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Abstract

Wearable inertial sensors are providing enhanced insight into patient mobility and health. Significant research efforts have focused
on wearable algorithm design and deployment in both research and clinical settings; however, open-source, general-purpose
software tools for processing various activities of daily living are relatively scarce. Furthermore, few studies include code for
replication or off-the-shelf software packages. In this work, we introduce SciKit Digital Health (SKDH), a Python software
package (Python Software Foundation) containing various algorithms for deriving clinical features of gait, sit to stand, physical
activity, and sleep, wrapped in an easily extensible framework. SKDH combines data ingestion, preprocessing, and data analysis
methods geared toward modern data science workflows and streamlines the generation of digital endpoints in “good practice”
environments by combining all the necessary data processing steps in a single pipeline. Our package simplifies the construction
of new data processing pipelines and promotes reproducibility by following a convention over configuration approach, standardizing
most settings on physiologically reasonable defaults in healthy adult populations or those with mild impairment. SKDH is open
source, as well as free to use and extend under a permissive Massachusetts Institute of Technology license, and is available from
GitHub (PfizerRD/scikit-digital-health), the Python Package Index, and the conda-forge channel of Anaconda.
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Introduction

Wearable inertial sensors have enabled huge leaps forward in
the ability to quantify and derive actionable insights from patient
mobility and at-home health. Algorithm development and
deployment in both research and clinical studies have been a
focus of many research efforts. For example, gait monitoring
using wearables has evolved from algorithm design using
minimal sensors for the purpose of minimizing patient burden
[1-5] to at-home deployment and remote monitoring of
free-living activity [6-8]. Remote patient monitoring has a high
intrinsic value, as previous work has suggested. At-home values
may be less influenced by observer effects [8,9] and may
facilitate enhanced group differentiation [8-10].

While lumbar-mounted sensors are appealing for capturing
bilateral gait and other lower body activities such as sit-to-stand
transfers, wrist sensors are also desirable as they can be
integrated into watches or watch-like packages and offer lower
subject burden. Sleep and physical activity monitoring, which
typically use a wrist-based sensor, are also among extensively
researched areas [11-18]. Sleep and physical activity research
have been aided by the availability of an open-source, freely
available code package, GGIR [19]. GGIR is a collection of
algorithms for activity and sleep research, written in R, and
includes code to ingest, calibrate, and detect sleep and activity
level from raw acceleration data. GGIR allows researchers to
study patient symptoms with limited programming expertise
and has been evaluated in over 90 peer-reviewed journal
publications [19].
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The availability of GGIR is in stark contrast with many other
published works in this area. Relatively few works include any
code for experiment replication, and even fewer include
easy-to-use or “off-the-shelf” code packages, despite the ease
of sharing through public code repositories such as GitHub. Our
group has made an effort to release several implementations
from existing research or new algorithms for gait [8], sleep [20],
and sit to stand [10]. However, open-source packages to date
are fairly disparate and require additional steps for data ingestion
and preprocessing. Other options include the Digital Biomarker
Discovery Pipeline [21], a partial set of tools with the goal of
enhancing data inspection, cleaning, and processing to enable
digital biomarker discovery. However, it is composed of separate
modules with iPython notebooks instead of Python libraries,
and currently the project seems dormant (the last update was
on November 3, 2020). Open-source GENEActiv R macros also
exist, even though they are specific to GENEActiv files and
would require custom modification to ingest data from other
devices.

The lack of open-source, general-purpose algorithms for the
processing of the various base activities of daily living is a
significant gap in the field. By addressing this limitation, we
hope to advance human activity recognition research in two
important ways: (1) lowering the requirements for analyzing
longitudinal data and (2) providing a baseline set of algorithm
implementations for the community. Additionally, given the
ease of sharing code, we hope to encourage the practice of
sharing code with publications—an approach that should be
adopted from other areas such as machine or deep learning
research and encouraged by the National Institutes of Health.

In this paper, we present a new Python package, SciKit Digital
Health (SKDH), to address the lack of open-source,
general-purpose algorithms for monitoring digital health. SKDH
contains algorithms for various measures of human activity
recognition and streamlines the data ingestion, preprocessing,
and data analysis steps. While the underlying algorithms

themselves are not necessarily novel work, the novelty and
utility of this work is the collection of common mobility and
activity algorithms under a common framework that is being
released open source. SKDH aims to address the shortcomings
in available, existing codebases by (1) being easily usable with
minimal interaction required from end users; (2) being tightly
integrated so that different processing modules can be easily
chained together, allowing multiple preprocessing and analysis
steps in the same pipeline; and (3) being free and open source.

Methods

SciKit Digital Health
SKDH is a Python 3 package that contains algorithms for gait,
sit to stand, activity level, and sleep. Additionally, it contains
various preprocessing methods such as accelerometer
calibration; wear detection; and binary file data readers for the
GENEActiv, Axivity, and ActiGraph sensors. Individual
algorithms or steps are built around an extensible process class
(“BaseProcess”), which are chained together as needed in a
pipeline structure. The BaseProcess class abstracts various setup
tasks and standardized functions that allow for subclasses to
function properly and in sequence in the SKDH framework.
This allows the end user to easily link steps together, as shown
in Textbox 1.

SKDH also contains various common utility functions (eg,
moving mean, standard deviation with arbitrary window length,
and skip values) and a suite of features for signal processing
and feature generation for machine learning, written in C or
Fortran, to reduce computation time (Table 1).

A more comprehensive example that shows how SKDH base
classes can be extended and easily integrated into an SKDH
pipeline is shown in Figure 1.

Additionally, to simulate a realistic processing scenario, the
data was windowed over 3-second windows (150 samples) with
50% overlap, and the computation was run again.

Textbox 1. Example script that will (1) import data from a GENEActiv bin file, (2) calibrate the accelerometer so that still periods measure 1 g, and
(3) run gait processing to generate gait endpoints.

import skdh

pipeline=skdh.Pipeline()

pipeline.add(skdh.io.ReadBin())

pipeline.add(skdh.preprocessing.CalibrateAccelerometer())

pipeline.add(skdh.gait.Gait())

pipeline.run(file=“example_geneactiv_file.bin”)
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Table 1. Mean (SD) processing times in milliseconds on a representative array of randoma data.

Windowed: 3s, 50% overlapc100,000 3 arraybFeature

FactorSKDH (ms), mean (SD)Original (ms), mean
(SD)

FactorSciKit Digital Health
(ms), mean (SD)

Originald (ms), mean (SD)

7923.89 (0.21)3008 (88.7)8.31.53 (0.03)12.7 (0.31)Signal entropy

28100.97 (0.07)2720 (80.8)450.05 (0.02)22.6 (1.86)Jerk metric

29115 (3.74)3340 (102)5.3197 (3.70)1005 (24.7)Spectral arc length

aNumPy.random.default_rng().standard normal.
bProduces 3 values for the feature.
c1332 resulting windows. Original runs 3 separate data frames (shape (150, 1332)), one for each XYZ axis. SKDH features run on, full shape (1332,
150, 3) array.
dImplemented with NumPy for Pandas input.

Figure 1. A custom class for reading a file from a new device is first created as a subclass of SciKit Digital Health's (SKDH) "BaseProcess" that allows
it to be easily inserted into a SKDH pipeline. Note that SKDH will automatically save results from the default sleep and activity analyses to the specified
files.

Gait
The gait algorithm uses the inverted pendulum model of gait to
extract bilateral gait endpoints from acceleration data collected
from a lumbar-mounted wearable inertial sensor [1-4]. In
general, gait bouts during free-living data are first detected using

a gradient boosted tree classifier [22]. For in-lab data in which
the time periods of gait are known, the gait classification step
can be skipped. Wavelet transforms are then used to detect initial
and final contact events for each foot from the vertical
acceleration signal [4]. With these contact events, all temporal
endpoints (eg, stride time, double support, etc) are computed.
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In order to obtain spatial metrics (eg, stride length, gait speed,
etc), an inverted pendulum model [1] is used, requiring only
the participant’s height in addition to the vertical acceleration
signal.

The implementation is very similar to that of our previously
released GaitPy package [8], updated to fit into the SKDH
architecture, with a few key algorithm additions and updates.
Notably, the classifier for gait bouts during at-home periods has
been updated, using the training data from 4 additional studies
to gain a better breadth of nongait activities. These studies are
“the daily life activities” [23], “the long term movement
monitoring database” [24], “the University of Southern
California human activity dataset” [25], and “a Parkinson’s
disease study” [26].

In the original GaitPy wavelet transform implementation, a
fixed scale was used. However, recent research shows that the
scale can be better optimized by matching it to the step
frequency [5], and this relationship was added as an optional
toggle. Finally, additional asymmetry endpoints were added,
including but not limited to the gait symmetry index [27-29],
step and stride regularity [3,28], and intrastep and intrastride
covariance [28].

Sit to Stand
The sit-to-stand algorithm is identical to what was released in
Sit2StandPy [10], though integrated into the SKDH framework.
It uses acceleration data from a lumbar-mounted device to
identify sit-to-stand transfers in both in-lab and free-living
environments. The sit-to-stand algorithm is a heuristic algorithm,
which functions by identifying possible sit-to-stand locations
using a wavelet transform and acceleration filtering. With
possible locations identified, a series of quality checks and rules
are imposed to determine whether the transfer is valid or not.
Validation for the algorithm was previously presented using
data from patients with Parkinson’s disease and healthy adults
[10].

Sleep
The sleep algorithm in SKDH was originally presented in the
Python package, SleepPy [20-30], and here, it was adapted into
the SKDH framework. This algorithm was originally based on
the one implemented in GGIR [31]. It is intended for use on the
acceleration data from the wrist, even though it will also take
advantage of near-body temperature data, if available, to
significantly improve sleep-specific, on-body detection. The
algorithm first determines 1 sleep opportunity window per day
(noon to noon) using a series of moving mean and median filters.
During this period, bouts of sleep and wake are determined by
computing the activity index [32] of the acceleration data and
then applying a heuristic scoring algorithm [33]. Sleep endpoints
are then calculated, including but not limited to wake after sleep
onset, total sleep time, as well as sleep and wake transition
probabilities [34,35]. If desired, a per-day sleep plot can be
produced as well for visual inspection.

Activity
The activity algorithm seeks to provide similar outputs to
previously published research [15,16,18] such as time spent in
sedentary, light, moderate, or vigorous activity levels.
Wrist-based triaxial acceleration is windowed into 5-second
blocks, and the mean is taken. By default, the value of gravity
is subtracted to obtain the Euclidean norm minus one (ENMO).
These ENMO values are then used to threshold into different
activity levels with different provided base options derived from
the literature [13,15,16,18]. These periods of time in different
activity levels can also be rescored to obtain bouts of consistent
activity level [14,18,36]. Finally, recent work has also proposed
alternative methods of accessing activity level by quantifying
the decline in the time spent in increasing activity magnitude
[17]; this analysis is also included in the activity endpoints.
Similar to the sleep plot, a per-day activity plot can be saved if
desired, showing the acceleration, activity, activity level, and
wear traces, as seen in Figure 2.

Figure 2. A sample sleep plot as produced by SciKit Digital Health, showing a single night from test data.
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Research Applications

Use cases for research applications are widely varied and cover
a broad spectrum of research topics in the relevant fields. First
and foremost, SKDH provides a quick and easy-to-use tool to
generate activity and mobility endpoints with limited adjustment
and setup required on the part of researchers or clinicians. Since
default parameter values for algorithms are set to physiological
defaults, SKDH would provide an “off-the-shelf” experience
when the research goal is endpoint assessment or comparison.

However, the adjustable algorithm parameters also allow for a
more nuanced approach if the research goal is instead exploring
the algorithms themselves. Along with this, as the code is open
source, researchers are also able to use SKDH as a starting point
and add functionality or improvements as they need for their
work.

These utilization strategies for SKDH in research on gait, sit to
stand, activity, and sleep lead to a broad range of applications
for SKDH in research. On top of this, many of the additional
utility or feature generation capabilities present in SKDH are
useful outside the context of these activities as well, for initial

data exploration or even just for ingestion of data from sensor
binary file formats.

Validation

Validation of algorithm implementation is critical to ensure that
the generated results match the expected values and provide
actionable insight. For SKDH, validation is an ongoing effort
with the different modules having different levels of validation,
even though all the individual algorithms were validated in their
original publications. Validation for the sit-to-stand module
included in SKDH was presented previously [10], and the
algorithm implementation remained exactly the same. The gait
and the sleep modules had previous implementations validated
in previous publications (gait in a study by Czech et al [8], and
sleep in a study by Mahadevan et al [20]), even though there
are implementation differences and algorithm additions in
SKDH. Internal validation of the gait module showed a higher
agreement and tighter ranges of intraclass correlation
coefficients compared with the previous versions of the gait
implementation (results not shown). The activity module has
also shown excellent agreement in internal comparisons to
GENEActiv macros and GGIR (results not shown).
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