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Abstract

Background: Composition of tissue types within a wound is a useful indicator of its healing progression. Tissue composition
is clinically used in wound healing tools (eg, Bates-Jensen Wound Assessment Tool) to assess risk and recommend treatment.
However, wound tissue identification and the estimation of their relative composition is highly subjective. Consequently, incorrect
assessments could be reported, leading to downstream impacts including inappropriate dressing selection, failure to identify
wounds at risk of not healing, or failure to make appropriate referrals to specialists.

Objective: This study aimed to measure inter- and intrarater variability in manual tissue segmentation and quantification among
a cohort of wound care clinicians and determine if an objective assessment of tissue types (ie, size and amount) can be achieved
using deep neural networks.

Methods: A data set of 58 anonymized wound images of various types of chronic wounds from Swift Medical’s Wound Database
was used to conduct the inter- and intrarater agreement study. The data set was split into 3 subsets with 50% overlap between
subsets to measure intrarater agreement. In this study, 4 different tissue types (epithelial, granulation, slough, and eschar) within
the wound bed were independently labeled by the 5 wound clinicians at 1-week intervals using a browser-based image annotation
tool. In addition, 2 deep convolutional neural network architectures were developed for wound segmentation and tissue segmentation
and were used in sequence in the workflow. These models were trained using 465,187 and 17,000 image-label pairs, respectively.
This is the largest and most diverse reported data set used for training deep learning models for wound and wound tissue
segmentation. The resulting models offer robust performance in diverse imaging conditions, are unbiased toward skin tones, and
could execute in near real time on mobile devices.

Results: A poor to moderate interrater agreement in identifying tissue types in chronic wound images was reported. A very
poor Krippendorff α value of .014 for interrater variability when identifying epithelization was observed, whereas granulation
was most consistently identified by the clinicians. The intrarater intraclass correlation (3,1), however, indicates that raters were
relatively consistent when labeling the same image multiple times over a period. Our deep learning models achieved a mean
intersection over union of 0.8644 and 0.7192 for wound and tissue segmentation, respectively. A cohort of wound clinicians, by
consensus, rated 91% (53/58) of the tissue segmentation results to be between fair and good in terms of tissue identification and
segmentation quality.

Conclusions: The interrater agreement study validates that clinicians exhibit considerable variability when identifying and
visually estimating wound tissue proportion. The proposed deep learning technique provides objective tissue identification and
measurements to assist clinicians in documenting the wound more accurately and could have a significant impact on wound care
when deployed at scale.
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Introduction

Overview
Wounds result from the breakdown in the protective function
of the skin and the loss of continuity of the epithelium. Wounds
can be generally categorized into acute and chronic wounds.
Normal wound healing involves four overlapping stages:
hemostasis, inflammation, proliferation, and remodeling. Wound
closure can be observed between several weeks to several
months depending on wound size and other patient factors.
Although debatable, generally wounds taking >3 months to heal
are considered chronic wounds [1]. Wound progress through
the 4 phases of healing is generally assessed using subjective
observation of changes in size and tissue types by clinicians.
Improvement to these subjective measures offers potential for
better assessment of healing, improved treatment selection, and
potential to predict patients at risk of developing a chronic or
nonhealing wound.

Estimates indicate that 40 million patients worldwide may be
affected by chronic wounds. A recent study that examined the
prevalence of wounds in Canada between 2011 and 2012 found
that almost 4% of inpatient acute hospitalization clients, >7%
of home-care clients, almost 10% of long-term care clients, and
almost 30% of hospital-based continuing care clients developed
compromised wounds. Chronic wound care also imposes a hefty
economic burden on the national health care system. The adverse
economic impact of wound care has been well studied [2,3].
For example, it is estimated that the total direct-care cost of
diabetic foot ulcers to the Canadian health care system was
determined to be CAD $547 million (US $546.6 million), with
an average cost per case of CAD $21,371 (US $21,364). A
major concern is to ensure that health care professionals provide
timely and effective wound care to affected individuals.
Although better treatment protocols, drugs, and tissue
regeneration methods are being constantly developed, it is
imperative that research into timely treatment and wound healing
monitoring is pursued in parallel. The protocols for treatments
and medication may also be dependent on accurate assessment
of wound healing and wound tissue identification.

Wound assessments and measurements have long been fraught
with subjectivity and considerable variability between clinicians
[4]. Although there has been progress made in automated wound
area measurements using computer vision and machine learning,
the reporting of wound tissue composition and their reactive
proportions is still largely subjective. When tissue compositions
can be measured objectively, the results could improve the
accuracy of wound healing progress monitoring, enable
data-driven pressure injury staging, and better predict wound
healing times. Therefore, the objectives of our work were, first,
to measure the inter- and intrarater variability in manual tissue
identification and quantification among a cohort of wound care
clinicians. We sought to establish the extent of variability and
subjectivity in manual wound tissue measurements and how

this related to specific tissue types of interests. Second, we
investigated if an objective assessment of tissue types (ie, size
and amount) could be achieved using a machine learning model
that predicts wound tissue types. The proposed model’s
performance is reported in terms of numerical metrics, that is,
mean intersection over union (mIOU) between model prediction
and the ground truth labels. Finally, we evaluated the
performance of the proposed model for wound tissue
segmentation as collectively judged by a cohort of wound care
clinicians observing the model predictions.

In this study, we proposed a fully automated wound and tissue
segmentation technique based on deep convolutional neural
networks. In wound segmentation, the goal is to delineate the
region in the image that corresponds to the wound bed, and in
tissue segmentation; the goal is to further breakdown regions
within the identified wound bed into its constituent tissue types.
The proposed deep learning models have been integrated into
a mobile app and allow clinicians to obtain objective
measurements, thereby eliminating the guesswork associated
with wound tissue identification. This objective measurement
addressed 2 challenges. First, differentiating tissue types within
chronic wounds, when done manually, often varies between
clinicians for a variety of reasons (eg, training and experience).
Second, accurately determining the proportion or quantification
(ie, measurement) of tissue types is challenging for a human.
The models developed could automatically detect the location
of a wound in an image, delineate the accurate boundaries of
the wound, determine if any of the 4 types of tissue are present
within the wound bed, and finally compute their relative
proportions for reporting.

Background and Related Work
For the context of this study, we aim to identify and quantify
four major tissue types present in chronic wounds using deep
learning: epithelial tissue, granulation tissue, slough, and eschar
which are typically reported in wound assessment tools such as
the Bates-Jensen Wound Assessment Tool (BWAT) [5] and to
stage pressure ulcers using the National Pressure Injury
Advisory Panel pressure injury staging system (Pressure Ulcer
Scale for Healing [PUSH]) [6]. These tissues are present in an
open wound in various color spectra when observed through a
conventional imaging sensor. Epithelial tissue is observed as
being pinkish or white regions that migrate from the wound
margin with minimal exudate. It eventually covers the wound
bed and is the final visual sign of healing. Granulation tissue is
found mainly in the red spectrum. Its presence in a chronic
wound indicates that regeneration is progressing well and that
the wound is being properly treated. Slough is observed as a
soft, yellow glutinous covering on the wound and is a type of
necrotic tissue. Made up of dead cells and fibrin, a wound may
be completely or partially filled with slough. It may also be
fibrous or strand-like, adhering to the wound bed. Finally,
because of tissue death, the surface of the wound is covered
with a layer of dead or devitalized tissue (eschar) that is
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frequently black or brown. Initially soft, the dead tissue can
lose moisture rapidly and become dehydrated with the surface
becoming hard and dry. Colliquative necrosis are a subtype of
this category and are yellow in color, similar to fibrin deposits.
They are produced when the necrotic tissue softens and are,
therefore, of a mushy consistency. The appearance of necrosis
indicates degenerative breakdown of wound tissue.

The tissue composition and their relative quantity within the
wound bed are important parameters for estimating wound
healing progress. For example, the PUSH score [6] was proposed
for pressure injuries and consists of three parameters:
length×width, exudate amount (none, light, moderate, and
heavy), and tissue type (necrotic tissue, slough, granulation
tissue, epithelial tissue, and closed). Each parameter was scored,
and the sum of the 3 scores yielded a total wound status score,
which helped classify wound severity and identify nonhealing
wounds. The relative quantities of relevant wound bed tissues
are subjectively determined during assessments. As human
beings, we are poor in accurately judging relative proportions,
and inaccurate assessments can lead to incorrect downstream
tasks like wound staging and treatment.

Wound Area Measurement
There are numerous approaches [7] for wound area
measurement, which vary in their accuracy and repeatability
across multiple raters [8]. The most common approach would
be to use a ruler and measure the width and length of a wound.

This measurement does not allow accurate area measurement
as wounds are not typically rectilinear in shape. The next step
up could be to lay a grid pattern over the wound and mark the
number of square grid boxes which overlap with the wound and
thereby estimate the area.

Computer-aided approaches for wound segmentation (defining
wound area) have been proposed in the past for small, controlled
data sets, and their robustness on large-scale data sets has never
been proven to be effective. Techniques include active contours
[9], graph cuts [10], and color histograms [11] as well as
machine learning approaches such as support vector machines
[12,13] and artificial neural networks [14].

With the recent advances in artificial intelligence, it has now
become possible to train a deep learning model to perform
automatic segmentation of chronic wounds [15-17] in an
end-to-end manner. These methods forego the need for image
feature engineering and can automatically learn a hierarchy of
image features required for a specific task. Despite the
increasing number of papers being published for deep
learning–based wound segmentation, most approaches have
only been trained and tested on limited data sets often conducted
in controlled settings as shown in Table 1. In addition, most of
these approaches have not been demonstrated to run on mobile
devices having limited computing resources—a critical factor
in enabling objective electronic wound documentation at the
bedside.

Table 1. Comparison of wound image data sets used for wound segmentation model training.

Acquisition settingsTotal images in training setTypeDatabase usedStudy

Unspecified<500PublicMedetecLu et al [16]

Unspecified77PublicMedetecYadav et al [18]

Controlled, DSLRb, and flash
used

600ProprietaryLancashire DFUa databaseGoyal et al [17]

Unspecified950ProprietaryHospital+internet searchLi et al [19]

Unspecified153MixedMedetec+proprietary dataChakraborty [20]

Unspecified500ProprietaryNYUc wound image databaseWang et al [21]

Unspecified<300PublicSWISSWOU, Medtec, FUSC SIHdScebba et al [22]

Uncontrolled and mobile
phone camera

Approximately 465,000ProprietarySwift Wound Data SetThis study

aDFU: diabetic foot ulcer.
bDSLR: digital single-lens reflex camera.
cNYU: New York University.
dSIH: secondary intention healing.

Wound Tissue Segmentation
Wound tissue segmentation, which is a more challenging
problem, has received far less attention than wound
segmentation. Tissue segmentation entails a pixel-wise
classification of various tissues that are found within the wound
bed region. Past approaches have attempted to solve this using
image patch–based color clustering or segmentation [18,20,23].
When classifiers are used, a training data set of image patches
is built from a small set of wound images. The data set of image

patches are then used to train a classifier to assign each patch
to a specific tissue type. During inference, a wound image is
first segmented from its background, and the wound region is
split into smaller image patches. Each image patch is then
classified by the trained model. This process is slow and
typically not robust enough to handle variations in imaging
conditions (eg, lighting and image angle) as is often the case in
practice. Recently, deep learning techniques such as fully
convolutional neural networks have been applied to wound
tissue segmentation [19]. The approach is not fully automated;
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wound segmentation is performed using a dynamic color
thresholding in the YbCbCr color space to segment the wound
area, and then a fully convolutional neural network [24] is used
to classify wound tissue within the segmented wound region.
A limited set of images were used to train the network, and
mobile implementation was not reported.

Methods

Overview
The inter- and intrarater agreement for wound tissue
identification by wound care clinicians was first measured to
establish the degree of variability present in visual estimation
of tissue proportions and labeling tissue regions in wound
images. The Swift Wound Data Set, which to the best of our
knowledge is the largest labeled chronic wound data set for both
wound segmentation and tissue segmentation ever reported in
the literature for training deep neural networks for wound image
segmentation and tissue segmentation, is described.
Subsequently, a fully automated wound and tissue segmentation
approach is presented, which is based on a deep encoder-decoder
convolutional neural network and trained using data from our
internal Swift Wound Data Set. Finally, the authors discuss the
results obtained for both the interrater agreement study and the
proposed deep learning technique for wound tissue segmentation
in depth. A diagram depicting steps in this study is presented
in Figure S1A-1 in Multimedia Appendix 1.

Rater Agreement in Wound Tissue Identification and
Quantification
To establish the variability of wound assessment when it comes
to tissue region labeling, we examined the inter- and intrarater
variability between wound care clinicians when estimating not

only the presence of a given tissue type in the wound bed but
also their relative proportions and their confidence in the
estimations. In this paper, we interchangeably use the term
raters to refer to the wound clinicians and nurses who were
involved in our study.

For this study, a random sample of 58 anonymized wound
images (taken under uncontrolled lighting and viewing angles)
from the Swift Wound Data Set consisting of pressure injuries,
arterial ulcers, and venous ulcers was used. The data set was
stratified according to skin tone using the Fitzpatrick scale and
split into 3 subsets, with 50% overlap between subsets to
measure intrarater agreement. In particular, 4 different tissue
regions (epithelial, granulation, slough, and eschar) were
manually labeled within the wound bed in each image. In
addition, 5 experienced clinicians (a family physician, a
dermatologist, a vascular surgeon, a burn surgeon, and a
registered nurse) were tasked to label these images in random
order using a browser-based image annotation tool shown in
Figure 1. Apart from labeling (or annotating) the tissue regions,
labelers were instructed to visually estimate the proportions of
the 4 tissue types present within the wound bed and indicate
their confidence levels when identifying these tissues.

To measure the inter- and intrarater variability, we used the
Shrout and Fleiss CC [25]. As the same set of k raters labeled
the same set of n samples in the data set, we used a 2-way,
mixed effects model, specifically the intraclass correlation (ICC)
as described in that paper to compute the ICC as a measure of
reliability. Another measure of reliability is the Krippendorff
α, which measures disagreement between a number of raters.
For the sake of brevity, we refer readers to the study by
Krippendorff [26] for a complete description of this statistical
measure.
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Figure 1. The web-based image annotation tool used for the interrater agreement study.

Swift Medical Wound Data Set
Previous studies on wound segmentation were either trained or
validated on small wound image data sets [18-23], often
acquired under very controlled conditions and focused on a
limited number of wound types; for example, diabetic foot ulcers
were analyzed with high-resolution digital single-lens reflex

cameras with large imaging sensors (23×15.6 mm2) and
macrolenses; [17] however, questions remain as to the
robustness of these approaches in real-world scenarios as results
were demonstrated using very limited data.

In this study, we used our internal deidentified data set to train
and validate the deep learning models for wound segmentation
and tissue segmentation. Wound images in our data set were
acquired using heterogeneous cellphone cameras under
uncontrolled settings using the Swift Skin and Wound app from
hundreds of skilled nursing facilities and long-term care centers
across North America. Our data set is significantly larger (by
2 to 3 orders of magnitude) than data sets reported in previous
studies [15,17,21,22] (Table 1). In addition, it is to be noted
that there are no publicly available data sets for fully labeled
wound tissues (ie, for epithelial, granulation, eschar, and slough),
unlike the data sets listed in Table 1 which are data sets with
purely binary labels (wound or background), which are much
simpler to manually label.

There is significant variability in terms of viewing angles,
lighting conditions, background, and magnification factors for
wound images in the Swift data set as shown in Figure 2. This
data set also covers a wider range of skin lesions and chronic
wounds than any of the previously published studies.
Specifically, it consists of 14 different types of wounds or skin
lesions at various stages of healing. These include bruise or
abrasion, blister, burn, cancer lesion, diabetic foot ulcer,
laceration, moisture associated skin damage, mole, open lesion,
pressure injury, venous ulcer, rash, skin tear, and surgical
wound.

There are numerous variations in skin tones because of ethnicity,
which makes it challenging to isolate healthy skin and wound
bed regions using traditional computer vision techniques. In
most images in the data set, healthy skin area was found to be
covered with age spots—a pigmentation effect associated with
older individuals. Figure 2 shows examples of skin tone
variations present in the data set. There is also a wide variation
of the visible characteristics of the wounds in our data set; for
example in terms of wound type, location, and severity.

This data set reflects the actual diversity in wound images
typically observed in practice. As deep learning techniques
generally scale well and perform better when trained with larger
data sets, the automatic wound and tissue segmentation approach
presented in this paper are expected to be more robust and
accurate than previously reported approaches for large-scale
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deployment. It is to be noted that owing to patient privacy
concerns, we are unable to publicly share the data sets used to

train our models.

Figure 2. Sample images from the data set. The blue-white sticker seen in the images is the Food and Drug Administration–registered HealX calibrant
used with the Swift Skin and Wound app for color-correction and scale calibration. Note variations in terms of viewing angles and distances, background,
wound types, severity, skin tone, and wound sizes.

Fully Automated Wound Tissue Segmentation
A high-level depiction of this fully automated wound and tissue
segmentation method is shown in Figure 3. A high-resolution
image is first acquired using the smartphone camera. The first
stage involves detecting the presence of a wound and
determining the bounding box of the wound. Although other

reported approaches [21] used a separate object detection model
such as YoloV3 [27] to locate the wound, we used an
encoder-decoder wound segmentation network, dubbed
AutoTrace, whose predictions can not only be used to compute
the bounding box of the wound, but also determine the accurate
segmentation (trace) of the wound bed. This model is small and
fast enough to enable real-time inference on mobile devices.
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Figure 3. A high-level overview of AutoTissue, the proposed fully-automated wound and tissue segmentation approach.

When implementing deep learning architectures, particularly
on mobile devices, the input image dimension is a critical factor
to ensure that memory and computation requirements are
manageable. Therefore, deep learning approaches typically use
a low-resolution version of the images for training and inference.
A drawback of using low-resolution image inputs is that
information loss is attributed to downscaling. The higher the
downscaling factor, the higher the possibility of information
loss owing to interpolation (see Figure 4 for an illustration). To
ensure that we minimize the potential information loss from
image scaling or subsampling, we take steps to apply our deep
learning models on regions of interest in an image, particularly
at locations where an actual wound is located within the image.
Therefore, we first use the AutoTrace model to detect the
presence of an open wound in the image, then select a bounding
box encompassing the detected wound region, and finally rescale
that region to the dimension required as inputs to our tissue
segmentation model, that is, AutoTissue.

Because a wound typically only constitutes between 25% and
65% of the imaged area in our data set, applying our tissue
segmentation model directly on the detected wound region
ensures a high wound-to-background pixel ratio for the model
inputs, which leads to more accurate predictions and less errors
from the series of downsampling and upsampling operations
which are applied when using the deep learning models.

The tissue segmentation network, AutoTissue, produces a dense
prediction of 4 wound tissue types (epithelial, granulation,
slough, and eschar) when present within the detected wound
bed. Wound border refinement is made using the wound contour
computed from AutoTrace’s wound prediction. Here, we clip
the predicted tissue predictions with the accurate wound contour
to ensure only tissues that are present within the wound bed are
used to compute the tissue proportions.

In the following subsections, we present a high-level overview
of both the AutoTrace and AutoTissue models.

Figure 4. Diagram depicting the relationship between scaling factor and potential information loss owing to downscaling and the proposed approach.
Note that scaling factor x is much larger than y as shown in the diagram.

AutoTrace: Wound Segmentation Model
Our wound segmentation model, as depicted in Figure 5, is a
deep convolutional encoder-decoder neural network with
attention gates in the skip connections. The encoder block is
responsible for feature extraction, and the decoder block decodes

the learned features to produce the required output (ie, the
segmentation mask). The AutoTrace architecture was derived
from the study by Schlemper et al [28] who first proposed
attention gates in convolutional neural networks. Additional
customizations were implemented in our models to allow them
to run on mobile devices. We replaced the normal convolutional
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blocks with depth-wise separable convolutional layers [29]. The
main advantage of replacing normal convolutions with
depth-wise separable convolutions is the significant reduction
in computation required with only a small penalty to the final
accuracy. Second, we implemented strided depth-wise
convolutions that can learn to downsample activations instead
of a fixed max-pooling operation for downsampling. Third, an
additive attention gate was placed in each of the skip
connections in the architecture. The inclusion of additive
self-attention modules in the skip connections regulates the flow
of activations from earlier layers. The attention coefficients
identify salient image regions and prune feature responses to
preserve only the activations relevant to the specific task. This
ultimately provides improved performance for the wound
segmentation task. Finally, to further reduce computational and
memory requirements, the decoder blocks consisted of a bilinear
upsampling followed by 2 depth-wise separable convolution
layers per block instead of transposed convolution layers.

We trained this model on 467,000 image-label pairs with wound
region labels provided by clinicians. Our held-out test set

consists of 2000 image-label pairs of arterial, venous, pressure,
and diabetic ulcers taken in diverse imaging conditions and
wound locations. During training, data augmentation performed
included random crops, horizontal or vertical flips and random
contrast and brightness adjustments. Unlike the U-Net with
Attention model [28] which was trained using deep supervision,
we trained our model using a single loss function by minimizing
the soft dice loss which is the form of the following:

where is the predicted probability of the pixel and

is the ground truth of the pixel. The early stopping
criterion was used to stop the training after convergence. L2
regularization and dropout regularization [30] were used to
control overfitting.

Figure 5. A graphical representation of the AutoTrace model for wound segmentation. ReLu: Rectified Linear Unit.

AutoTissue: Tissue Segmentation Model
The wound tissue segmentation model presented in this paper
is significant as most of the previously published studies using

deep learning in the domain focused on wound segmentation
[15-18,20] and not tissue segmentation. The AutoTissue model
(shown in Figure 6) is an encoder-decoder convolutional neural
network that uses an EfficientNetB0 architecture [31] as the
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encoder. The decoder is made up of 4 blocks; each of which
consists of a single 2-dimensional bilinear upsampling layer
followed by 2 depth-wise convolution layers.

The AutoTissue model was trained using a subset of 17,000
anonymized wound images from the Swift Wound Data Set
where healthy tissue, background, the HealX calibrant sticker,
and the 4 wound bed tissue regions, if present, were labeled in
the images. The data set was meticulously labeled by a team of
trained labelers and was curated by a panel of wound clinicians.
The authors could not identify any published work that used

labeled data at this scale for deep learning–based wound tissue
segmentation in the literature. Data augmentation, a technique
used to increase the amount of training data and prevent
overfitting when training deep learning models, was performed
on the fly, during model training by applying random crop and
rotation, random color jittering and cutout regularization [32].
Both networks were trained using AdamW (Adam With
Decoupled Weight Decay) [33] adaptive learning rate using an
initial learning rate of 0.001. The held-out test set consisted of
383 images consisting of stage-2 pressure, arterial, and venous
ulcers and diabetic wounds.

Figure 6. Graphical representation of the AutoTissue architecture for wound tissue segmentation.

Results

Interrater Agreement Study Results
First, the authors presented the results obtained from the
interrater agreement study. As mentioned earlier, the data set
was split into 3 subsets, and each subset was presented to the
raters (clinicians) for labeling at 1-week intervals. In all, 50%
(29/58) of the images were labeled thrice, each presented 1 week
apart to measure intrarater agreement. From each manually
labeled image, the tissue proportions within the wound bed were
assessed by counting the pixels that belonged to a certain class
and computing its proportion against the total wound area. In

addition, visual estimation of the tissue proportions was also
recorded.

Figure 7 illustrates an example set of labels made by the wound
clinicians in our study. Note the considerable variability between
the labels and this observation in this example. A similar
observation extends to the entire set of 58 images used to study
the interrater variability and is captured by the interrater
agreement ICC score presented in Table 2 Additional examples
of inter- and intrarater variability in labeling tissue are provided
in Multimedia Appendix 1.

The intrarater agreement for computed tissue proportions is
presented in Table 3. As mentioned earlier in this section, a
subset of wound images were repeatedly presented to the
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clinicians to label at 1-week intervals. Thus, each image has a set of 3 labels provided by the same clinician.

Figure 7. The variability between raters in labeling different tissue regions is visualized in this figure. The colors of the labels correspond to different
tissue types: red corresponding to granulation, pink to epithelial, yellow to slough, and green to eschar.

Table 2. Interrater agreement intraclass correlation for tissue proportions that were computed from wound images labeled by wound clinicians in our
study.

Intraclass correlationTissue type

0.389Epithelial

0.765Granulation

0.591Slough

0.759Eschar

Table 3. Intrarater intraclass correlation for tissue proportions that were computed from wound images labeled by wound clinicians in our study.

EscharSloughGranulationEpithelialRater

0.8030.8430.7890.785Rater 1

0.8400.8360.6850.410Rater 2

0.4930.6410.7290.535Rater 3

0.8090.7450.8060.475Rater 4

0.9630.9860.9580.757Rater 5

As can be seen in Table 3, the high ICC score for individual
raters (rows in the table) signifies that raters were relatively
consistent when labeling (thereby reflected by computed tissue
proportions) the same image multiple times over a period. The

only exception was the relatively poorer intrarater agreement
for epithelial tissue labeling compared with other tissue types.

Although there was moderate to high agreement in the intrarater
agreement, only moderate interrater agreement was observed
between raters when labeling tissue types in wound images. In
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particular, interrater agreement was poor for epithelial and
slough tissues and moderate for other tissues based on ICC,
values shown in Table 2. Note that the computation of tissue
proportions as identified by experts as performed in this study
differs from how tissue proportions are visually estimated in
practice, which can be extremely subjective. The images were
labeled using a browser-based image annotation tool that allows
precise annotation of different tissue types; however, in practice,
wound clinicians do not have the time or tools to perform the
same. We can, therefore, anticipate even higher inter- and
intrarater variability in subjective visual estimations of tissue
proportions compared with that reported in this study.

Figure 8 shows a box plot depicting the differences between
the computed proportions based on labeled regions and the
visual estimates of 4 different tissues present in the set of 58
labeled wound images as labeled in the inter- and intrarater
agreement study. The subjectivity in visual estimation naturally
leads to variability between the rater’s visual estimates and the
proportions computed from tissue labels provided by the raters
through the image annotation tool. Raters largely overestimated

epithelization and eschar (shown by mean and median of the
box plot being negative values) and underestimated granulation
and slough during visual estimation. There is substantial
variability (in terms of SDs) in the distribution of errors between
estimation and computed proportions for all tissue types in the
range of 38% to 39%.

Apart from measuring inter- and intrarater agreement for tissue
proportions calculated from labeled tissue regions, we
additionally computed the interrater agreement in the clinician’s
ability to identify the presence of any 1 of the 4 tissue types in
the wound images presented to them. As this involves binary
decisions (ie, True when a given tissue is labeled as present and
False when it is not—disregarding the proportions computed),
we used the Krippendorff α to measure the interrater agreement.
Our results, as presented in Table 4, indicate very poor interrater
agreement in determining the presence and regions of epithelial
tissue with a Krippendorff α value of only .014, whereas fair
to moderate agreement was scored for the other tissue types.
Granulation was the most agreed upon tissue type, which was
in line with observations in clinical practice.

Figure 8. Box plot showing difference (in percentages) between computed tissue proportions and visual estimates for different tissue types in the rater
agreement study. Negative differences indicate overestimation of rater’s visual estimation. Scatter plot shows actual distribution of data points for
computed differences in tissue proportions. Red triangle point indicates the mean.
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Table 4. Interrater agreement in identifying wound tissue types.

EscharSloughGranulationEpithelialMeasure of reliability

.379.415.664.014Krippendorff α

One final parameter that we captured during this study was each
clinician’s confidence in labeling the 4 tissue types in question.
Results indicate that the clinicians involved in the study were
generally very confident in labeling granulation and slough
tissues, moderately confident when labeling eschar, and least
confident when labeling epithelial tissue as shown in Figure 9.

This result correlated well with the Krippendorff α value we
observed in Table 4. The significance of this observation will
be seen later when we discuss our model performance for
different tissue types. Data and code pertaining to these
experiments is available for public download on the web [34].

Figure 9. Clinician’s confidence in tissue identification.

Automated Wound and Tissue Segmentation Results
The performances of both the wound segmentation and wound
tissue segmentation models were evaluated separately on 2
different held-out test sets. We evaluated the performances of
our models by computing an objective numerical metric, which
is the mIOU between the ground truth labels and the predictions
made by our models. The intersection over union metric
measures the number of pixels common between the target and
prediction label masks divided by the total number of pixels
present across both label masks (see Figure 10 for a graphical
depiction). When there are several classes of labels involved

(eg, in the case of wound segmentation, there are two classes
to be predicted, ie, wound and background classes), then the
mean value of individual per class intersection over union is
computed to arrive at a single metric, which is the mIOU.

The wound segmentation model, AutoTrace, achieves a mIOU
of 0.8644 for wound region segmentation, whereas the
AutoTissue model achieves a mIOU of 0.7192 for tissue
segmentation on the held-out test sets. Several sample
predictions made using our technique are presented in Figure
11. See Figure S1C in Multimedia Appendix 1 for additional
results

Figure 10. A graphical representation of mean intersection over union (IOU) which varies from 0.0 (no overlap) to 1.0 (perfect overlap).
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Figure 11. Sample wound and tissue segmentation results. (left to right: input image, model prediction, and ground truth). The blue contour is the
wound region as determined by the AutoTrace model.

The normalized confusion matrix for the model predictions is
shown in Figure 12. The confusion matrix indicates that the
AutoTissue model is able to accurately distinguish between the
wound region and healthy skin or background. Similarly, the
model is performant when segmenting the HealX calibrant
sticker as its appearance is relatively consistent on all images.
Granulation, slough, and eschar tissue prediction performance

is also favorable. We can observe that slough is largely
misclassified as granulation and vice versa. This primarily
reflects the challenges faced by wound clinicians when labeling
regions in the wound bed that show the mixed presence of
slough and granulation tissue where labelers tend to be less
confident or inconsistent across different images as shown in
Figure 13.
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Figure 12. Normalized confusion matrix for the AutoTissue model on the held-out test set. Background (BG) includes all nonwound bed pixels including
healthy tissue and background, HLX represents the calibrant sticker used for computing accurate wound measurement. EPI: epithelial; ESC: eschar;
GRA: granulation; SLO: slough.

Figure 13. A wound region where pinkish tissue outside the wound bed is labeled as background in our training data set, as we are only interested in
tissues within the wound bed. Note that these pinkish regions share similar appearance as tissues belonging to the epithelial class. BG: background.

Table 5 presents the classifier report for the AutoTissue model.
As noted, the epithelial classification exhibits low precision and
low recall and a corresponding F1-score of only 0.253. In
contrast, the F1-score for slough and eschar detection is
relatively high, registering values of 0.731 and 0.802,
respectively.

On the test set, the model correctly predicts 42% of pixels
belonging to epithelial tissue; however, at the same time
confuses epithelial tissue with healthy skin, which is part of the
background or nonwound class. We attribute the model’s poor
performance for this class of wound tissue to the fact that the
epithelial class is underrepresented in the training data set and
it is challenging to label correctly within the wound bed region.
Because tissue proportions are computed for regions within an
open wound, epithelial tissue found in the periwound region is
not considered when computing the proportions. In addition,
we observed in our study that there is very poor agreement
between raters in labeling epithelialization within the wound
bed.

We can note that slough is sometimes misclassified as
granulation and vice versa. This primarily reflects the challenges
faced by wound clinicians when labeling regions in the wound
bed that show the mixed presence of slough and granulation
tissue where there could be considerable disagreement between
raters.

Apart from testing model performance on the held-out test data
as is typically reported in machine learning literature, we
additionally used the 58 images which were part of the interrater
agreement study to measure the agreement between predictions
of the AutoTissue model and wound clinicians’ labels in terms
of the mIOU metric. From Table 6, we note that there is a
relatively high degree of agreement for the intersection over
union metric for all tissue types between our model’s output
and the clinicians’ ground truth segmentation. In other words,
there is high consistency between our model’s segmentation
results compared with experts’ labels.

Finally, we measured a consensus-based evaluation of the
correctness of the predictions made by our deep learning models.
The set of 58 images and corresponding AutoTissue wound
tissue predictions were shown to the group of wound clinicians.
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We then requested the wound clinicians to collectively examine
the model’s predictions, discuss, and provide a quality rating
based on a consensus-based agreement. This approach
demonstrated that 91% (53/58) of the images were jointly rated

as being very good to fair, and only 9% (5/58) of the predictions
were rated as being poor. This provides an additional validation
of the plausibility of our model predictions on the 4 tissue types
present within the wound bed.

Table 5. Classification report for the AutoTissue model.

AverageEscharSloughGranulationEpithelialMetric

0.5860.7590.7830.6230.180Precision

0.6630.8500.6850.6930.424Recall

0.6100.8020.7310.6560.253F 1

0.6630.8500.6850.6930.424Sensitivity

0.7650.8250.8620.7720.603Specificity

Table 6. Interrater agreement intraclass correlation for per-tissue intersection over union between AutoTissue and expert labelers.

Intraclass correlationTissue type

0.764Epithelial

0.861Granulation

0.736Slough

0.855Eschar

Discussion

Principal Findings
Although we have established that there is a considerable
variability in tissue labeling even between trained wound
clinicians, it might appear contradictory that a deep learning
model that has been trained using noisy labels can perform as
well as humans. Arpit et al [35] suggested that sufficiently large
deep neural networks did not memorize the data when trained
on data sets that had mostly correct labels. Multiple studies
[36-38] have also shown that a machine learning model trained
using a large-scale data set of nonexpert labels can still match
the performance of experts in medical image segmentation.
During training, these models learn the dominant patterns
observed in the data set that are shared across the data set.
Therefore, to put this into the context of our own model, as the
labels in our data set are pixel-wise labels (ie, there exists a
label for each pixel in the image), there is an overwhelming
majority of pixels that do have correct labels associated to them
and a small percentage of pixels that have wrong labels
associated to them owing to interrater variability. However, the
noise that may be present in our labels is generally distributed
across images and raters. Despite this, our models have the
capacity to learn the dominant features for each of the tissue
types and therefore are able to generalize well to unseen
instances owing to the distributed and hierarchical
representation, which is inherent in the design of deep neural
network architectures and aided by the regularization schemes
(eg, cutout and L2 regularizations) that we implement when
training the models. Training on a very large data set, as was
the case in our study, helped mitigate the effects of noisy or
inaccurate pixel-wise labels. In future studies, we would want
to pursue several methods [39] for dealing with noisy labels in
training data to further improve our segmentation results. The

labeling confidence we observed for different tissue types has
direct implications to the performance of the models. We note
that the model performs well for tissue classes that are easier
to label and for which there are less ambiguities among labelers,
and vice versa.

Still a major issue within the dermatology and medical
community in general is that physicians are not trained to assess
dark skin well, including wounds because most medical
textbooks have illustrations that feature predominantly
light-colored skin, and physicians still face a huge challenge in
detecting certain tissues in dark skinned individuals. An
unfortunate outcome of this implicit bias is that an accurate and
prompt diagnosis may not always be possible with individuals
of the Black, Indigenous, and people of color communities. For
example, necrosis at the wound edge, which is an important
finding, is still challenging to identify on dark skin. Our wound
and tissue segmentation models on the other hand have been
trained on a diverse set of wound types and skin tones, and this
is a major step in ensuring the models do not inadvertently learn
a bias toward a particular skin tone, which naturally leads to
enhancing the ability to care for all patients.

Timely, accurate wound assessment and reporting is important
for modern wound care practice. Rather than paper-based
measurements and wound assessments, electronic wound
assessments could have a large impact on the wound healing
progress as such systems provide a more objective wound
measurement, allow tracking of wound healing progress, and
minimize errors or incomplete assessments. We believe that
with the current technological advances, smartphone-based
wound assessments will continue to have an increasing footprint
in modern wound care practice. Therefore, we prioritized
designing our deep learning models to be able to execute on a
wide range of off-the-shelf smartphones, without the need for
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off-line processing. Both the AutoTrace and AutoTissue models
have been integrated into the Swift Skin and Wound app and
are very performant for real-time inference on mobile devices
(Multimedia Appendix 2). Both models have a combined size
of <16 million parameters and a peak memory consumption of
approximately 85 MB per model during inference. The inference
time averaged 300 ms on mobile central processing units when
tested on low-end devices and is considerably faster on newer
devices that support graphics processing unit acceleration.

Limitations
The relatively poor performance of the model for epithelial
tissue can be attributed to several factors, including the challenge
in labeling epithelialization within the wound bed and the
distinction between epithelialization and epithelial tissue, that
is, intact skin resulting from healing process in the periwound
region, which also appears pinkish but is not considered during
labeling. While acknowledging this limitation, we believe that
there would be no significant impact on pressure ulcer staging
(PUSH) or wound assessment (BWAT) because epithelialization
is not critical for these measures.

The Swift Skin and Wound app used for measuring and
documenting wounds and the HealX fiducial markers are each
Food and Drug Administration–registered Class I medical
devices which are being used in over 4000 organizations across
North America. We agree that verification, validation, and
continued monitoring of artificial intelligence performance,
including understanding the way outputs are used are critical
and are the core to deployment of such models. This study
documents some, but not all, of the extensive validation
undertaken as part of our design, development, risk management,
and regulatory processes. The deep learning models reported
in this manuscript have been integrated into the Skin and Wound
device app but are yet to be deployed on a wide scale in these
organizations. The predictions from this model serve to assist

clinicians to document wounds in an objective manner given
that our inter- and intrarater studies have shown that there is a
high degree of variability when humans manually detect and
estimate wound tissue proportions. In the mobile app, the
models’ outputs serve an informative role and do not constitute
diagnosis or therapy. All Swift Skin and Wound users are
provided both live training and training materials, wherein these
issues are addressed. We continue to monitor the performance
of all models after deployment and regularly assess all our
products to determine whether changes should result in
reclassification or premarket notification or authorization. The
models discussed in this work were assessed through our
regulatory process to not cause such a change in classification.

Conclusions
Significant interrater variability in visual estimation of tissue
proportions by a cohort of wound care clinicians reflects the
subjective challenge of tissue typing. Epithelialization is the
most varied measurement and can be linked to the challenges
observed in clinical practice in identifying that tissue type. To
reduce ambiguity and provide objectivity in tissue identification,
we present a framework for deep learning–based wound
segmentation and tissue segmentation that is capable of running
in near real time on off-the-shelf smartphones. To the best of
our knowledge, our models have been trained using a chronic
wound image data set that is not only magnitudes larger than
any previously reported data sets but also the most diverse in
terms of wound types and skin tones allowing for unbiased,
robust models to be trained. These models are able to provide
plausible predictions of tissue types and allow accurate and
objective tissue proportions to be computed. This will help to
improve objectivity in downstream tasks such as pressure ulcer
staging, healing risk prediction, identification on nonhealing
wounds, adjustment of treatment options and may ultimately
lead to improved healing rates for chronic wounds.
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