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Abstract

Background: Heart rate variability (HRV) is a noninvasive method that reflects the regulation of the autonomic nervous system.
Altered HRV is associated with adverse mental or physical health complications. The autonomic nervous system also has a central
role in physiological adaption during pregnancy, causing normal changes in HRV.

Objective: The aim of this study was to assess trends in heart rate (HR) and HRV parameters as a noninvasive method for
remote maternal health monitoring during pregnancy and 3-month postpartum period.

Methods: A total of 58 pregnant women were monitored using an Internet of Things–based remote monitoring system during
pregnancy and 3-month postpartum period. Pregnant women were asked to continuously wear Gear Sport smartwatch to monitor
their HR and HRV extracted from photoplethysmogram (PPG) signals. In addition, a cross-platform mobile app was used to
collect background and delivery-related information. We analyzed PPG signals collected during the night and discarded unreliable
signals by applying a PPG quality assessment method to the collected signals. HR, HRV, and normalized HRV parameters were
extracted from reliable signals. The normalization removed the effect of HR changes on HRV trends. Finally, we used hierarchical
linear mixed models to analyze the trends of HR, HRV, and normalized HRV parameters.

Results: HR increased significantly during the second trimester (P<.001) and decreased significantly during the third trimester
(P=.006). Time-domain HRV parameters, average normal interbeat intervals (IBIs; average normal IBIs [AVNN]), SD of normal
IBIs (SDNN), root mean square of the successive difference of normal IBIs (RMSSD), normalized SDNN, and normalized
RMSSD decreased significantly during the second trimester (P<.001). Then, AVNN, SDNN, RMSSD, and normalized SDNN
increased significantly during the third trimester (with P=.002, P<.001, P<.001, and P<.001, respectively). Some of the
frequency-domain parameters, low-frequency power (LF), high-frequency power (HF), and normalized HF, decreased significantly
during the second trimester (with P<.001, P<.001, and P=.003, respectively), and HF increased significantly during the third
trimester (P=.007). In the postpartum period, normalized RMSSD decreased (P=.01), and the LF to HF ratio (LF/HF) increased
significantly (P=.004).

Conclusions: Our study indicates the physiological changes during pregnancy and the postpartum period. We showed that HR
increased and HRV parameters decreased as pregnancy proceeded, and the values returned to normal after delivery. Moreover,
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our results show that HR started to decrease, whereas time-domain HRV parameters and HF started to increase during the third
trimester. The results also indicated that age was significantly associated with HRV parameters during pregnancy and postpartum
period, whereas education level was associated with HRV parameters during the third trimester. In addition, our results demonstrate
the possibility of continuous HRV monitoring in everyday life settings.

(JMIR Mhealth Uhealth 2022;10(6):e33458) doi: 10.2196/33458
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Introduction

Background
Heart rate variability (HRV) reflects alterations in the regulation
of the autonomic nervous system. Substantial changes in
autonomic nervous system, by implication in HRV, occur during
pregnancy. Such physiological changes help to ensure the
healthy development of the fetus [1]. Heart rate (HR) increases
during pregnancy [2], whereas HRV parameters decrease;
however, the values usually return to normal within a few
months of the postpartum period [3-5].

In addition to physiological causes, changes in HRV during
pregnancy may also reflect other issues; for example, certain
physical or mental complications. Previous studies have shown
that HRV during pregnancy may indicate hypertensive disorders
[6,7] or pre-eclampsia [8,9]. Pregnant women with gestational
hypertension have higher low-frequency power (LF) to
high-frequency power (HF) ratio (LF/HF) in early pregnancy
than those with normal pregnancies [6]. Regarding
pre-eclampsia, women have lower HF than those with normal
pregnancies, resulting in an increase in LF/HF in pre-eclamptic
pregnancies [8,9]. Furthermore, HRV may reflect the state of
mental health in pregnant women; the effects of depression [10]
and anxiety [11,12] on HRV parameters during pregnancy have
been studied. Pregnant women with depression have low 24-hour
time-domain parameters [10], and anxiety during pregnancy
has been shown to decrease HF and very low–frequency power
[11]. HRV parameters may also illustrate the level of stress
experienced by pregnant women [13,14]. Induced stress has
been shown to decrease HF in pregnant women. Symptoms of
anxiety may further be associated with stress, as pregnant
women with anxiety had dampened stress reactivity [12]. In
addition, the decrease in root mean square of the successive
difference of normal interbeat intervals (IBIs; RMSSD) and HF
was significantly less in mindful pregnant women who have
better resources to cope with stress during pregnancy [15]. All
pregnancy-related complications are important to be detected
early in maternity care, to enable appropriate interventions to
secure the health of the pregnant woman and her fetus. However,
interpretation of HRV is demanding owing to the complexity
of the human cardiac system; changes in and the behavior of
HRV varies across individuals.

HRV parameters are usually measured using electrocardiogram
(ECG) or photoplethysmogram (PPG). Electrocardiography is
a noninvasive method for monitoring the electrical activity of
the cardiovascular system using electrodes attached to the skin.
It is the gold standard for monitoring HR and HRV parameters,
but cannot be used for long-term monitoring. In contrast,

photoplethysmography is an optical method for monitoring
heart activity and is more convenient for use in home and
free-life settings. It is an easy-to-implement method that is used
in many clinical and commercial wearable devices. Therefore,
it is increasingly used in remote health monitoring systems.

Most studies have investigated changes in HRV in an episodic
manner, using 1-time ECG recording of pregnant women at
different gestational weeks or during labor [16-20]. In addition,
in most longitudinal studies, 10 to 30 minutes of ECG were
recorded from pregnant women once per trimester or monthly
during pregnancy [7,21-24] and postpartum period [4]. The
recordings were performed while the women were resting in a
predefined position (usually supine position) in a laboratory
setting. Stein et al [1] conducted 24-hour HRV recordings with
pregnant women 4 times during pregnancy and once before
pregnancy. Continuous measurements of HRV during pregnancy
and early postpartum period may provide new and valuable
information about the HRV patterns.

Although existing studies have characterized changes in HRV
during pregnancy and the postpartum period, they have been
limited to short-time recordings of ECG signals a few times
during pregnancy. Some of these studies compared pregnant
women at different gestational weeks with nonpregnant women
to identify HRV trends. However, comparing HRV from
different individuals can be inaccurate because HRV is unique
for each person and is dependent on various parameters such
as age and sex among many other factors [25]. In addition, other
studies have collected few ECG recordings from the same
individuals. Thus, owing to the limited number of measurements,
the results cannot reliably capture the changes. Moreover, only
Stein et al [1] collected data in home-based settings, whereas
all the other studies used laboratory settings to collect HRV
parameters.

Objectives
In this paper, we aimed to analyze the nighttime HRV trends
during pregnancy and postpartum period. To the best of our
knowledge, this study is the first to collect continuous PPG
signals from pregnant women, in everyday settings over a long
period. We used an Internet of Things (IoT)-based system to
collect PPG signals from 58 women, several times a day during
pregnancy and the first 3-month postpartum period. The
continuous monitoring of HRV parameters enabled us to
accurately detect HRV trends regarding in-person and
between-person differences. Moreover, we analyzed the trends
of normalized HRV parameters. The normalization was
performed based on average HR to remove the effect of HR
changes on HRV parameters. In addition, we added age, BMI,
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and education level to our analysis as controlling factors and
analyzed their effects on HRV trends. In summary, the
contributions of this study were as follows:

1. Continuous monitoring of HRV in pregnant women, in
everyday settings using a customized, remote, IoT-based
monitoring system.

2. Analyzing HRV trends during pregnancy and postpartum
period during the night.

3. Analyzing normalized HRV trends during pregnancy and
postpartum period during the night.

Methods

Study Design
HRV parameter trends during pregnancy and postpartum period
were investigated in a longitudinal study using an IoT-based
system. The system used a smartwatch to remotely collect HRV
parameters and a cross-platform mobile app to collect
background and delivery-related information. The collected
data were transferred to the cloud server for further analysis.
The use of such a home-based system during pregnancy and
postpartum period was evaluated in a previous study [26]. The
findings of this pilot study indicated the feasibility of the study,
robustness of the system, and reliability of the collected HRV
parameters.

Participants and Recruitment
Women with singleton pregnancies who were at 12 to 15 weeks
of gestation were recruited from southwest Finland. Women

with both high-risk and low-risk pregnancies were recruited.
Women with high-risk pregnancies were required to have a
history of preterm birth (22-36 weeks of gestation) or late
miscarriage (12-22 weeks of gestation). Women with low-risk
pregnancies were required to have a history of full-term
uncomplicated pregnancy and no pregnancy loss. All eligible
participants had to be aged ≥18 years, understand Finnish, and
have a smartphone running Android or iOS. The recruitment
goal for each group (high risk and low risk) was 30 participants,
for a targeted total of 60 participants.

Recruitment was performed via advertisements on social media
and in maternity clinics from January 2019 to March 2021. The
researcher scheduled face-to-face meetings with eligible
pregnant women. During the meetings, the pregnant women
were informed about the objective of the study. After the
participants provided written informed consent, they were
provided with a smartwatch and instructions. Moreover, our
customized cross-platform mobile app was installed on their
smartphone. Participants were asked to wear the smartwatch
continuously during pregnancy and for 3 months after delivery.
A total of 62 women were recruited (n=32, 52% in the high-risk
group and n=30, 48% in the low-risk group), but 13% (4/32) of
the women in the high-risk group withdrew from the study.
Finally, all participants in both the high-risk and low-risk
pregnancy groups were combined into 1 group for the analyses
because there were no significant differences in their HRV
trends. Table 1 shows the participants’background information.
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Table 1. Participants’ background information (n=58).

ValuesParameters

31.9 (4.9)Age (years), mean (SD)

25.98 (5.96)BMI (kg/m2), mean (SD)

Marital status, n (%)

57 (98)Married or cohabitation

1 (2)Other

Work status, n (%)

44 (76)Working

7 (12)Student

1 (2)Unemployed

6 (10)Other

Education, n (%)

24 (41)High school

18 (31)College

16 (28)University

Pregnancy planned, n (%)

53 (91)Yes

5 (9)No

14+3 (1+4)Duration of pregnancy at recruitment (week+day), mean (SD)

36+4 (9+6)Duration of pregnancy at birth (week+day), mean (SD)

Mode of delivery, n (%)

48 (83)Vaginal

10 (17)Cesarean

3532.7 (561.2)Infant birth weight (g), mean (SD)

Data Collection
Data collection was performed using the Samsung Gear Sport
smartwatch and a cross-platform mobile app. The lightweight
smartwatch was chosen based on its onboard sensors, battery
life, configurability, internal memory, and processing unit.
Moreover, the smartwatch provided access to raw PPG signals
and enabled continuous data collection. The watch runs the
Tizen operating system, which is open source. The open-source
platform enabled us to develop customized data collection
applications for the watch. We used the smartwatch to collect
12 minutes of PPG signals every 2 hours at a sampling frequency
of 20 Hz. The setup was selected to enable battery life of 2 to
3 days after each full recharge [26]. The collected data were
stored on the internal storage of the smartwatch. We also
developed an application for the smartwatch to send the data
manually through the Wi-Fi connection to our cloud server. We
asked the participants to upload their data regularly. The internal
storage was sufficient to store the collected data for 2 months.
However, we sent notifications to the participants if they did
not upload the data for 2 weeks. In addition, a cross-platform
mobile app collected background information about pregnancy
and infant-related data after delivery.

We collected PPG signals for extracting HRV parameters.
Nighttime PPG data were used in this study to extract the HRV
trends during pregnancy and postpartum period. Daytime PPG
data were discarded as participants were involved in various
activities and environments during the day, making PPG signals
unreliable owing to movement artifacts and environmental
noises.

Data Analysis

Overview
We analyzed the collected data on the cloud server. Data
analysis included several steps, as shown in Figure 1. First, we
identified and extracted reliable PPG signals. Then, a peak
detection method was used to extract the peaks and IBIs. In the
next step, we normalized the reliable signals to reduce the effect
of HR changes on HRV parameters (refer to the Parameter
Normalization section). We used reliable signals and normalized
signals to extract reliable HR and HRV parameters. Then, we
leveraged the HRV parameters during the nighttime, when
resting HR has the lowest value and artifacts would be minimum
to analyze HRV trends during pregnancy and the postpartum
period. Finally, we used hierarchical linear mixed (HLM)
models to analyze the trends of HRV parameters during
pregnancy and the postpartum period.
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Figure 1. Data analysis pipeline. HR: heart rate; HRV: HR variability; IBI: interbeat interval; PPG: photoplethysmogram.

Extracting Reliable Signals
PPG is a noninvasive optical method for extracting HR and
HRV parameters. This method is easy to implement, and many
wearables include PPG sensors. However, this method is
susceptible to environmental noise and motion artifacts. Such
noise can affect the quality of the signal and the accuracy of the
analysis [27,28]. Therefore, unreliable signals must be detected
and discarded. Reliable signals are expected to have similar
waveforms, whereas unreliable signals have diverse waveforms
as they are affected by different motion artifacts and
environmental noises [29]. First, we extracted several
morphological features from the signals and heart cycles. Then,
we chose skewness, kurtosis, approximate entropy, Shannon
entropy, and spectral entropy based on the scoring value for
clustering [29]. We trained a support vector machine classifier
using these features to distinguish between the reliable and
unreliable PPG signals. Using this classifier, we discarded
unreliable signals and used reliable signals in our analysis.

Peak Detection and IBI Extraction
We used a bandpass filter with cutoff frequencies of 0.7 Hz and
3.5 Hz to enhance PPG signals by filtering noises that are not
in human HR ranges. Then, we used the peak detection method
based on the moving average, as described in [30], to find the
peaks that correspond to heartbeats. The method is enabled by
an adaptive threshold, which considers the variations in the
morphology and amplitude of PPG signals [31]. Then, the
detected peaks were used to extract IBI, which is the interval
between 2 consecutive peaks. In the error detection phase, IBIs
that deviated >30% from the mean IBIs of the segments (5
minutes of signals) were removed from the IBI lists. We
leveraged the HeartPy library in Python for this analysis [31].

Parameter Normalization
Studies suggest that HRV parameters are significantly associated
with average HR [32]. Therefore, changes in HRV parameters
result from changes in HR or HR variation [32]. In addition,
several studies have found that HR increases during pregnancy
[1,2]. We normalized the HRV parameters based on HR to
cancel the inevitable effect of HR changes on HRV parameters.
Moreover, normalization is required to compare the HRV
parameters of different people, because each person’s HR and
resting HR are unique. Normalization was performed by dividing
the IBIs by the corresponding average IBI values [33].

HR and HRV Extraction
We used the detected peaks to extract HR, the number of peaks
(heartbeats) per minute. HRV parameters were obtained by
extracting the variation in IBIs and normalized IBIs in the PPG
signals. We used short-term HRV analysis, which requires
5-minute recordings of reliable PPG signals [25,34]. We
leveraged the IBIs in each 5-minute window of reliable PPG
signals to extract time-domain HRV parameters, including
average of normal IBIs (AVNN), RMSSD, and SD of normal
IBIs (SDNN), and frequency-domain parameters, including LF
(power in low-frequency range), HF (power in high-frequency
range), and LF/HF (LF to HF ratio). These parameters can be
reliably extracted at a sampling frequency of 20 Hz [35].

The time-domain HRV parameters show the variation in IBIs
during the monitoring period. The SDNN in the 5-minute resting
measurements mainly shows the variation in
parasympathetically-mediated respiratory sinus arrhythmia.
RMSSD reflects the variation in successive normal IBIs.
Moreover, RMSSD is the most commonly used HRV parameter
for investigating vagal changes [25].
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The frequency-domain HRV parameters decompose the HRV
to different frequency ranges. LF can be produced by both
parasympathetic and sympathetic systems. HF reflects the
parasympathetic nervous system and is correlated with RMSSD
[25]. Moreover, LF/HF shows the ratio of LF to HF.

We also computed the corresponding normalized parameters
discussed in the Parameter Normalization section. The
normalization resulted in normalized SDNN (nSDNN),
normalized RMSSD (nRMSSD), normalized LF (nLF),
normalized HF (nHF), and nLF/nHF. The HRV parameters used
in this study and their definitions are presented in Table 2.

Table 2. Heart rate variability parameters.

DescriptionUnitParameter and types

Time-domain

Average of normal IBIsamsAVNN

SD of normal IBIsmsSDNN

SD of normalized IBIsmsnSDNN

Square root of the mean of the sum of the squares of differences between adjacent normal IBIsmsRMSSD

Square root of the mean of the sum of the squares of differences between adjacent normalized IBIsmsnRMSSD

Frequency-domain

Power in low-frequency range (0.04-0.15 Hz)ms2LF

Power in low-frequency range (0.04-0.15 Hz) in normalized IBIsms2nLF

Power in high-frequency range (0.15-0.4 Hz)ms2HF

Power in high-frequency range (0.15-0.4 Hz) in normalized IBIsms2nHF

Ratio of LF to HFN/AbLF/HF

Ratio of nLF to nHFN/AnLF/nHF

aIBI: interbeat interval.
bN/A: not applicable.

Statistical Analysis
We used HLM models [36,37] to analyze the trends in the HRV
parameter. The HLM method considers within-person and
between-person changes. The HLM model supports multilevel
statistical analysis when we have repeated measurements that
are not independent and can correctly model correlated errors
[36]. This model assumes a linear relationship between
dependent and independent variables. It also enables hierarchical
analysis and comparison of continuous dependent variables
during different time frames (eg, before-after studies) [36].

We used the HLM models to evaluate the changes in HRV
parameters during monitoring. We investigated trends in the
second trimester (16-28 weeks of gestation), third trimester
(29-40 weeks of gestation), and postpartum period (12 weeks
after delivery). In the HLM models, HRV parameters were
treated as dependent variables and time (days) was the
independent variable. Therefore, the HLM model investigated
HRV trends in the desired period while considering the
dependency of the measurements from individual participants.
We also used background parameters including age, BMI, and
education level as controlling factors and analyzed their
correlation with the HRV trends. We removed occupation, which
is correlated with education level; planned pregnancy; and
marital status, as there were few samples of unplanned
pregnancy and not married or cohabitation marital status.

We included data from all the participants in the second
trimester and postpartum period analyses. However, we removed
the data of 12% (7/58) of the participants from the third trimester
analysis owing to preterm births. It should be noted that 43%
(25/58) of the participants had term delivery before the 40th
gestational week and 21% (12/58N) of the participants had
delivery after the 40th gestational week.

We also used HLM models to compare the second trimester
with the third trimester, the second trimester with the postpartum
period, and the third trimester with the postpartum period. For
these analyses, we used HRV parameters as the dependent
variable, time (days) as a within-person independent variable,
and 1 binary independent between-person variable showing the
comparing periods. We also included age, BMI, and education
level in the analysis. The HLM model enabled us to perform
this multilevel statistical analysis, comparing HRV trends
between 2 time frames. Similarly, we included only the
participants with term birth in the third trimester. All the
analyses were performed using the statsmodels library in Python
[38].

Ethics Approval
This study received ethics approval from the Ethics Committee
of the Hospital District of Southwest Finland (Dnro:
1/1801/2018). Written informed consent was obtained from all
the participants.
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Results

Overview
In this section, we present the HR and HRV parameters collected
during the second and third trimesters and the 3-month
postpartum period. We also present the correlation between HR
and HRV trends and age, BMI, and education level. Then, we
compare the trends of HRV parameters between the second and
third trimesters and between each trimester and the 3-month
postpartum period. Data from 58 women were included in this
study. The results include 166.5 (SD 46.9) reliable night data
per participant during the study, with a total of 9826 night data
(70% of possible data) included in this study.

Second Trimester
A total of 77.70% (4123/5306) of reliable night data were
collected in the second trimester. On average, each participant
had 69.9 (SD 15.1) reliable night data in the second trimester.
HLM model results showed that HR increased significantly,
whereas the time-domain parameters (AVNN, SDNN, nSDNN,
RMSSD, and nRMSSD) and the frequency-domain parameters
(LF, HF, and nHF) decreased significantly during the second
trimester. In addition, the results showed no significant
association of BMI and education level with HR and HRV trends
in the second trimester. However, there was a significant
association between age and nSDNN, nRMSSD, HF, and
LF/HF. Increase in age was associated with a slight decrease in
nSDNN, nRMSSD, and HF and a slight increase in LF/HF.
Tables 3 and 4 show the intercept; slope of changes; association
of age, BMI, and education level with trends; and the average
HR and HRV parameters at the end of the second trimester.

Table 3. HRa and time-domain HR variability trends during the second and third trimesters and the postpartum period.

nRMSSDfRMSSDenSDNNdSDNNcAVNNbHRPeriods and variables

Second trimester

9.986 (<.001)89.293 (<.001)9.079 (<.001)84.023 (<.001)916.443 (<.001)62.736 (<.001)Intercept (P value)

–0.007 (<.001)–0.103 (<.001)–0.006 (<.001)–0.082 (<.001)–0.585 (<.001)0.045 (<.001)Slope (P value)

–0.091 (.03)–0.774 (.07)–0.080 (.047)–0.737 (.09)0.748 (.77)0 (.99)Age, coefficient (P value)

0.002 (.93)–0.001 (.99)–0.002 (.93)–0.059 (.80)–1.211 (.38)0.141 (.19)BMI, coefficient (P value)

0.189 (.41)2.440 (.29)0.112 (.64)1.801 (.47)14.151 (.32)–0.816 (.46)Education level, coefficient
(P value)

6.7 (2.1)58.7 (22.1)6.2 (1.8)53.2 (18.05)853 (85)71.1 (7.08)Final values, mean (SD)

Third trimester

8.366 (<.001)70.275 (<.001)9.237 (<.001)69.787 (<.001)708.181 (<.001)81.324 (<.001)Intercept (P value)

0.006 (.97)0.071 (<.001)0.007 (<.001)0.084 (<.001)0.345 (.002)–0.025 (.006)Slope (P value)

–0.092 (.20)–0.984 (.009)–0.135 (.002)–1.063 (.02)1.905 (.45)–0.131 (.55)Age, coefficient (P value)

–0.021 (.57)–0.003 (.99)–0.009 (.68)–0.049 (.83)0.278 (.83)0 (.97)BMI, coefficient (P value)

1.044 (.006)6.755 (.001)0.462 (.049)5.678 (.01)17.459 (.20)–1.540 (.19)Education level, coefficient
(P value)

7.5 (3.1)65.5 (26.6)7.2 (2.8)65.8 (24.7)886.9 (99.5)68.6 (7.2)Final values, mean (SD)

Postpartum period

11.620 (<.001)135.233 (<.001)9.481 (<.001)115.321 (<.001)1216.255 (<.001)47.237 (<.001)Intercept (P value)

–0.004 (.01)–0.037 (.12)–0.001 (.69)0.001 (.95)0.130 (.46)–0.009 (.37)Slope (P value)

–0.139 (.002)–1.857 (.001)–0.086 (.03)–1.320 (.009)–4.729 (.14)0.289 (.099)Age, coefficient (P value)

–0.007 (.76)–0.154 (.62)–0.003 (.90)–0.161 (.56)–1.258 (.48)0.097 (.33)BMI, coefficient (P value)

0.061 (.81)1.168 (.71)–0.053 (.82)–0.122 (.97)5.721 (.76)–0.300 (.77)Education level, coefficient
(P value)

6.7 (2.2)69 (24.2)6.5 (2)67.3 (21.6)1037.7 (105.3)58.5 (5.9)Final values, mean (SD)

aHR: heart rate.
bAVNN: average normal interbeat intervals.
cSDNN: SD of normal interbeat intervals.
dnSDNN: normalized SDNN.
eRMSSD: root mean square of the successive difference of normal interbeat intervals.
fnRMSSD: normalized RMSSD.
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Table 4. Trends of frequency-domain heart rate variability parameters during the second and third trimesters and the postpartum period.

nLF/nHFLF/HFnHFdHFcnLFbLFaPeriods and variables

Second trimester

0.565 (.002)–0.248 (<.001)4.727 (<.001)2990.343 (<.001)2.422 (<.001)1045.893 (<.001)Intercept (P value)

0.001 (.007)–0.061 (.10)–0.007 (.003)–4.224 (<.001)0.001 (.72)–3.109 (<.001)Slope (P value)

–0.003 (.57)2.775 (.001)–0.046 (.32)–44.543 (.045)–0.031 (.17)–6.285 (.62)Age, coefficient (P value)

0.002 (.48)0.766 (.12)0.035 (.17)–9.352 (.42)0.012 (.33)2.167 (.75)BMI, coefficient (P value)

0.033 (.23)–3.943 (.43)0.017 (.95)71.438 (.55)0.173 (.17)48.903 (.50)Education level, coefficient
(P value)

0.8 (0.4)0.83 (0.55)3.7 (1.9)1085.2 (1220.7)2.3 (1.4)677.7 (517.4)Final values, mean (SD)

Third trimester

0.995 (.003)0.67 (.84)6.166 (.001)1743.362 (.01)4.248 (.001)1008.979 (.03)Intercept (P value)

0.001 (.28)–0.097 (.11)0.004 (.21)2.767 (.007)0.006 (.09)0.424 (.44)Slope (P value)

–0.004 (.68)2.440 (.008)–0.098 (.054)–40.218 (.04)–0.070 (.03)–19.456 (.12)Age, coefficient (P value)

–0.006 (.17)0.367 (.44)–0.001 (.97)–5.994 (.53)–0.018 (.28)1.655 (.80)BMI, coefficient (P value)

0.030 (.51)–5.113 (.28)0.261 (.35)221.413 (.02)0.238 (.17)92.269 (.17)Education level, coefficient
(P value)

0.7 (0.4)0.77 (0.40)4.4 (2.5)1607.7 (2156.1)2.6 (1.9)926.9 (956.7)Final values, mean (SD)

Postpartum period

0.416 (.02)–0.397 (.27)6.670 (.001)4969.652 (<.001)2.486 (.09)2124.653 (.002)Intercept (P value)

–0.002 (.05)0.234 (.004)–0.001 (.77)–0.682 (.63)–0.005 (.40)2.415 (.05)Slope (P value)

0.006 (.25)3.498 (<.001)–0.054 (.33)–94.705 (<.001)–0.012 (.78)–29.427 (.14)Age, coefficient (P value)

0.002 (.40)0.528 (.35)0.022 (.47)–13.985 (.32)0.023 (.33)0.327 (.98)BMI, coefficient (P value)

0.053 (.06)–5.332 (.35)–0.291 (.36)22.307 (.88)0.279 (.24)–50.704 (.64)Education level, coefficient
(P value)

0.6 (0.3)1 (0.48)5.3 (2.8)1486.4 (1327.6)2.5 (2.5)1307.9 (920.6)Final values, mean (SD)

aLF: low-frequency power.
bnLF: normalized LF.
cHF: high-frequency power.
dnHF: normalized HF.

Third Trimester
During the third trimester, 70.25% (2716/3866) of reliable night
PPG data were collected. Each participant had an average of
53.2 (SD 15.1) reliable night PPG data in the third trimester.
The HLM models show that HR decreased significantly, whereas
the time-domain parameters (AVNN, SDNN, nSDNN, and
RMSSD) and frequency-domain parameter (HF) increased
significantly during the third trimester (refer to Tables 3 and 4
for details). Moreover, the results indicated that high education
level was associated with high SDNN, nSDNN, RMSSD,
nRMSSD, and HF. It also showed that increase in age was
associated with a slight decrease in SDNN, nSDNN, RMSSD,
nLF, and HF and a slight increase in LF/HF.

Considering both trimesters as a whole, the models indicated
that HR significantly increased (P<.001), whereas AVNN,
SDNN, RMSSD, LF, and HF decreased during pregnancy (with
P<.001, P=.04, P=.001, P=.44, P=.44, respectively). However,
during the last weeks of pregnancy, starting from pregnancy

week 35, HR began to decrease and HRV parameters (AVNN,
SDNN, RMSSD, LF, and HF) began to increase, but they did
not reach the level of pregnancy week 16 before the delivery.

Postpartum Period
In the postpartum period, 62.05% (2987/4814) of reliable night
PPG data were collected from the participants. Each participant
had an average of 53.4 (SD 19.7) reliable night data in this
period. During the first 12 weeks after delivery, the time-domain
parameter (nRMSSD) decreased slightly and the
frequency-domain parameter (LF/HF) increased slightly (Tables
3 and 4). The results indicated that increase in age was
associated with a slight decrease in SDNN, nSDNN, RMSSD,
nRMSSD, and HF and a slight increase in LF/HF. Moreover,
the results showed no significant correlation between the
duration of pregnancy and trends of HR and HRV parameters
during postpartum period. Figures 2 and 3 represent the trends
of HR, time-domain, and frequency-domain HRV parameters
during pregnancy and the 3-month postpartum period.
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Figure 2. Weekly mean and 95% CI of heart rate (HR) and time-domain HR variability parameters during pregnancy and postpartum period. The
number of participants with reliable data per week is also indicated. The vertical line indicates pregnancy week 28 and separates the second and third
trimesters. AVNN: average normal interbeat intervals; RMSSD: root mean square of the successive differences of normal interbeat intervals; nRMSSD:
normalized RMSSD; SDNN: SD of normal interbeat intervals. nSDNN: normalized SDNN.
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Figure 3. Weekly mean and 95% CI of frequency-domain heart rate variability parameter during pregnancy and postpartum period. The number of
participants with reliable data per week is also indicated. The vertical line indicates pregnancy week 28 and separates the second and third trimesters.
HF: high-frequency power; LF: low-frequency power; nHF: normalized HF; nLF: normalized LF.

Comparison of Trends in HRV Parameters Among
the Second Trimester, Third Trimester, and 3-Month
Postpartum Period
We compared the trends of HRV parameters among the second
trimester, third trimester, and postpartum period.

The Second and Third Trimesters
The time-domain HRV parameters, including AVNN, SDNN,
nSDNN, and RMSSD, and some frequency-domain parameters,
including LF, HF, and nHF, were slightly higher in the third
trimester than in the second trimester. Moreover, HR was
slightly high in the second trimester.
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The average increase in HR from the beginning of the second
trimester to week 34, when HR reached its highest level was
6.58 beats per minute (bpm). Time-domain parameters, AVNN,
SDNN, nSDNN, RMSSD, and nRMSSD, were 77.3, 7.8, 0.4,
9.5, 0.5 milliseconds lower, respectively, at the beginning of
the third trimester than the beginning of the second trimester.
In addition, the slope of per-day changes in HR was slightly
lower, whereas this slope was slightly higher for AVNN, SDNN,

nSDNN, RMSSD, nRMSSD, LF, HF, and nHF in the third
trimester than in the second trimester (Tables 5 and 6).
Moreover, the decrease in HRV trends, including SDNN,
nSDNN, RMSSD, nRMSSD, and HF, in the third trimester
compared with the second trimester was slightly higher in
younger women than in older women. However, in this
comparison, the difference in LF/HF slightly increased with
increase in age.

Table 5. Comparison of HRa and time-domain HR variability parameters between the second and third trimesters, second trimester and postpartum
period, and third trimester and postpartum period.

nRMSSDfRMSSDenSDNNdSDNNcAVNNbHRComparisons and variables.

Second trimester and third trimester

0.011 (<.001)0.168 (<.001)0.010 (<.001)0.149 (<.001)1.052 (<.001)−0.080 (<.001)Slope (P value)

−0.529
(<.001)

−9.535 (<.001)−0.377 (<.001)−7.793 (<.001)−77.279 (<.001)6.128 (<.001)Intercept (P value)

−0.119 (.003)−1.097 (.006)−0.090 (.02)−0.859 (.03)0.017 (.99)0.015 (.93)Age (years), coefficient (P
value)

−0.002 (.94)−0.071 (.74)−0.007 (.75)−0.101 (.65)−1.316 (.32)0.125 (.23)BMI (kg/m2), coefficient (P
value)

0.274 (.23)3.689 (.10)0.153 (.50)2.257 (.33)19.196 (.16)−1.396 (.20)Education level, coefficient
(P value)

Second trimester and postpartum period

0.003 (.02)0.077 (<.001)0.004 (.009)0.079 (<.001)0.800 (<.001)−0.061 (<.001)Slope (P value)

−0.062 (.32)7.776 (<.001)0.235 (.002)10.458 (<.001)133.327 (<.001)−8.135 (<.001)Intercept (P value)

−0.114 (.005)−1.208 (.009)−0.086 (.02)−0.843 (.046)−1.067 (.68)0.071 (.68)Age (years), coefficient (P
value)

0.002 (.94)−0.046 (.86)0.005 (.83)−0.047 (.84)−1.202 (.41)0.122 (.22)BMI (kg/m2), coefficient (P
value)

0.138 (.55)2.057 (.42)−0.005 (.98)1.493 (.55)11.211 (.45)−0.780 (.44)Education level, coefficient
(P value)

Third trimester and postpartum period

−0.009
(<.001)

−0.102 (<.001)−0.008 (<.001)−0.101 (<.001)−0.306 (.003)0.026 (<.001)Slope (P value)

0.541 (<.001)18.524 (<.001)0.691 (<.001)19.492 (<.001)212.495 (<.001)−14.686 (<.001)Intercept (P value)

−0.108 (.003)−1.142 (.002)−0.080 (.03)−0.921 (.02)−1.801 (.47)0.121 (.47)Age (years), coefficient (P
value)

−0.010 (.64)−0.193 (.36)0.001 (.98)−0.132 (.55)−1.538 (.27)0.097 (.29)BMI (kg/m2), coefficient (P
value)

0.381 (.08)4.053 (.06)0.243 (.25)2.892 (.21)15.663 (.28)−1.330 (.16)Education level, coefficient
(P value)

aHR: heart rate.
bAVNN: average normal interbeat intervals.
cSDNN: SD of normal interbeat intervals.
dnSDNN: normalized SDNN.
eRMSSD: root mean square of the successive difference of normal interbeat intervals.
fnRMSSD: normalized RMSSD.
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Table 6. Comparison of frequency-domain heart rate variability parameters between the second and third trimesters, second trimester and postpartum
period, and third trimester and postpartum period.

nLF/nHFLF/HFnHFdHFcnLFbLFaComparisons and variables

Second trimester and third trimester

0 (.70)−0.061 (.25)0.010 (.002)5.628 (<.001)0.003 (.29)2.776 (<.001)Slope (P value)

0.172
(<.001)

0.338 (.89)−0.419 (.005)−371.246 (<.001)0.396 (<.001)−248.629 (<.001)Intercept (P value)

−0.003 (.61)0.027 (.003)−0.063 (.13)−58.317 (.004)−0.046 (.06)−12.053 (.29)Age (years), coefficient (P val-
ue)

0 (.93)0.005 (.30)0.023 (.34)−10.722 (.34)0.003 (.82)−0.220 (.97)BMI (kg/m2), coefficient (P
value)

0.023 (.46)−0.041 (.43)0.051 (.84)105.380 (.36)0.171 (.22)42.367 (.52)Education level, coefficient (P
value)

Second trimester and postpartum period

−0.003
(<.001)

0.287 (<.001)0.002 (.57)3.748 (<.001)−0.007 (.045)5.261 (<.001)Slope (P value)

0.061 (.16)−1.367 (.63)1.073 (<.001)311.128 (<.001)0.754 (<.001)194.724 (<.001)Intercept (P value)

0.001 (.85)3.152 (.001)−0.048 (.28)−64.949 (.004)−0.025 (.36)−12.415 (.36)Age (years), coefficient (P val-
ue)

0.003 (.27)0.706 (.16)0.030 (.23)−8.505 (.49)0.028 (.08)1.922 (.80)BMI (kg/m2), coefficient (P
value)

0.066 (.01)−3.490 (.48)−0.013 (.96)69.474 (.58)0.223 (.16)36.128 (.65)Education level, coefficient (P
value)

Third trimester and postpartum period

−0.005
(<.001)

0.377 (<.001)−0.007 (.12)−3.219 (.001)−0.015 (.002)1.773 (.05)Slope (P value)

−0.160
(.008)

−2.648 (.40)1.488 (<.001)765.852 (<.001)0.240 (.28)496.288 (<.001)Intercept (P value)

0.002 (.79)2.629 (.004)−0.079 (.09)−65.002 (.001)−0.039 (.23)−17.497 (.22)Age (years), coefficient (P val-
ue)

−0.002 (.63)0.530 (.32)0.012 (.65)−13.823 (.20)0.011 (.56)2.643 (.73)BMI (kg/m2), coefficient (P
value)

0.045 (.28)−5.352 (.30)0.028 (.92)142.030 (.19)0.224 (.23)18.376 (.82)Education level, coefficient (P
value)

aLF: low-frequency power.
bnLF: normalized LF.
cHF: high-frequency power.
dnHF: normalized HF.

The Second Trimester and Postpartum Period
In the postpartum period, HR was significantly lower (on
average 8.1 bpm), and the time-domain parameters, AVNN
(133.3 milliseconds), SDNN (10.5 milliseconds), nSDNN (0.2
milliseconds), RMSSD (7.8 milliseconds), and
frequency-domain parameters LF (195.1 square milliseconds),
nLF (0.7 square milliseconds), and HF (312.4 square
milliseconds) were significantly higher than those in the second
trimester. The slope of changes in HR was slightly lower,
whereas the slope of changes in AVNN, SDNN, nSDNN,
RMSSD, nRMSSD, LF, nLF, HF, LF/HF, and nLF/nHF was
higher than those in the second trimester (Tables 5 and 6). The
difference between the trends of SDNN, nSDNN, RMSSD,

nRMSSD, and HF decreased, whereas the difference in LF/HF
slightly increased with increase in age.

The Third Trimester and Postpartum Period
In the postpartum period, HR was significantly lower (on
average 14.7 bpm) than that at the beginning of the third
trimester. However, the time-domain parameters, AVNN,
SDNN, nSDNN, RMSSD, and nRMSSD, and frequency-domain
parameters, LF, HF, and nHF were, on average, 212.8
milliseconds, 19.4 milliseconds, 0.7 milliseconds, 18.5
milliseconds, 0.5 milliseconds, 495 square milliseconds, 764.6
square milliseconds, and 1.5 square milliseconds higher,
respectively, at the beginning of the postpartum period than at
the beginning of the third trimester. The slope of changes in
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AVNN, SDNN, nSDNN, RMSSD, nRMSSD, nLF, HF, and
nHF was slightly higher, whereas the slope of changes in LF
was slightly lower in the third trimester than in the postpartum
period (Tables 5 and 6). In addition, the difference between the
trends of SDNN, nSDNN, RMSSD, nRMSSD, and HF
decreased, whereas the difference in LF/HF slightly increased
with increase in age.

Discussion

Principal Findings
Our results show that HR increased significantly during the
second trimester, whereas it slightly decreased during the third
trimester. During the postpartum period, HR continued to
decrease, but the reduction was not statistically significant;
however, compared with pregnancy, HR was significantly low
during the postpartum period. On average, HR increased by 6.6
bpm from 16 weeks to 34 weeks of gestation, after which, it
started to decrease.

The trends detected in this study are consistent with the previous
review by Loerup et al [2], in which the mean increase was 7.6
(95% CI 1.8-13.4) bpm from 10 weeks to 40 weeks of gestation.
The increase in HR during pregnancy is considered
physiological and explained by elevated blood volume, which
results in increased cardiac output [7].

Regarding HRV, the time-domain parameters and their
normalized values decreased significantly during the second
trimester and, then, increased significantly during the third
trimester. However, these parameters did not reach the level of
those during the second trimester. In the postpartum period, the
time-domain parameters were stable, and only nRMSSD
decreased. Regarding the frequency-domain parameters, LF,
HF, and nHF decreased significantly during the second trimester,
whereas nLF/nHF increased slightly. During the third trimester
and postpartum period, the parameters were stable, except HF,
which increased, and LF/HF, which decreased slightly. Changes
in HRV parameters occur owing to the pregnancy and the
physiological changes in the woman’s body [1]. The trend in
HRV parameters during pregnancy was decreasing, with values
returning to normal after delivery [3-5].

The results indicated that BMI is not significantly associated
with HRV trends. In addition, younger women had higher
nSDNN, nRMSSD, and HF in the second trimester and lower
SDNN, nSDNN, RMSSD, nRMSSD, and HF and slightly lower
LF/HF during the third trimester and postpartum period than
older women. These results are consistent with previous studies
showing a negative correlation between age and HRV
parameters [25]. Furthermore, the results showed that more
educated women had higher SDNN, nSDNN, RMSSD,
nRMSSD, and HF during the third trimester than the less
educated women, which may indicate low stress level in highly
educated women. Previous studies also showed that highly
educated people experienced low stress in a stressful situation
[39], and low education level is identified as a determinant of
stress during pregnancy [40].

Comparison With Previous Work
To the best of our knowledge, this is the first paper that describes
and evaluates HR and HRV parameters measured using PPG
signals continuously during pregnancy and the postpartum
period in participants’ normal daily lives during the night.
Previous studies have been limited to a few samples assessed
in controlled environments during pregnancy and the postpartum
period. Only Stein et al [1] performed a study in free-living
conditions; they measured HRV using Holter ECG for 24-hour
periods during pregnancy.

Continuously measured HR followed the physiological trends,
increasing as the pregnancy proceeded and returning to normal
during the postpartum period. However, it is notable that in this
study, we did not measure HR levels before pregnancy; thus, it
is not possible to confirm whether HR levels returned to
prepregnancy levels during the 3-month follow-up. Several
studies have shown that HR increases during pregnancy
[7,15,21,24] and decreases again during the postpartum period
[4]. In this study, the detected increase during pregnancy
followed the results of the meta-analysis, which included
>10,000 HR measurements from >8000 women [2]. The small
difference may be explained by the small sample size in this
study and differences in the measurement periods, as our study
measurements started at gestational week 16 and the
meta-analysis started from gestational week 10 [2]. However,
it is suggested that most of the changes in cardiac autonomic
modulation occur within the first weeks after conception [1];
thus, in this study, we were not able to detect the early changes.

Interestingly, according to our study, HR was the highest during
pregnancy week 34 and started to decrease thereafter. In many
previous studies [1,23,24], the last measurement points were
before week 36; thus, the decrease in HR at the end of the
pregnancy may not have been captured. On the basis of the
meta-analysis by Loerup et al [2], a few previous studies have
shown a slight reduction in HR at the end of pregnancy.
However, most studies show a continuous increase during
pregnancy.

The results showed that all the time-domain HRV parameters
measured in this study and the frequency-domain parameters
(LF and HF) decreased during the second trimester.
Furthermore, most of the measured parameters (AVNN, SDNN,
RMSSD, LF, and HF) showed decreasing trends throughout
pregnancy. On the basis of previous studies with intermittent
measurements, the trends of different HRV parameters decreased
during the course of pregnancy [1,7,9,11,15,22-24]. Some
studies also found increasing trends, for example, in LF [23],
and some did not find any significant changes during pregnancy
[16,21]. These conflicting results are partly owing to different
methodological choices, such as limited HRV recordings and
a small number of participants, but they also reflect the
challenges of measuring and interpreting HRV [25].

On the basis of the continuous measurements in our study, a
change from a decreasing trend to a slightly increasing trend in
HRV parameters was observed during the last weeks of
pregnancy, starting at week 35. Most previous studies included
very few or no measurements of HRV after pregnancy week
35; therefore, the change has probably not been detected
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[1,9,22-24]. Long intervals (eg, weeks) between successive
HRV measurements restrict the findings regarding fine-grained
trends at the end of pregnancy. Continuous measurements
provide opportunities to detect small changes also. In Finland,
pregnant women are entitled to maternity leave starting 5 to 8
weeks before the estimated delivery date [41]. Thus, we could
speculate that one explanation for the changes in HR and HRV
parameters around gestational weeks 34 to 35 could be the
beginning of the maternity leave. Maternity leave allows, for
example, a woman to modify her daily rhythm, and therefore,
the level of stress may decrease. However, this issue requires
more research in the future. It is also notable that the data for
this study were collected partly during the COVID-19 pandemic
and the first wave of restrictions, which may have affected the
behavior and, by implication, changes in the physiological
parameters of the participating women [42].

Some HRV parameters were negatively associated with age,
whereas LF/HF was positively associated with age, in our study.
Several studies have shown similar correlations between age
and HRV parameters [25,43]. Changes in HRV parameters are
also associated with stress, as HRV represents the ability of the
heart to respond to a variety of psychological and environmental
stimuli [44]. Although cardiovascular changes during pregnancy
are physiological, Klinkenberg et al [13] suggested that
psychosocial stress also affects HRV parameters in pregnant
women. Low values of SDNN, RMSSD, and HF and high values
of LF and LF/HF may indicate mental stress [14]. Our results
showed a positive correlation between HRV parameters and
education level in the third trimester, which may indicate low
stress level in highly educated women [39,40]. However,
interpreting HRV parameters regarding stress is difficult owing
to physiological changes during pregnancy and the variety of
potential stressors and individual stress responses [25,44].

During the postpartum period, some of the HRV parameters
(SDNN, RMSSD, LF, and HF) increased as expected, as the
body recovers from the pregnancy and delivery and returns to
the normal nonpregnant state [1,5,19]. It is suggested that
autonomic nervous system recovers approximately 4 months
after delivery [3]. On the basis of only one HRV measurement
during the third trimester and another at 3-month postpartum
period, Heiskanen et al [4] found similar results regarding the
frequency-domain HRV parameters; the parameters significantly
increased from the third trimester to the postpartum period.
They suggest that the optimal time for measuring the recovery
of HRV is 6 months after childbirth; however, possible new
pregnancy or the use of oral contraceptives may affect the results
at that point [4]. In a recently published study by Brown et al
[5], the only significant change in HRV was observed between
the third trimester and 4 to 6 weeks of the postpartum period.

In this study, we continuously collected HRV data from pregnant
women using an IoT-based maternal monitoring system [26].
The system could collect a considerable amount of HRV data.
We were able to extract reliable data from >70% of possible
nights during pregnancy and >60% of nights after delivery. The
results indicate that continuous HRV monitoring with PPG
signals can be used in free-living conditions during pregnancy
and the postpartum period. In contrast to previous studies, our

results contained fine-grained HRV data, which enabled us to
investigate the trends with more granularity.

HRV monitoring during pregnancy could be used for the early
detection of complications, such as gestational hypertension [6]
and pre-eclampsia [8,9], as reflected in previous studies. For
example, Hossen et al [8] developed a model based on
frequency-domain HRV parameters to distinguish between
pre-eclampsia and normal pregnancy. In addition to interesting
HRV trends during pregnancy and the postpartum period, the
results of this study showed the feasibility of the IoT-based
system for remote HRV monitoring of maternal health. This
system can be further developed to build a personalized model
that uses individual parameters and normal HRV trends for
early anomaly detection. This model may even provide early
warning for mothers in a noninvasive and cost-efficient manner.
This technology could provide a solution to support maternal
health services in low- and middle-income countries. Although
many other efforts are also needed [45], technology could
enhance health equality between urban and rural areas.

Limitations
Women with both high-risk and low-risk pregnancies were
included in the sample; however, no differences were detected
in HRV parameters between the 2 groups, and therefore, the
sample was considered as one group. Only nighttime data were
used for the analyses; the minimum resting HR between
midnight and 6 AM was used to analyze the trend of HR and
corresponding HRV parameters to minimize the effect of noises
and artifacts [25]. HRV was measured using PPG signals, which
were collected with a frequency of 20 Hz. Therefore, our results
need to be interpreted with caution, as not all HRV parameters
can be obtained reliably at this frequency [26,35]. Moreover,
some studies suggest that HRV changes occur mostly during
early pregnancy [1,19], and these changes could not be detected
in this study because data collection started at pregnancy week
16. Our future work will consider using high-frequency PPG
signals to study other HRV trends. Furthermore, when the
participants are involved in different activities, daytime HRV
parameters would also provide interesting data if the noises and
artifacts caused by movement could be removed from the data.
In addition, it would be important to control the HRV analysis
for various confounding factors such as medical conditions (eg,
hypertension) and mental distress.

Conclusions
In this study, we conducted continuous long-term measurements
of HR and HRV from pregnancy week 16 to 3 months of the
postpartum period during participants’ daily lives. The
measurements were performed through the collection of PPG
signals from wearable smartwatches. The results showed that
HR and HRV mainly followed the expected and previously
reported trends; HR increased and HRV parameters decreased
as pregnancy proceeded, and the values returned to normal after
delivery. These trends reflect the normal physiological changes
during pregnancy and postpartum period. However, from the
continuous measurements, we detected that HR started to
decrease and HRV parameters started to increase during the last
weeks of pregnancy. This issue needs more research in the
future. The results also showed a positive association between
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HRV parameters and education level in the third trimester.
Furthermore, our results showed that using PPG signals, it is
possible to follow HRV continuously in free-living conditions.

Our system could be further developed and used in the future;
for example, to detect abnormalities during pregnancy.
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