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Abstract

Background: Given the evolution of processing and analysis methods for accelerometry data over the past decade, it is important
to understand how newer summary measures of physical activity compare with established measures.

Objective: We aimed to compare objective measures of physical activity to increase the generalizability and translation of
findings of studies that use accelerometry-based data.

Methods: High-resolution accelerometry data from the Baltimore Longitudinal Study on Aging were retrospectively analyzed.
Data from 655 participants who used a wrist-worn ActiGraph GT9X device continuously for a week were summarized at the
minute level as ActiGraph activity count, monitor-independent movement summary, Euclidean norm minus one, mean amplitude
deviation, and activity intensity. We calculated these measures using open-source packages in R. Pearson correlations between
activity count and each measure were quantified both marginally and conditionally on age, sex, and BMI. Each measures pair
was harmonized using nonparametric regression of minute-level data.

Results: Data were from a sample (N=655; male: n=298, 45.5%; female: n=357, 54.5%) with a mean age of 69.8 years (SD
14.2) and mean BMI of 27.3 kg/m2 (SD 5.0). The mean marginal participant-specific correlations between activity count and
monitor-independent movement summary, Euclidean norm minus one, mean amplitude deviation, and activity were r=0.988 (SE
0.0002324), r=0.867 (SE 0.001841), r=0.913 (SE 0.00132), and r=0.970 (SE 0.0006868), respectively. After harmonization, mean
absolute percentage errors of predicting total activity count from monitor-independent movement summary, Euclidean norm
minus one, mean amplitude deviation, and activity intensity were 2.5, 14.3, 11.3, and 6.3, respectively. The accuracies for
predicting sedentary minutes for an activity count cut-off of 1853 using monitor-independent movement summary, Euclidean
norm minus one, mean amplitude deviation, and activity intensity were 0.981, 0.928, 0.904, and 0.960, respectively. An R software
package called SummarizedActigraphy, with a unified interface for computation of the measures from raw accelerometry data,
was developed and published.

Conclusions: The findings from this comparison of accelerometry-based measures of physical activity can be used by researchers
and facilitate the extension of knowledge from existing literature by demonstrating the high correlation between activity count
and monitor-independent movement summary (and other measures) and by providing harmonization mapping.
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Introduction

The use of accelerometry-based activity monitors has become
increasingly popular in research studies because they provide
noninvasive objective measures of physical activity, and with
these monitors, physical activity data can be collected
continuously for extended periods of time [1]. Modern wearable
accelerometers measure acceleration of a body at a high
frequency (typically 10-100 Hz). These raw data are then
typically aggregated into fixed-time epochs. Yet, the choice of
epoch-based measures varies across studies. For example, the
Baltimore Longitudinal Study on Aging [2] used wrist-worn
accelerometers and summarized data using activity counts, a
measure proposed and implemented by ActiGraph [3].
Monitor-independent movement summary [4] was used for
wrist-worn accelerometry data collected for the National Health
and Nutrition Examination Survey (NHANES) 2011-2014 [5].
The UK Biobank study [6] used wrist-worn accelerometers and
Euclidean norm minus one [7]. Additional summary measures
of acceleration are mean amplitude deviation [8] and activity
intensity [9].

Given the evolution of processing and analysis methods for
accelerometry data over the past decade, it is important to know
how new summary measures compare with established
measures. Harmonizing, or mapping, values of physical activity
summaries derived from different algorithms enables knowledge
from the thousands of manuscripts that have been published
using ActiGraph activity count [10] (and for which no repository
or access to raw accelerometry data is currently available).

In this study, we aimed to (1) provide simple summaries of
associations between pairs of minute-level measures (ActiGraph
activity count and monitor-independent movement summary,
Euclidean norm minus one, mean amplitude deviation, activity
intensity) and a guide for the strength of these associations in
subgroups defined by demographic information; (2) provide a
mapping between any 2 physical activity summary measures
considered; (3) derive cut-points of open-source physical activity
measures that correspond to established cut-points to estimate
time spent in different physical activity intensities for activity
count.

Methods

Study Design and Population
We conducted a retrospective data analysis study using data
collected as part of the National Institute on Aging’s Baltimore
Longitudinal Study of Aging (BLSA) from participants who
were community-dwelling volunteers free of all major chronic
conditions and cognitive and functional impairment at the time
of enrollment [2]. The data used in this work were from
participants who agreed to wear an accelerometer between July
2015 and January 2019 .

Ethics Approval and Consent to Participate
The BLSA study protocol has ongoing approval from the
Institutional Review Board (IRB) of the National Institute of
Environmental Health Science, National Institutes of Health
("Early Markers of Alzheimer’s Disease [BLSA]", IRB No.
2009-074). Informed written consent was obtained from all
participants.

Accelerometry Data Collection and Export
Data had been collected with a triaxial accelerometer (ActiGraph
GT9X Link; range: ±8 g; frequency: 80 Hz). Participants had
been instructed to wear the accelerometer on their nondominant
wrist for 7 days, except for periods of extended swimming or
bathing. The ActiLife software (version 6.13.4) was used to (1)
export data into GT3X file format, (2) derive and export
minute-level ActiGraph activity count as CSV files, and (3)
export raw acceleration data (in g) as three-dimensional time
series with subsecond-level timestamps into CSV files. The
ActiLife's low-frequency extension (a filtering option that
decreases the lower end of the intensity threshold to increase
sensitivity to low-intensity movements) was used based on
recommendations and findings of greater comparability with
older ActiGraph devices (model 7164) [11]. Hereon, activity
count is used to denote ActiGraph activity count.

Raw Accelerometry Data Quality Control
We used 3 raw data quality check flags (Multimedia Appendix
1) adapted from a set of 9 flags in the NHANES protocol [12].
The selected flags subset represents intuitive flags that are meant
to “determine signal patterns that were unlikely to be a result
of human movement” but are not aimed at identifying nonwear
[12]. A raw data observation was valid if none of the 3 flags
were triggered and invalid otherwise.

Summary Measures of Raw Accelerometry Data
Commonly used minute-level measures—monitor-independent
movement summary, Euclidean norm minus one, mean
amplitude deviation, and activity intensity (Multimedia
Appendix 2 [4, 7-9])—were calculated using raw accelerometry
data. With R software (version 3.6.3; The R Project), we
developed and used SummarizedActigraphy R package to
compute the measures. SummarizedActigraphy is a package
that provides a unified data interface to compute a range of
measures; it references original software for computing
monitor-independent movement summary (R package:
MIMSunit [13], version 0.9.2) and calibrating data for
computation of Euclidean norm minus one (R package: GGIR
[14], version 2.3).

Minute-Level Accelerometry Data Preprocessing
We defined minute-level data flags that represented whether
the device was being worn or not using the get_wear_flag
method (R package: arctools [15]; version 1.1.4), which
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implements a wear status detection algorithm based on activity
count data [16]. A given minute was classified as nonwear if it
belonged to a 90-minute interval with consecutive 0-values in
activity count data; otherwise, the minute was classified as wear.
A given minute was valid if no raw data-level quality control
flags had been triggered within the minute and it had been
classified as wear, and invalid otherwise. A valid day was
defined as a day (12:00 AM to 11:59 PM) with no more than
10% (144 minutes) [17] invalid minutes. Only data from
participants who had at least 3 valid days of data, and only data
from valid days, were included in further preprocessing and
analyses.

Activity count, monitor-independent movement summary,
Euclidean norm minus one, mean amplitude deviation, and
activity intensity data were winsorized [18] to reduce the effect
of extreme values in the data set, by computing the
measure-specific 0.999 quantile and then using it to replace
values that exceeded this quantile.

A separate data set was constructed with imputed data, using a
method described in [19]. Imputation was conducted separately
for each measure: invalid minutes were replaced with
corresponding values from smoothed time series produced using
functional principal component analysis of the original
participant- and day-specific minute-level time series (in which
invalid minutes data had been denoted by NA). We used the
fpca.face method (R package: refund [20], version 0.1.23) for
functional principal component analysis due to its computational
speed and given the large volume of data. The resulting data
set was used in the summary of daily sums of measures values
and in our application example where data without missing
values were needed.

Statistical Data Analysis
The mean daily sums of minute-level measures were computed
for each participant and then aggregated (mean and SD; median
and range) across participants.

Pearson correlation coefficients for 4 pairs of measures—activity
count and monitor-independent movement summary, activity
count and Euclidean norm minus one, activity count and mean
amplitude deviation, and activity count and activity
intensity—were computed for each participant. For each pair,
mean correlations and standard errors were quantified using
intercept-only linear regression with participant-specific
correlation as the outcome. The effects of demographic
characteristics (covariates: age, BMI, and sex) on correlations
were estimated using adjusted linear regression with
participant-specific correlation as the outcome and α=.05 to
determine the statistical significance of coefficients. This
procedure was repeated for secondary analyses with a subsample
(participants’ age ≤65 years).

Harmonization

Mapping
To derive the harmonization mapping, relationships were
estimated using generalized additive modeling for each pair of
measures. The generalized additive models were chosen to allow
flexible adaptation to the data rather than imposing a particular

functional form of the fit. In each model, the outcome was a
minute-level measure (monitor-independent movement
summary, or Euclidean norm minus one, or mean amplitude
deviation, or activity intensity), and a smooth term of
minute-level activity count was set as a predictor. For the smooth
term, cubic regression splines with a basis dimension equal to
30 were used to allow a flexible relationship between the
measure and activity count. Models were estimated with
nonparametric smoothing (method: gam; R package: mgcv [21],
version 1.8.34). Smoothness of the nonlinear effects was
enforced via a second derivative penalty, and parameter selection
was performed using cross-validation [22]. Data from all
participants' valid minutes were used in the model fitting except
for minutes, which had activity count values equal 0. The
activity count=0 exclusion was motivated by a large proportion
of zero values, and the need to estimate the relation for small
activity count values without it being inflated by the large
number of zeros. Relationships were estimated as strictly
monotonic (without monotonicity having been constrained
explicitly). The generalized additive model was used to provide
values for 2-way mapping between activity count and each
measure. All measurements were mapped into activity count,

where (x) represents the activity count value estimated
by mapping the x value of a measure, where measure represents
monitor-independent movement summary, Euclidean norm
minus one, mean amplitude deviation, or activity intensity.

Evaluation
To assess mapping accuracy in estimating physical activity
volume statistics, total activity count (the sum of minute-level
activity count values from a day) was computed for each

participant, using activity count data and , and the
difference was defined the estimation error. Estimation error
was summarized by calculating mean percentage error (MPE),
mean absolute percentage error (MAPE), median percentage
error, and median absolute percentage error for each participant
and aggregated across participants (mean and SD).

To assess whether mapping accuracy depended on participant
activity level, MPE values were plotted against the participant's
average total activity count.

The utility of the mapping for classifying minutes into various
activity intensity classes was assessed. We used activity count
cut-offs derived to (1) separate sedentary and active minutes in
data collected with a sensor worn on nondominant wrist in older
adults [23], (2) separate sedentary from light and (3) light from
moderate-to-vigorous activity intensity levels in data collected
with a sensor worn on a nondominant wrist in young to older
adults [24]. In the classification task, for each minute, the true
value was defined based on whether activity count > cut-off,

and the predicted value was defined based on whether 
> cut-off. Accuracy, sensitivity, and specificity were computed
for each participant and aggregated across participants (mean
and SD).

Minute-Level Patterns of Daily Physical Activity

Minute-level activity count and  were used to estimate
smoothed 24-hour time series of median activity count for age
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groups <60 years, 60-67 years, 68-74 years, and ≥75 years, for
which 24-hour time series of median activity count have
previously been published [25]. Activity count–based and

-based estimates were compared by calculating MAPE
defined as sum of absolute value of the difference between a
pair of estimates divided by sum of activity count-based
estimates.

Results

Population Characteristics
Data from 655 individuals (Table 1) were included in the
analyses. The mean age was 69.8 (SD 14.2, range 22-97) years.
There was a higher proportion of women (357/655, 54.5%) than
men (298/655, 45.5%). The racial composition reflected that of
the BLSA enrollment [2]. Of the 655 participants, 445

participants (67.9%) were White, 157 (24%) were Black, 44
(6.7%) were classified as other race, and 9 participants (1.4%)
did not provide this information. Almost 96% of participants
(628/655, 95.9%) self-reported good, very good, or excellent
health. The prevalences of hypertension, high blood cholesterol
levels, and osteoarthritis were 43.5% (285/655), 52.8%
(346/655), and 48.2% (316/655), respectively. Participants had
a median of 6 (range 3-7) days of valid accelerometry data; for
valid days, participants had a mean of 1438 (SD 8) valid minutes
(out of 1440 possible minutes per day).

The mean participant daily sums (Table 2) were 2,204,169 (SD
600,965) for activity count, 11,299.7 (SD 2766.0) for
monitor-independent movement summary, 47.7 (SD 13.3) for
mean amplitude deviation, 30.9 (SD 9.1) for Euclidean norm
minus one, and 4157.6 (SD 1068.8) for activity intensity.
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Table 1. Study sample (N=655) characteristics.

ValueCharacteristic

Sociodemographic

Age

69.8 (14.2)Mean (SD)

72.0 (22.0-97.0)Median (range)

Weight (kg)

77.4 (17.1)Mean (SD)

76.3 (41.1-142.7)Median (range)

Height (cm)

168.0 (9.2)Mean (SD)

167.3 (143.8-196.2)Median (range)

BMI

27.3 (5.0)Mean (SD)

26.6 (17.1-52.5)Median (range)

Sex

357 (54.5)Female count (%)

298 (45.5)Male count (%)

Race

445 (67.9)White count (%)

157 (24.0)Black count (%)

30 (4.6)Chinese count (%)

11 (1.7)Hawaiian count (%)

3 (0.5)Other non-White count (%)

9 (1.4)Not reported count (%)

Sensor wear

Valid days

5.9 (0.4)Mean (SD)

6.0 (3.0, 7.0)Median (range)

Nonwear minutes (/day)

2.0 (7.8)Mean (SD)

0.0 (0.0, 77.0)Median (range)

Valid minutes (/day)

1437.8 (8.0)Mean (SD)

1440.0 (1361.7-1440.0)Median (range)

Health

Self-reported health

628 (95.9)Good, very good, or excellent count (%)

22 (3.4)Fair or poor count (%)

5 (0.8)Not reported count (%)

Medical history

55 (8.4)Myocardial infarction, congestive heart failure, ischemic chest pain,
vascular procedure, or peripheral artery disease count (%)

285 (43.5)Hypertension count (%)
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ValueCharacteristic

346 (52.8)High blood cholesterol count (%)

34 (5.2)Stroke or transient ischemic attack count (%)

74 (11.3)Pulmonary disease count (%)

95 (14.5)Diabetes count (%)

191 (29.2)Cancer count (%)

316 (48.2)Osteoarthritis count (%)

Table 2. Mean daily sum values for physical activity measures.

ValueMeasure

Activity count

2,204,169 (600,965)Mean (SD)

2,157,496 (731,945-5,071,196)Median (range)

Monitor-independent movement summary

11,299.7 (2766.0)Mean (SD)

11,195.2 (4252.3-23,931.5)Median (range)

Mean amplitude deviation

47.7 (13.3)Mean (SD)

46.3 (16.1-108.1)Median (range)

Euclidean norm minus one

30.9 (9.1)Mean (SD)

29.6 (11.8-75.3)Median (range)

Activity intensity

4157.6 (1068.8)Mean (SD)

4085.5 (1529.7-9418.6)Median (range)

Correlations Between Minute-Level Summary
Statistics
Monitor-independent movement summary was most correlated
with activity count (estimated mean 0.988, SE 0.0002), closely
followed by activity intensity (estimated mean 0.970, SE 0.0007,
mean amplitude deviation (estimated mean 0.913, SE 0.0013),
and Euclidean norm minus one (estimated mean 0.867, SE
0.0018) (Table 3).

The estimated effects of age (with female as the reference level)
were not statistically significant in the models for activity count
and monitor-independent movement summary (P=.97), activity
count and mean amplitude deviation (P=.64), and activity count
and activity intensity (P=.64), and were statistically significant
in the model for activity count and Euclidean norm minus one
(P<.001). The estimated effects of BMI on correlations were
statistically significant for correlations between activity count

and mean amplitude deviation (estimate 0.001, SE 0.0003,
P=.001) and those between activity count and activity intensity
(estimate 0.000278, SE 0.0001, P=.04). The estimated effects
of sex (with female as the reference level) were statistically
significant in the models for activity count and
monitor-independent movement summary (estimate –0.002, SE
0.0005, P<.001), activity count and mean amplitude deviation
(estimate –0.01, SE 0.0026, P<.001), and activity count and
activity intensity (estimate –0.01, SE 0.0013, P<.001).

The results of secondary analysis (Table S1 in Multimedia
Appendix 3) closely follow the results obtained from the full
sample (Table 3) for both unadjusted (activity count and
monitor-independent movement summary: difference 0; activity
count and Euclidean norm minus one: difference –0.06; activity
count and mean amplitude deviation: difference 0.02; activity
count and activity intensity: difference 0.01) and adjusted
models.

JMIR Mhealth Uhealth 2022 | vol. 10 | iss. 7 | e38077 | p. 6https://mhealth.jmir.org/2022/7/e38077
(page number not for citation purposes)

Karas et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Summary of intercept-only linear regression and adjusted linear regression with outcome defined as participant-specific correlation between
activity count and other measures (monitor-independent movement summary, Euclidean norm minus one, mean amplitude deviation, or activity intensity).

SexbBMIAgeInterceptModel and response variablea

P valueEstimate (SE)P valueEstimate (SE)P valueEstimate (SE)Estimate (SE)

Unadjusted

——————c0.988042

(0.000232)

Monitor-independent move-
ment summary

——————0.867158

(0.001841)

Euclidean norm minus one

——————0.913412

(0.001320)

Mean amplitude deviation

——————0.969984

(0.000687)

Activity intensity

Adjusted for age, BMI, and sex

<.001–0.001859
(0.000466)

.480.000032
(0.000046)

.970.000001

(0.000016)

0.987969

(0.001744)

Monitor-independent move-
ment summary

.96–0.000206
(0.003678)

.070.000653
(0.000363)

<.001–0.000532

(0.000129)

0.886566

(0.013766)

Euclidean norm minus one

<.001–0.010410
(0.002632)

.0010.000840
(0.000260)

.640.000044

(0.000092)

0.892177

(0.009852)

Mean amplitude deviation

<.001–0.009576
(0.001340)

.040.000278
(0.000132)

.180.000063

(0.000047)

0.962364

(0.005016)

Activity intensity

aCorrelation with activity count.
bFemale was used as the reference.
cNot included in the model.

Mapping Between Minute-Level Summary Measures

Model Fit
Figure 1 shows the estimated association between minute-level
activity count (x-axis) and minute-level monitor-independent
movement summary, Euclidean norm minus one, mean
amplitude deviation, and activity intensity (y-axis). The black

solid line represents fitted values obtained from generalized
additive models.

For a widely used activity count cut-off 1853 [23], the
corresponding cut-offs (Table 4) were 10.558
(monitor-independent movement summary), 0.022 (Euclidean
norm minus one), 0.039 (mean amplitude deviation), and 3.620
(activity intensity).
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Figure 1. Estimated minute-level mapping. A black solid line shows generalized additive model–fitted values of a measure (monitor-independent
movement summary, Euclidean norm minus one, mean amplitude deviation, activity intensity) given the activity count value. The points represent a
subset of the data created by taking every 100th observations from all participant- and minute-specific observations; this subset is the same for all 4
plots. AC: activity count; AI: activity intensity; ENMO: Euclidean norm minus one; MAD: mean amplitude deviation; MIMS: monitor-independent
movement summary.

Table 4. Corresponding values of each measure for activity count cut-off values.

Corresponding valueActivity count
cut-off value

Method

Activity intensityMean amplitude
deviation

Euclidean norm
minus one

Monitor-independent
movement summary

3.6200.0390.02210.5581853Separate sedentary and active in older adults
[23]

5.2730.0570.03315.0472860Separate sedentary and light activity in
young to older adults [24]

7.0250.0780.04619.6143940Separate light and moderate-to-vigorous
activity in young to older adults [24]

Mapping Evaluation
In the task of estimating total activity count, MAPE values were
lowest for monitor-independent movement summary (mean 2.5,
SD 2.4), followed by activity intensity (mean 6.3, SD 5.1), mean
amplitude deviation (mean 11.3, SD 8.4), and Euclidean norm
minus one (mean 14.3, SD 10.3). MPE values were similar for
monitor-independent movement summary (mean 0.2, SD 3.2),
activity intensity (mean 0.3, SD 7.6), mean amplitude deviation
(mean –0.3, SD 13.3), and Euclidean norm minus one (mean
4.6, SD 16.1). The findings for median absolute percentage
error and median percentage error were similar to those for
MAPE and MPE, respectively (Table S2 in Multimedia
Appendix 3).

Based on visual inspection, there was larger variability in MPE
values among participants with smaller mean total activity count
values, but there was no apparent tendency for lower or higher
MPE values based on participants’ average total activity counts
(Figure S1 in Multimedia Appendix 3).

In the task of predicting whether the activity count for a given
minute was above a certain cut-off, for the cut-off equal 1853,
participant-specific classification accuracy (Table S3 in
Multimedia Appendix 3) was the highest for
monitor-independent movement summary (mean 0.981, SD
0.005), followed by activity intensity (mean 0.960, SD 0.012),
mean amplitude deviation (mean 0.928, SD 0.021), and
Euclidean norm minus one (mean 0.904, SD 0.028). Overall,
the accuracy of predicting whether the activity count for a given
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minute was above a certain cut-off was better for higher activity
count cut-off values (ie, accuracy was higher for predicting
whether a given minute has activity count >3940 than for
predicting whether a given minute activity count >2860; Table
S3 in Multimedia Appendix 3). This is consistent with our
observation that the variability along the estimated mapping is
lower for higher activity values (Figure S1 in Multimedia
Appendix 3).

Minute-Level Patterns of Daily Physical Activity
Figure 2 shows the estimated smoothed 24-hour median activity
counts across the previously published age groups: <60-year
old (green; N = 140), 60- to 67-year old (red; N = 102), 68- to

74-year old (blue; N = 129), ≥ 75-year old (orange; N = 284).
Semi-transparent thick colour lines represent results obtained
with activity count.Solid thin colour lines represent results

obtained with .

The -based curves yielded roughly the same
information as the activity count-based curves [25] for each age
group (<60 years: n=140; 60-67 years: n=102; 68-74 years:
n=129; ≥75 years: n=284). MAPE for activity count-based and

-based estimates was the lowest for
monitor-independent movement summary (MAPE 3.2), followed
by activity intensity (MAPE 6.7), mean amplitude deviation
(MAPE 11.1), and Euclidean norm minus one (MAPE 12.5).

Figure 2. Smoothed 24-hour median activity counts per minute for each age group: <60 years (green), 60-67 years (red), 68-74 years (blue), and ≥75
years (orange). Semitransparent thick colored lines represent results obtained with activity count; they are the same for all 4 plots. Solid thin colored
lines represent results obtained with values mapped into activity count from monitor-independent movement summary, Euclidean norm minus one,
mean amplitude deviation, or activity intensity. AC: activity count; AI: activity intensity; ENMO: Euclidean norm minus one; MAD: mean amplitude
deviation; MIMS: monitor-independent movement summary.

Discussion

Principal Results
Correlations between activity count and the other raw data
summary metrics were all large (mean r≥0.87) and were
especially high for monitor-independent movement summary
and activity intensity (mean r≥0.97) (Table 3). After
harmonization, monitor-independent movement summary
allowed for excellent accuracy in predicting total activity count
and sedentary minutes using a cut-off that corresponded to an
activity count cut-off determined using [23]. Our analysis is
especially timely given the recent release of physical activity
data from NHANES 2011-2014 that uses the open-source
monitor-independent movement summary measure.

To the best of our knowledge, the correlation between activity
count and monitor-independent movement summary in
continuous data collected in the free-living environment has
not been previously explored. The activity count measure had
the highest mean participant-specific correlation with
monitor-independent movement summary (mean r= 0.988),
closely followed by activity intensity (mean r=0.97), and mean
amplitude deviation (mean r=0.913) and Euclidean norm minus
one (mean r=0.867). Both monitor-independent movement
summary and activity intensity measures are based on variability
within each dimension, whereas mean amplitude deviation and
Euclidean norm minus one are based on the Euclidean norm of
three-dimensional data; therefore, it is consistent with
expectations that monitor-independent movement summary and
activity intensity behave similarly and demonstrate similar
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correlations with activity count. While we found there were
statistically significant effects of age (in the model for
correlation between activity count and Euclidean norm minus
one: P<.001), BMI (in the model for correlation between activity
count and mean amplitude deviation: P=.001; in the model for
correlation between activity count and activity intensity: P=.04),
and sex (in the model for correlation between activity count and
monitor-independent movement summary: P<.001; in the model
for activity count and mean amplitude deviation: P<.001; in the
model for activity count and activity intensity: P<.001), the
effect sizes were of very small magnitude. In particular, the
analysis showed that monitor-independent movement summary
had a correlation with activity count that did not differ
significantly for age (P=.97) or BMI (P=.48), and differed
significantly (P<.001) between men and women by a magnitude
of 0.002. The results from secondary analysis, with a subsample
of the youngest participants (participants of age 65 years or less;
31.9% of the full sample), were similar to those from the full
sample.

Harmonization mapping can be particularly useful to translate
commonly used cut-off values of physical activity intensity
levels from activity count into measures implemented in
open-source software. For the tasks of predicting sedentary
minutes for an activity count cut-off of 1853 [23], we observed
excellent accuracy for monitor-independent movement summary
(accuracy 0.981) and activity intensity (accuracy 0.960). The
utility of the derived mapping was demonstrated in the example
in which previous findings [25] were replicated. The physical
activity volume daily trajectories for age groups obtained with
activity count were closely matched with those from the
measures, with monitor-independent movement summary
yielding visually almost identical results (MAPE 3.2), followed
by activity intensity (MAPE 6.7), mean amplitude deviation
(MAPE 11.1), and Euclidean norm minus one (MAPE 12.5).

To the best of our knowledge, we are the first to provide freely
available R software (SummarizedActigraphy R package) with
a unified interface for computation of the 4 open-source
measures from raw accelerometry data, with complicated
mathematical formulas distilled into a reader-friendly text
(Multimedia Appendix 2).

Limitations
First, the data were from a sample that consisted of
predominantly middle-aged to older adults (Table 1). However,

we observed that (1) the level of activity of adults in the sample
ranged from sedentary to moderate and vigorous activity, (2)
mapping results did not exhibit any trend based on the average
level of the participant's physical activity, and (3) the variability
of estimates was lower for higher activity values, which suggests
that mapping could prove useful in future studies with younger
(more active) populations [25].

Second, physical activity measures were computed using raw
accelerometry data collected at a frequency of 80 Hz. While
this frequency matches that of physical activity data from
NHANES 2011-2014 [12] that uses the monitor-independent
movement summary measure, caution should be used in adapting
our harmonization mapping to raw data collected at a different
frequency.

Third, data had been collected with sensors worn on the
nondominant wrist only. While we expect the results to be
generalizable to data from sensors worn on the dominant wrist,
we presume that correlations and mapping would not be
applicable to chest- or hip-worn sensors, because physical
activity volume statistics (eg, total activity count) calculated
from raw data collected by these devices are expected to be
substantially lower than when measured at wrist.

Fourth, harmonization mapping was estimated using generalized
additive modeling, which does not offer an easy, closed-form
formula of the transformation. While a closed-form formula
could be obtained using polynomial regression models, the
choice of generalized additive models allowed for thorough
estimation of a relationship between activity count and other
measures in a more flexible way.

Finally, our results may be conditional upon the data
preprocessing methods used; however, we believe that the steps
we performed are commonly done [17,19] and are reasonable
given the obtained data summary statistics and visual quality
checks performed.

Conclusions
Activity count was highly correlated with monitor-independent
movement summary, Euclidean norm minus one, mean
amplitude deviation, and activity intensity. Mapping provides
a way to harmonize accelerometry data sets with different
summary measures; however, further research is warranted to
test the validity of mapping with data collected at a different
frequency or from different body locations.
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