
a deep belief network were used to predict arterial events over
the course of a few weeks before the event using ECG
recordings and time-frequency features of ECG signals. The
proposed LSTM and deep belief network approach had
significantly better performance when compared with all other
DL approaches and traditional classifications.

Furthermore, in the study by Torres-Soto et al [23], the authors
developed DeepBeat, a multitask DL method to detect
arrhythmia events for atrial fibrillation in real time using
wrist-based photoplethysmography devices. The proposed
approach exploited transfer learning, and the resulting models
had a sensitivity of 0.98, specificity of 0.99, and F1 score of
0.93.

In the study by Fu et al [21], an Internet of Things and cloud
service system was designed that collected high-quality ECG
data and diagnosed 20 types of CVDs using a DL model that
was a hybrid between a CNN and a recurrent neural network.
The model achieved >0.98 area under the receiver operating
characteristic curve score on 17 of the diagnostic items.

Diabetes
For diabetes, there were also several approaches showing
impressive performance using DL. For example, in the study
by Sevil et al [31], the authors proposed DL with LSTM to
determine physical activity states for use in automated insulin
delivery systems. The approach exploited a multi-sensor
wristband and achieved 94.8% classification accuracy.

In another approach by Suriyal et al [32], DL was used for the
detection of diabetic retinopathy using mobile devices for
real-time screening without requiring an internet connection.
The approach exploited a TensorFlow deep neural network,
with a reported accuracy of 73%.

Goyal et al [28] proposed an automated method for the detection
and localization of diabetic foot ulcers (DFUs) based on images.
The model was robust enough, with a mean average precision
of 91.8%, and the trained model could run on simple hardware
with a speed of 48 milliseconds for inferencing a single image
and with a model size of 57.2 MB. The model was based on
transfer learning that was initially trained with ImageNet
(Stanford Vision Lab) and Microsoft COCO data sets and with
DFU images in the final step. The authors also deployed these
models on an Android phone to create real-time object
localization for DFUs.

Joshi et al [29] proposed a wearable consumer device called
iGLU 2.0, which was based on a DL model for glucose level
prediction as a noninvasive, precise, and cost-effective solution
to monitor blood glucose levels and control diabetes. The
proposed glucometer used the concept of short-wave,
near-infrared spectroscopy to predict blood glucose levels. The
results were comparable with those of the serum glucose
examination, an invasive laboratory examination.

A glucose prediction model was also developed in the study by
Chen et al [25]. The authors used a new DL technique based on
a dilated recurrent neural network model to predict future
glucose levels for a prediction horizon of 30 minutes. Using
this model, it was shown that the accuracy of short-time glucose
predictions could be significantly improved.

The study by Efat et al [26] introduced a smart health monitoring
tool for patients with diabetes. The objective of the authors was
to use continuous sensor monitoring and processing with neural
networks to provide a continuous evaluation of the patient health
risk status.

In the study by Cappon et al [24], an LSTM model for the
prediction of blood glucose concentration in patients with type
1 diabetes was proposed. The applied model was based on
continuous glucose monitoring data collected from 6 patients
as well as insulin dose and self-reported meals and exercise. A
root mean squared error of 20.20 for prediction of glucose over
the next 30 minutes and of 34.19 for prediction over the next
hour was highlighted as the performance outcome of their work.

In the study by Faruqui et al [27], the authors used a DL model
based on LSTM and developed a transfer learning strategy (to
cope with data scarcity and improve the model’s personalization
capabilities) to dynamically forecast daily glucose levels. The
patient data used for their model were the daily mHealth lifestyle
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data and the glucose levels from the day before. The model
achieved considerable accuracy in predicting the next day
glucose level based on the Clark Error Grid and –10% to +10%
range of the actual values on data collected from 10 patients
who had been monitored daily for over 6 months.

In the study by Sánchez-Delacruz et al [30], the detection of
diabetic neuropathy through the application of a multilayer
perceptron combined with additional classifiers on raw
accelerometer data was proposed. A total of 15 individuals (10
with diabetic neuropathy and 5 healthy) wearing 5
accelerometers were instructed to walk. The algorithm was able
to reach 85% accuracy in diabetic neuropathy recognition.

Cancer
Several studies also focused on cancer. In the study by Hu et al
[35], the authors exploited a new DL algorithm called automated
visual evaluation for analyzing cervigram images captured by
commodity mobile phones to detect cervical precancer. This
approach achieved a receiver operating characteristic curve
(area under the curve) of 0.95.

In another approach by Uthoff et al [36], the authors used a
CNN to enable early detection of precancerous and cancerous
lesions in the oral cavity with the potential to reduce morbidity,
mortality, and health care costs. To achieve this, the authors
used a custom Android app that synchronized an external
light-emitting diode and image capture for autofluorescence
imaging and white-light imaging on a smartphone. The
sensitivity, specificity, positive predictive value, and negative
predictive value of the approach ranged from 81.25% to 94.94%.

DL techniques have also been applied for triaging skin cancer
detection. The authors in the study by Ech-Cherif et al [33]
manually trained a resource-constrained deep CNN called
MobileNetV2 to identify the binary classification of skin lesions
using benign and malignant as the 2 classes. When the model
was tested on an unseen library of images using an iOS mobile
app, it was found that all images were correctly classified.

In the study by Guo et al [34], the authors combined the
assessment of 3 DL architectures to determine whether an image
contained a cervix. The study showed that the ensemble method
outperformed individual DL methods. Such data quality
algorithms could be used to clean large data sets and provide
quality assurance for machine learning (ML) algorithms in
routine clinical use.

Architectures of DL Models
DL approaches in mHealth can be efficient by taking advantage
of the large volumes of data generated through the use of mobile
and sensing devices. In Table 3, we provide details regarding
the DL architectures and parameters or hyperparameters used
in the selected studies to shed light on the most promising ones
used in practice. It is apparent that there is no single best DL
architecture to be used for mHealth considering that the selection
of the most appropriate DL architecture is mainly data driven.

Regarding the hyperparameters of the studied models, the layers
varied between 3 and 50. In most cases, softmax or sigmoid
activation functions were used and applied primarily to

classification problems, the losses L1 and L2 were <0.01 and,
in some cases, Adam optimization was used.

Huda et al [22] proposed a CNN model architecture that
consisted of 1D convolution, max-pooling, batch normalization,
and dropout layers. The flattened layer output was passed
through a fully connected layer with dropout and a second fully
connected dense layer. A softmax layer with 14 outputs was
then used for arrhythmia classification.

Torres-Soto et al [23] focused on detecting arrhythmia events
using unsupervised transfer learning through convolutional
denoising autoencoders (CDAEs). The authors applied a 2-stage
training to address the unbalanced data problem common to
biomedical applications, exploiting a multitask CNN
architecture, transfer learning, and an auxiliary signal quality
estimation task for atrial fibrillation event detection from
spatially segmented physiological photoplethysmography
signals. Unsupervised pretraining was performed using CDAEs.
The authors then used convolutional and pooling layers in the
encoder and upsampling and convolutional layers in the decoder.
To obtain the optimal weights, they were randomly initiated
according to the He distribution, and the gradient was calculated
using the chain rule to backpropagate error derivatives through
the decoder network and then through the encoder network.
Using a number of hidden units lower than the inputs forces the
autoencoder to learn a compressed approximation. The loss
function used in pretraining was the mean squared error and
was optimized using a backpropagation algorithm. Finally, 3
convolutional layers and 3 pooling layers were used for the
encoder segment, and 3 convolutional layers and 3 upsampling
layers were used for the decoder segment of the CDAE. A
Rectified Linear Unit (ReLU) was applied as the activation
function, and Adam was used as the optimization method. Each
model was trained with mean squared error loss for 200 epochs,
with a reduction in learning rate of 0.001 for every 25 epochs
if the validation loss did not improve.

For cervical precancer detection using a smartphone [35], a
Resnet-50 architecture was proposed. The whole process started
with image augmentation methods (random image scale, random
horizontal or vertical flip, random rotation, random shearing,
random translation, and transforming the red channel of the
image through a γ transformation with γ randomly chosen).
Nonmaximum suppression after processing was then followed
after cervix or precancerous cervix object detection. The model
parameters were initialized with weights pretrained on Microsoft
COCO images. All model parameters were then fine-tuned using
the visual inspection with acetic acid training data. For the
optimization strategy, the authors used the Adam optimization
algorithm, fixing the clipnorm parameter at the default of 0.001,

and they also used a learning rate of 1 × 10–5. The metrics used
for hyperparameter (number of iterations and batch size)
optimization were the mean average precision and validation
classification loss.

For smartphone-based oral cancer screening [36], classification
using a CNN was applied. For the CNN training, methods
commonly used in network training were used, including transfer
learning and data augmentation. For data augmentation, the
original images were rotated and flipped to feed the network
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with more training data. In addition, transfer learning was
applied using a visual geometry group multi-scale network
pretrained on the ImageNet data set. The network was modified
for the task by replacing the final dense layer and softmax layer
and then training the network with the available data set.

Goyal et al [28] used transfer learning from massive data sets
in nonmedical backgrounds such as ImageNet and Microsoft
COCO data sets for the initial training of their image model for
DFU localization. The authors used two CNNs, MobileNet and
Inception-V2, and set the weight for L2 regularizer as 0.00004
and batch normalization with a decay of 0.9997 and epsilon of
0.001. A batch size of 24 was used along with the optimizer as
RMSprop with a learning rate of 0.004 and decay factor of 0.95.

The momentum optimizer value was set at 0.9 with a decay of
0.9 and epsilon of 0.1.

The DL approach was used for physical activity classification
for automated insulin delivery systems [31], combining different
layers including fully connected, LSTM, softmax, regression,
ReLU, and dropout layers. In addition, the authors used the L2
regularization term to reduce the risk of overfitting (value 0.05).

In another approach, a TensorFlow deep neural network was
used for the detection of diabetic retinopathy [32]. The neural
network had 28 convolutional layers and, after each layer, there
was a batch normalization and ReLU nonlinear function except
for the final layer. The MobileNets training was performed in
TensorFlow with the help of RMSprop and asynchronous
gradient descent.
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Table 3. Model architectures in the included studies (N=20).

DL hyperparametersDLa parametersStudy

Cross-entropy loss of 0.0178, L1 loss of 0.0187, and L2 loss
of 0.025

Deep belief network, trained the features using the Boltzmann
machine classifiers by computing the energy consumption of
the network

Al-Makhadmeh et al
[17]

Ada optimizer used and a learning rate with a value of 0.03;

ReLUb activation function

Ensemble DL model composed of 5 layers: the input layer, 3
hidden layers, and the output layer; fully connected hidden
layer with 20 nodes

Ali et al [18]

SGDd for optimizing cross-entropy as the default loss functionA deep belief network selected and represented a set of fea-
tures from the hybrid feature vector and then passed it to the

Dami et al [19]

LSTMc neural network. The LSTM neural network consists
of 5 layers, including input layers, a hidden layer (with 100
hidden units), 2 fully connected layers, a softmax layer, and
an output layer

Scaled conjugate gradient algorithm and cross-entropy cost
function was used in the coding layer. The coefficient for the

Autoencoder neural network with a hidden layer size of 10.
Softmax layer was used

Deperlioglu et al [20]

L2 weight regularizer was 0.001, the coefficient for the spar-
sity regularization term was 4, and the sparsity proportion was
0.05

Before each convolutional layer, a nonlinear transformation
occurs, which is a combination of batch normalization, ReLU
activation, and a dropout

A hybrid of CNNe and RNNf; 32 convolutional layers (input
for CNN) grouped into 8 stages, where each stage was a cas-
cade of four 1D convolutional layers with a kernel size of 16.
The final prediction layer was a fully connected dense layer

Fu et al [21]

Used dropout layers1D convolution (CNN), max-pooling, and batch normalization.
The flattened layer output was passed through a fully connect-

Huda et al [22]

ed layer and a second fully connected dense layer. In addition,
a softmax layer with 14 outputs was used

Weights were randomly initiated according to He distribution,
and Adam was used as the optimization method. Each model

Convolutional and pooling layers in the encoder and upsam-
pling and convolutional layers in the decoder; 3 convolutional

Torres-Soto et al [23]

was trained with MSEh loss for 200 epochs, with a reductionlayers and 3 pooling layers for the encoder segment, and 3
convolutional layers and 3 upsampling layers for the decoder

segment of the CDAEg
in learning rate of 0.001 for every 25 epochs if the validation
loss did not improve

BLSTMk architecture, hyperparameters, and look-back period
were chosen by trial and error to compromise between model
complexity and accuracy

A bidirectional LSTM input layer composed of 128 cells
having a look-back period of 15 minutes (ie, 3 samples); 2
LSTM layers composed of 64 and 32 cells, respectively; and
a fully connected layer consisting of a single neuron computing

Cappon et al [24]

the BGi level prediction at 2 different PHsj (ie, 30 and 60
minutes)

1, 2, and 4 dilations implemented for the 3 layers from bottom
to top, respectively

A 3-layered DRNNl with 32 cells in each layerChen et al [25]

In forward propagation, the sigmoid activation function was
applied and, for backpropagation, the margin of error of the

RNNEfat et al [26]

output was measured, and the weights were adjusted accord-
ingly

Dropout rate of 0.10-0.45. An allowable unit change of 0.01
for the dropout rate parameter and of 1 for the number of

LSTM with 5-60 layers and 5-40 number of neurons in the
feedforward neural network

Faruqui et al [27]

neurons in LSTM and feedforward layers was selected. A total
of 35 × 55 × 35 = 67,375 combinations were tested before
finding the optimal hyperparameters

For Faster R-CNN, the weight was set for L2 regularizer as
0.0, initializer that generated a truncated normal distribution

Faster R-CNNm with ResNet101, Faster R-CNN with Incep-

tion-ResnetV2, Faster R-CNN with InceptionV2, and R-FCNn

with ResNet101

Goyal et al [28]

with SD of 0.01 and batch normalization with decay of 0.9997
and epsilon of 0.001. For training, a batch size of 2 was used,
optimizer as momentum with manual step learning rate and
an initial rate of 0.0002, 0.00002 at epoch 40, and 0.000002
at epoch 60. The momentum optimizer value was set at 0.9.
For training R-FCN, the same hyperparameters were used as
with Faster R-CNN with the only change being in the learning
rate set as 0.0005
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DL hyperparametersDLa parametersStudy

Sigmoid activation functionsDNNo with 10 hidden layersJoshi et al [29]

The base function was applied to the input values, and the
softmax was used as the activation function

23 assembled algorithms were tested by combining them with
the deep RNA multilayer perceptron. The best results were
obtained with the combination of FilteredClassifier and the
DL model

Sánchez-Delacruz et
al [30]

L2 regularization=0.05Combination of different layers, including fully connected,
LSTM, softmax, regression, ReLU, and dropout layers

Sevil et al [31]

After each layer, there was batch normalization and a ReLU
nonlinear function except at the final layer. Training was done
in TensorFlow with the help of RMSprop and asynchronous
gradient descent

MobileNet CNN with 28 layers. The first layer was a fully
connected layer

Suriyal et al [32]

Used pretrained model MobileNetV2. Adam optimizer was
used with a starting learning rate of 0.4. For each experiment,
the learning rate was decayed by half every 2 epochs. All ex-
periments were run for 55 epochs. Selected batch size was 32

Used the MobileNetV2 model, excluded the classification
layer, and replaced it with a dense layer that has two classes:
benign and malignant

Ech-Cherif et al [33]

N/Ap4 sequentially connected convolutional blocks followed by 2
fully connected layers and softmax for the last layer

Guo et al [34]

Number of iterations and batch size optimization were mean
average precision and validation classification loss

ResNet-50 architectureHu et al [35]

N/A4 sequentially connected convolutional blocks followed by 2
fully connected layers

Uthoff et al [36]

aDL: deep learning.
bReLU: Rectified Linear Unit.
cLSTM: long short-term memory.
dSGD: stochastic gradient descent.
eCNN: convolutional neural network.
fRNN: recurrent neural network.
gCDAE: convolutional denoising autoencoder.
hMSE: mean squared error.
iBG: blood glucose.
jPH: prediction horizon.
kBLSTM: bidirectional long short-term memory.
lDRNN: dilated recurrent neural network.
mR-CNN: region-based convolutional neural network.
nR-FCN: region-based fully convolutional network.
oDNN: deep neural network.
pN/A: not applicable.

Comparison With Classic ML Algorithms
Herein, a presentation of how the DL algorithms used compare
with classic ML algorithms, as reported in some of the included
studies, is provided. This comparison primarily aims to show
whether DL models could bring significant performance gains,
which could be critical for their wide adoption by health care
providers in routine clinical practice.

In the work by Ali et al [18], the feedforward network for the
detection of heart disease based on medical record data and
physiological measurements was compared with support vector
machine (SVM), random forest, decision tree, and naïve Bayes.
The feedforward network achieved 84% accuracy, which was
substantially better than the accuracy of classic ML algorithms
(72%-80%).

In the work by Dami et al [19], the combination of a deep belief
network with LSTM was able to reach 88% accuracy in the
prediction of cardiovascular events on data from 4 databases,
whereas classic ML algorithms such as logistic regression, SVM,
and random forest achieved 56% accuracy on average.

In the paper by Deperlioglu et al [20], AEN was compared
thoroughly with additional ML algorithms in other studies. For
the PASCAL data set, AEN performed better than all other ML
algorithms it was compared with, such as artificial neural
networks (82.80-86.50 accuracy), CNN (97.9 accuracy), SVM
(90.50 accuracy), naïve Bayes (93.33 accuracy), decision tree
(72.76 accuracy), and others. For the PhysioNet data set, AEN
performed better than all other ML algorithms, such as CNN
(79.50-97.21 accuracy), SVM (83.00 accuracy), wavelet entropy
(77.00 accuracy), deep-gated RNA (55.00 accuracy), and others.
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DeepBeat in the work by Torres-Soto et al [23] was compared
with random forest. However, the sensitivity using random
forest was 0.32, the specificity was 0.79, and the F1 score was
0.39 versus 0.98 sensitivity, 0.99 specificity, and 0.96 F1 score
for the proposed DL methodology.

In the work by Faruqui et al [27], the forecast of daily blood
glucose levels through LSTM was achieved with a maximum
accuracy of >86% in comparison with the 56% accuracy of
k-nearest neighbor regression.

In the work by Goyal et al [28], the localization of DFUs based
on imaging data through Faster region-based CNN had a 91.8%
average precision. The application of SVM was able to achieve
only a 70.3% precision.

Joshi et al [29] applied Levenberg–Marquardt Backpropagation
for blood glucose monitoring and achieved an average error of
6.09% in the detection of serum glucose values through
near-infrared spectroscopy. However, the use of multiple
polynomial regression resulted in a significantly lower average
error of 4.88%. This was the only study that showed that a
classic ML approach was better than a DL approach.

In the work by Sevil et al [31], the authors compared the
performance of their recurrent neural network with k-nearest
neighbor, regression SVMs, decision trees, naïve Bayes,
Gaussian process regression, ensemble learning, and linear
discrimination and regression, which achieved 75.7% to 93.1%
accuracy, whereas the proposed approach achieved a
classification accuracy of 94.8%.

Explainability Aspects
When developing models for decision support, there is a need
to provide transparent and trustworthy models able to produce
not only reliable but also explainable predictions [39]. However,
a known problem with DL models is that they lack
interpretability and explainability, which hinders their wide
adoption in clinical practice.

Explainability deals with the implementation of transparency
and traceability of statistical black‐box ML methods. Although
attempts to tackle problems related to explanation and
interpretability have existed for several years now, there has
been an exceptional growth in research efforts in the last couple
of years [40]. Approaches for explainability include keeping
track of how algorithms are used, which features are the most
important for predicting the target variable, and how the
algorithm used can be improved, thereby providing hints and
clues to guide further developments and enabling the detection
of erroneous reasoning through techniques of advanced
visualization and signal processing. The challenge is hard as
explanations should be sound and complete in statistical and
causal terms and yet comprehensible to users, subject to
decisions.

This difficulty is also demonstrated in the presented works under
review in several cases (eg, in the study by Guo et al [34]). The
authors visually analyzed the error cases to better understand
why the results were wrong. In only 5% (1/20) of the studies
[24], the authors exploited Shapley Additive Explanations (ie,
a newly developed approach to interpret DL model predictions

[41]). Focusing on predicting glucose concentration in type 1
diabetes, the Shapley Additive Explanations identified that high
values of continuous glucose measurements resulted in high
predicted blood glucose levels and that high insulin negatively
affected the model output.

Discussion

Principal Findings
This work presented a systematic literature review of the
applications of DL in mHealth for three major chronic diseases
that pose a significant international burden: CVD, diabetes, and
cancer. To the authors’ knowledge, this is the first systematic
review of DL in mHealth for these diseases. The principal
outcome of this review is that DL approaches have been used
effectively for a variety of diagnostic and predictive tasks in
mHealth. More specifically, the most common DL outcomes
were found to be (1) diagnosis of the patient’s condition for
CVDs, (2) prediction of blood glucose levels for diabetes, and
(3) early detection of cancer.

CNNs and recurrent neural networks were the DL algorithms
used in most studies. It is worth mentioning that CNNs have
been successfully applied to deal with not only computer vision
medical tasks but also other tasks based on nonimaging data,
such as detection of arrhythmia [22,23] or CVD [21]. Overall,
the performance of DL approaches was found to be satisfactory
considering that >84% accuracy was achieved in most studies.

In comparison with classic ML approaches, DL was found to
achieve better performance in almost all studies that reported
such comparison outcomes. This finding shows the value and
potential of DL in mHealth for realizing highly intelligent
mHealth systems and interventions that could significantly
improve clinical decision-making processes. Nevertheless, the
authors of this paper acknowledge that DL models require more
effort compared with ML models for the preprocessing part,
especially when the architecture is based on transfer learning,
a common method in most of the image-processing architectures.

The diversity of the identified DL models in the mHealth studies
confirms that, for the selection of the most appropriate DL
architecture, the one-size-fits-all approach does not apply, a
finding that has also been indicated in DL reviews for other
fields [42,43]. Another remark is that the architectures of the
models in the mHealth studies, as well as the methodologies
used for training, were not stated in a consistent manner. This
renders the comparison of various approaches between works
nontrivial for the interested researcher. None of the included
studies used guidelines for reporting the development or
outcomes of the models, which could have facilitated the
assessment and interpretation of their findings [44].

Most of the included studies dealt with the retrospective
technical validation of DL approaches. More thorough external
validation is required to prove the generalizability of the DL
findings considering that only a minority of the DL studies used
an unseen external data set for evaluation purposes. Furthermore,
no randomized controlled trials or other types of clinical
validation studies with intelligent digital health interventions
relying on DL approaches were found in this review [45]. In
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this respect, further work by the research community is needed
to develop DL-empowered systems and applications and prove
their clinical effectiveness in health care settings within
prospective clinical studies.

Although DL was found to be an effective approach in mHealth
for chronic diseases, the explainability of DL outcomes has
been scarce. It is apparent that future work is required on the
explainability of the DL models developed for chronic diseases
as only 5% (1/20) of the studies in this review considered this
important dimension [24]. Leveraging explainable models would
enhance trust in artificial intelligence and help clinicians make
informed judgments [46,47], thereby promoting the real-life
use of those models in daily clinical practice. Equally important
for the developed models is to support their fairness by ensuring
that they mitigate inequalities between individuals and groups
of individuals, in particular differences in sex or gender, age,
ethnicity, income, education, and geography. In the reviewed
studies, mitigation of differences was missing in most cases,
merely because of the lack of adequate data. However, if DL
models are to be used in daily practice, they should also
guarantee fairness and universality [48,49].

Limitations
This review should be interpreted within the context of its
limitations. The authors used a limited set of terms for the search

of the literature, including keywords such as DL and neural
networks, combined with keywords related to mHealth.
Keywords for specific DL algorithms were not used. This might
have inadvertently omitted studies that could have contributed
to the progress made in DL applications for mHealth. Articles
were searched in a limited number of databases (ie, PubMed
and Scopus); two of the most widely used databases
internationally nonetheless. No hand search was conducted on
any studies reported in other reviews or the included studies,
and there was no assessment of the interrater reliability between
the authors. A meta-analysis was not possible because of the
heterogeneity of the included studies. On the basis of the
selected inclusion and exclusion criteria, a small number of
eligible studies were included and examined in this review,
which limits the generalizability of the findings.

Conclusions
This review found that DL approaches for chronic diseases
could be the vehicle for the translation of big mHealth data into
useful knowledge about patient health. Nevertheless, to unlock
the full potential of DL, the research community needs to move
beyond the conduction of retrospective validation studies and
provide robust evidence of the added clinical value of DL-based
tools in real-life settings compared with standard care.
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Abbreviations
AEN: autoencoder neural network
CDAE: convolutional denoising autoencoder
CNN: convolutional neural network
CVD: cardiovascular disease
DFU: diabetic foot ulcer
DL: deep learning
ECG: electrocardiogram
LSTM: long short-term memory
mHealth: mobile health
ML: machine learning
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
ReLU: Rectified Linear Unit
SVM: support vector machine
TRIPOD: Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis
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