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Abstract

Background: Cognitive behavioral therapy–based interventions are effective in reducing prenatal stress, which can have severe
adverse health effects on mothers and newborns if unaddressed. Predicting next-day physiological or perceived stress can help
to inform and enable pre-emptive interventions for a likely physiologically and perceptibly stressful day. Machine learning models
are useful tools that can be developed to predict next-day physiological and perceived stress by using data collected from the
previous day. Such models can improve our understanding of the specific factors that predict physiological and perceived stress
and allow researchers to develop systems that collect selected features for assessment in clinical trials to minimize the burden of
data collection.

Objective: The aim of this study was to build and evaluate a machine-learned model that predicts next-day physiological and
perceived stress by using sensor-based, ecological momentary assessment (EMA)–based, and intervention-based features and to
explain the prediction results.

Methods: We enrolled pregnant women into a prospective proof-of-concept study and collected electrocardiography, EMA,
and cognitive behavioral therapy intervention data over 12 weeks. We used the data to train and evaluate 6 machine learning
models to predict next-day physiological and perceived stress. After selecting the best performing model, Shapley Additive
Explanations were used to identify the feature importance and explainability of each feature.

Results: A total of 16 pregnant women enrolled in the study. Overall, 4157.18 hours of data were collected, and participants
answered 2838 EMAs. After applying feature selection, 8 and 10 features were found to positively predict next-day physiological
and perceived stress, respectively. A random forest classifier performed the best in predicting next-day physiological stress (F1
score of 0.84) and next-day perceived stress (F1 score of 0.74) by using all features. Although any subset of sensor-based,
EMA-based, or intervention-based features could reliably predict next-day physiological stress, EMA-based features were
necessary to predict next-day perceived stress. The analysis of explainability metrics showed that the prolonged duration of
physiological stress was highly predictive of next-day physiological stress and that physiological stress and perceived stress were
temporally divergent.

Conclusions: In this study, we were able to build interpretable machine learning models to predict next-day physiological and
perceived stress, and we identified unique features that were highly predictive of next-day stress that can help to reduce the burden
of data collection.

(JMIR Mhealth Uhealth 2022;10(8):e33850) doi: 10.2196/33850
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Introduction

Background
Welcoming a new member to the family is cause for celebration
but can also lead to substantial stress, particularly for mothers.
A systematic review of perinatal depression (PD) predictors
identified prenatal stressors as either episodic (eg, life events
or daily hassles) or chronic (eg, parenting stress, perceived
stress, and chronic strain) [1]. Lack of social support, stressful
life events, domestic violence, low socioeconomic status, and
past history of depression contribute significantly to increased
prenatal stress [2,3]. Maternal stress can lead to preterm birth
or low birth weight [4,5], which are leading causes of infant
mortality in the United States [6,7], or structural malformations
[8] and psychosocial impairment [9].

To mitigate these negative outcomes, a number of interventions
have been developed and tested to reduce stress in pregnant
women, often using the principles of mindfulness [10-15] and
cognitive behavioral therapy (CBT) [16-19] in group or
individual format. A key characteristic of many CBT-based
interventions is the inclusion of personal practice or homework
between intervention sessions to facilitate adoption of newly
learned skills [20]. Such homework can take the form of
technologically supported just-in-time (JIT) interventions [21],
which in the case of maternal stress can enhance effectiveness
of stress-reducing techniques. Incorporation of JIT interventions
is facilitated by technology that participants can receive on
mobile phones. Use of JIT interventions is associated with
improvement in mental health symptoms and conditions that
these interventions target [22-24]. However, the timing of
interventions may affect participation [25], especially given
that JIT interventions typically require individuals to perform
an action in the moment to achieve desired outcomes. To
appropriately target stress with JIT interventions, it is necessary
to identify factors that are most predictive of stress to develop
a mechanism to proactively detect and deliver a timely
preventive intervention.

However, there is no singular definition of stress and the
mechanisms underlying physiological and perceived stress are
different, requiring different means of detection and prediction
[26]. Physiological stress that persists from one day to the next,
or residual stress, can be most damaging to neurovascular health
and lead to chronic diseases [27,28]. Although it is unclear how
perceived stress maps onto future disease state, perceived stress
can be debilitating and linked to poor life satisfaction [29]. The
ability to predict next-day stress, whether physiological or
perceived, and to understand predictors of either type of stress
may allow for advanced scheduling of JIT interventions that
help to reduce or prevent next-day stress.

Machine learning models have been used to successfully predict
both physiological and perceived stress; however, few models
predict beyond the near future while also explaining the driving
forces behind the predictions. Several sensing systems have
been designed to forecast physiological stress in the future

[30,31]. However, studies predicting physiological stress are
often performed in a laboratory owing to the limited feasibility
of frequent stress assessments in the wild [32]. Other studies
have captured both perceived and physiological stress but only
consider physiological stress when determining ground truth
for the machine-learned models [33]. The few examples of
next-day stress prediction using prior days’ data [34,35] either
focused on testing the difference between generalized and
personalized models or focused primarily on prediction of
perceived stress.

Being able to predict stress earlier and with minimal data
collection burden while assessing the interpretability of the
model will allow researchers to improve their understanding of
the learned model, increasing their understanding of how the
model determines stress the next day and informing the design
of JIT intervention. Models can use global explanations, which
attempt to describe the overall functionality of the learned model
(eg, feature importance), or local explanations, which are aimed
at explaining the model’s reasoning for a specific instance.
Some types of explanations such as Shapley Additive
Explanations (SHAP) [36] enable greater interpretability of
models and are considered model agnostic, providing both global
and local explanations. SHAP can be used to create global
explanations by aggregating SHAP values to create feature
importance, summary, and dependence plots. SHAP values are
feature attributions that act as driving forces either contributing
to the prediction or not. Ultimately, these results can inform
means of low-burden early stress detection, which in turn
enables scheduling of JIT intervention content that prevents
future stress and its correlates.

Objectives
In this pilot study, we aimed to predict next-day stress in
pregnant women who participated in a perinatal stress reduction
course. Specifically, we obtained data from sensors and
participant self-report and then used several machine learning
models to find the best performer. We evaluated the potential
of our model to predict next-day stress and applied an
explainability model to provide meaning to our predictions.

Methods

Study Design
We collaborated with a private university’s obstetrics and
gynecology clinic to recruit pregnant women into our study. To
be eligible for enrollment, women had to be aged ≥18 years,
enrolled at 10 to 18 weeks’ gestation with a singleton pregnancy,
and own a smartphone. Women were excluded if they had a
known medical or pregnancy complication that may place their
infant at risk for neurological disorders or significant mental
health disorders.

Upon enrollment, participants received a 12-week
person-to-person intervention called the Mothers and Babies
(MB) course [19] from a master’s-level social worker and wore
a mobile electrocardiography (ECG) sensor, BioStampRC
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(MC10), to capture heart rate (HR) data (Figure S1 in
Multimedia Appendix 1). Throughout the study, participants
received SMS text messages on their mobile phones in the form
of ecological momentary assessment (EMA) surveys for
self-reported stress assessment. During the first intervention
session, participants were shown the BioStampRC sensor and
trained to use it. Subsequent MB intervention sessions (1:1
interventions) were delivered every 1 to 2 weeks by the same
social worker, either in person or through the phone. At the end
of 12 intervention sessions, participants returned the sensor and

were asked to provide feedback on the usability and wearability
of the sensor, as well as the acceptability of the EMA surveys
through a semistructured exit interview. The women received
US $200 compensation for completing the study.

After the completion of the study, we performed data extraction
and preprocessing and then applied machine learning models
and a SHAP explainability model to identify predictors of
next-day physiological and perceived stress. Overviews of the
study design and MB program are shown in Figures 1 and 2,
respectively.

Figure 1. Data collection and processing pipeline for predicting next-day stress. CBT: cognitive behavioral therapy; EMA: ecological momentary
assessment.

Figure 2. Mothers and Babies program intervention schedule and content. JIT: just-in-time.

Ethics Approval
The study was approved by Northwestern University’s
institutional review board (approval number: STU00205776),
and all women provided written informed consent before
enrollment.

MB Course
The MB course is an effective, evidence-based intervention
originally developed for preventing postpartum depression [37].
The MB course comprises a dozen 1:1 sessions, each designed
to last for 15 to 20 minutes. The intervention provides a toolkit
of cognitive behavior approaches to promote increasing healthy
behaviors, helpful thoughts, and social support within the
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context of parenting and bonding with one’s baby. Throughout
the course, a variety of mindfulness practices are introduced
along with mindfulness tips to support integration into daily
life. The first 2 MB sessions introduce the cognitive behavior
model and discuss the relationship between one’s mood and
stress and one’s behaviors, thoughts, and social interactions.
The pleasant activities module (sessions 3-5) focuses on
identifying and increasing engagement in pleasant activities
alone, with others, and with one’s baby. The thoughts module
(sessions 6-8) focuses on strategies to increase helpful thoughts
and decrease unhelpful thoughts. The contact with others module
(sessions 9-11) focuses on increasing positive and supportive
interactions with other people.

The MB sessions were delivered weekly or every other week,
occasionally with 2 sessions delivered in 1 visit to facilitate
timely completion of the intervention, allowing for participant
scheduling needs. In addition, participants received a JIT
intervention, consisting of 4 SMS text messages, every other
day at 7:45 PM on their mobile phones after each completed
1:1 intervention. The SMS text messages included brief
messages and links to external content (eg, worksheets, videos,
and guided mindfulness practices) and were designed to
reinforce the most recent 1:1 intervention content and to
encourage skill practice so that the skills become more
frequently used to manage stress in one’s daily life [38].

Assessments
Baseline demographics and pregnancy history were collected.
Depression symptoms at baseline were measured using the
Edinburgh Postnatal Depression Scale (EPDS), a validated
10-item self-report assessment that is the most frequently used
PD screening tool. The EPDS assesses symptoms of anxiety
and depression, both of which are frequent features in perinatal
mood disorders and excludes symptoms that are commonly
experienced during pregnancy and the postpartum period, such
as changes in sleep and appetite. Individual responses are scored
on a scale from 0 to 3, with 0 indicating no symptoms of
depression and 3 indicating high frequency of depression
symptoms. The total score ranges from 0 to 30, with higher
scores indicating increased severity and frequency of depression
symptoms.

We collected ECG data using a patch-like flexible sensor,
BioStampRC, that was placed on the left side of the participant’s
chest. The BioStampRC is effective in using HR-based features
to predict physiological and perceived stress in pregnant women
[39]. Participants used a study-provided tablet to start and stop
sensor recording and to upload completed recordings to a secure

cloud platform at the end of the day. Participants were asked to
wear the device during waking hours throughout the 12-week
study and could take a few days off to prevent adverse effects
of wearing a strong adhesive in the same location every day.

At the time of study enrollment, all participants were asked to
identify their usual daily wake and sleep times, and daily EMA
questionnaires were programmed to be sent 5 times a day at
evenly distributed intervals within each participant’s waking
hours. Each EMA questionnaire consisted of 12 questions (Table
S1 in Multimedia Appendix 1).

Model Development

Sensor Data Processing
During the processing pipeline, we first filtered out noisy
segments of the ECG signal and calculated interbeat intervals
(IBIs) for each 1-minute segment. We then extracted HR
variability (HRV)–based features and classified each minute as
physiological stress positive or physiological stress negative
(Figure 3).

To remove noisy signals caused by sensor deformation because
of skin stretching, we first segmented the cleaned ECG signal
using a window size of 1 minute with 30 seconds of overlap.
Noise was filtered using an ensemble support vector machine
(SVM) and neural network noise model described by Zhang et
al [40]. The model involves further segmenting of each 1-minute
ECG signal into 0.6-second intervals, extracting 3 HRV-based
features from the R peaks detected, running both pretrained
SVM and neural network classifiers, and classifying each
interval as clean or noisy based on agreement between both
models. Within each segment, we discarded segments with
>20% noise. We further analyzed the cleaned 1-second segments
using a reliability metric: the ratio of the number of data points
collected in 1 second divided by the expected sampling rate.
The segments were defined as high quality if the reliability was
>80%, and low-quality segments were discarded.

Next, we repeated segmenting of clean ECG signals by 1-minute
windows with 30 seconds of overlap to extract R peaks and
IBIs. We then ran a Shannon energy based algorithm with
modifications of nonlinear transformation and first-order
Gaussian differentiator for extracting the initial set of R peaks
[41,42]. Subsequently, we used the criterion beat difference
[43] to filter out R peaks that were inconceivable (ie, out of
normal heart rhythm range for humans). We then extracted
timestamps between each pair of consecutive R peaks to
calculate the IBIs.
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Figure 3. Sensor data processing pipeline. The red lines denote noisy segments of the signal by noise model. Red dots are R peaks, and red crosses are
invalid peaks filtered by CBD. CBD: criterion beat difference; ECG: electrocardiography; HRV: heart rate variability; IBI: interbeat interval.

Feature Extraction
A full list of features extracted for the model is provided in
Table S2 in Multimedia Appendix 1.

Using the minute-level IBIs for each participant per day, we
extracted 30 HRV-based features, and from these, we extracted
17 duration-based features. We calculated the average of each
feature within a single day to define the day-level feature value.
Given that prolonged stress may have different lasting effects
compared with brief periods of physiological stress, we
calculated an additional 17 duration-based features, which
calculated the time spent physiologically stressed while wearing
the sensor. As there is no formal duration that defines a stressful
event, we crafted features that captured a range of minimum
consecutive stress-positive window sizes (1, 2, 5, and 10
minutes). To create the features, we first adapted a pretrained
SVM grid-search model from King et al [39] that classifies
minute-level ECG signal as physiologically stress positive or
physiologically stress negative. Specifically, the pretrained
SVM model takes 30 statistical features extracted from R-R
intervals (the time elapsed between 2 successive R-waves of
the QRS signal on the electrocardiogram) and peaks by each
minute of ECG signal and outputs the ground truth of stress
positive or stress negative. Next, we used 1-, 2-, 5-, and
10-minute consecutive windows to derive total consecutive
minutes and episodes from minute-level stress minutes.

We extracted 13 EMA-based features. A total of 12 questions
were sent, with 7 questions inquiring about negative emotions
and 5 questions inquiring about positive emotions (Table S1 in
Multimedia Appendix 1).

These questions included the 4-item Perceived Stress Scale
(PSS; ie, the PSS-4) [44], a widely used perceived stress
evaluation questionnaire. The response options for each question

of the PSS-4 range from 0 to 4, with the final range between 0
and 16, with 0 indicating no stress and 16 indicating very high
stress. We calculated the mean score of the responses for each
question per day to obtain the 12 daily scores as EMA-based
features. By averaging responses to all the PSS-4 questions in
a day, we derived the 13th EMA-based feature.

The following 4 intervention-based features were extracted from
the 1:1 interventions and JIT interventions: intervention day
(ie, whether the prior day was 1:1 intervention day), count
intervention (cumulative number of 1:1 interventions received
up to the prior day), JIT intervention day (ie, whether a JIT
intervention was sent the prior day), and count JIT intervention
(cumulative number of JIT interventions received up to the prior
day). As the timing of intervention distribution varied, the count
JIT intervention and count intervention variables enabled us to
factor in the cumulative number of interventions. If either
cumulative variable negatively predicted next-day stress, we
were able to suggest that length of participation was negatively
correlated with stress levels. If JIT intervention day and
intervention day negatively predicted next-day stress, we were
able to suggest short-term effectiveness of the interventions
because they only indicated prior-day information.

We factored in the following 5 participant characteristics as
covariates: age, gestational age at enrollment, number of prior
pregnancies, number of prior children, and EPDS score (Table
S3 in Multimedia Appendix 1 shows all participant
characteristics).

Physiological Stress: Ground Truth
To establish ground truth for next-day physiological stress, we
first fed the 30 HRV-based features to the model described by
King et al [39] to determine the minute-level stress
classification. From the model output, we calculated total
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consecutive stress minutes from all 1-minute–level classification
results. A day was labeled as physiologically stress positive if
the total number of consecutive stress minutes was >50%, based
on previously published literature [45].

Perceived Stress: Ground Truth
Ground truth for perceived stress was labeled by calculating the
average value of PSS-4 scores throughout a given day. PSS-4
was calculated using the Cohen Perceived Stress Scale by
combining the 4 PSS items (PSS-Control, PSS-Overcome,
PSS-Confident, and PSS–Your Way). A day was labeled as
perceived stress positive if the PSS-4 score was >4.7 [46].

Results

Participants
A total of 16 pregnant women enrolled in the study.
Demographics and data captured are shown in Table 1. In total,
the participants collected 4157.18 hours of data over a total of
344 days, of which 256 (74.4%) were consecutive, with 114

(44.5%) being nonstressed days and 142 (55.5%) being stressed
days. After filtering out noise, 89.2% (3708/4157.18) of the
data remained clean for prediction. Participants wore the sensor
for a mean of 21.5 (SD 5.21) days, with a mean of 16 (SD 3.28)
days being consecutive days. Of the 16 participants, 14 (88%)
had consecutive events of perceived stress recorded. Across all
participants, a total of 956 days with EMA records were
collected, with 881 (92.2%) being consecutive days. Among
these 881 consecutive days, there were 412 days (46.7%) being
nonstressed and 469 days (53.3%) being stressed. Participants
answered a mean of 2.9 (SD 0.89) EMA questions per day.
These results are supported by Wakschlag et al [45], who found
that pregnant women experience stress an average of 49.9% of
the day. Of the 16 participants, 3 (19%) did not wear the sensor
for any consecutive days (necessary to predict next-day stress),
and therefore data from these participants were discarded. Tables
S4 and S5 in Multimedia Appendix 1 shows the quantity of
sensor data and EMA data, respectively, collected by each
participant.

Table 1. Participant characteristics and the amount of sensor and ecological momentary assessment (EMA) data captured (N=16).

ValuesData captured

35 (30-39)Age (years), median (range)

11.5 (10-17)Gestational agea (weeks), median (range)

1 (0-2)Number of prior children, median (range)

2 (1-5)Number of prior pregnancies, median (range)

7.2 (3.4)EPDSb score, mean (SD)a

Sensor data capturedc

23 (5-68)Days worn, median (range)

16 (4-59)Consecutive days worn, median (range)

245.6 (65.6-797.9)Total wear time (hours), median (range)

87.9 (64.9-98.9)Clean data (%), median (range)

13.0 (1.55; 9.2-14.5)Hours worn per day, mean (SD; range)

EMA data capturedc

71 (30-94)Days answered, median (range)

65.5 (24-93)Consecutive days answered, median (range)

190 (64-346)Total EMAs answered, median (range)

2.9 (0.88; 1.2-4.6)EMAs answered per day, mean (SD; range)

aAt enrollment.
bEPDS: Edinburgh Postnatal Depression Scale.
cData from 3 participants were outliers in wear time and thus excluded from analysis.

Model Validation

Baseline Model Evaluation
We tested 6 widely used machine learning models using the
scikit-learn Python package to evaluate the importance of input
variables on next-day prediction of perceived and physiological
stress [47-49]. In baseline models, we included the following
models with default hyperparameters: gradient boost machine

(min_samples_split: 5; min_samples_leaf: 2; max_depth: 3),
SVM (kernel: rbf; C: 1.0; gamma: “scale”), adaptive boosting
(n_estimators: 50), naïve Bayes, decision tree
(min_samples_split: 5; min_samples_leaf: 2; max_depth: 3),
and random forest (n_estimators: 10; min_samples_split: 5;
min_samples_leaf: 2; max_depth: 3). In all baseline models,
we used all 69 features as input to predict next day’s
physiological and perceived stress and applied 5-fold
cross-validation on each model. Each fold consisted of 80%
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training data and 20% testing data randomly selected from all
participants combined. We adopted commonly used evaluation
metrics (precision, recall, and F1 score) for binary classification
[50]. The random forest classifier performed best across both
types of stress, with an average F1 score of 81.9% when
predicting physiological stress and 72.5% when predicting
perceived stress.

Correlation-Based Feature Subset Selection
We used correlation-based feature selection (CFS) [51] on our
set of 69 features (4 intervention related, 5 covariates, 30 HRV
based, 17 duration based, and 13 EMA based). CFS helps
evaluate the intrinsic correlations within features to avoid
redundancy and high feature-class correlation to maintain or
increase predictive power. CFS helped to reduce the number of
features, which allowed us to understand which data we may
not need to collect in the future or to explain which features are
not contributing to the resulting prediction.

Bayesian Optimization
In addition to CFS for selecting the optimal subset of features,
we adapted Bayesian optimization based on the work of Snoek

et al [52] and the Python implementation package built by
Nogueira [53]. In Bayesian optimization, the general
performance of the selected machine learning algorithms was
modeled as a sample from a Gaussian process, and the nature
of the Gaussian process helped to optimize and tune the
hyperparameters to further improve the model performance.

Combination of Feature Types
To reduce the burden of data collection by removing features
without sacrificing significant predictive power (as measured
by the F1 score), we ran random forest with 5-fold
cross-validation with various combinations of sensor-, EMA-,
and intervention-based data. For both types of stress, we used
6 combinations of data: sensor only, EMA only, intervention
only, sensor with EMA, intervention with EMA, and
intervention with sensor. We then compared the results with
those of a model that used all types of data. For physiological
stress predictions, with any combination of data types, the
average F1 score remained >73% (Figure 4). For perceived
stress predictions, only combinations with EMA data continued
to perform well (Figure 5).

Figure 4. 5-fold cross-validation of next-day physiological stress by subset of feature types. EMA: ecological momentary assessment.
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Figure 5. 5-fold cross-validation of next-day perceived stress by subset of feature types. EMA: ecological momentary assessment.

Model Performance
First, CFS was applied to select the subset of features used to
build physiological and perceived stress models. Next, we
applied Bayesian optimization to all the baseline models.
Random forest outperformed the rest of the models after the
hyperparameters were optimized (n_estimators, criterion,
max_depth, min_samples_split, and max_features) using a range
of 200 values for each continuous hyperparameter (eg,
n_estimators) and the maximum number of options for each
categorical hyperparameter (eg, criterion). The detailed

hyperparameters after optimization are presented in Table S6
in Multimedia Appendix 1. The resulting F1 score increased to
83.6% when predicting physiological stress and 74.4% when
predicting perceived stress.

Figures 6 and 7 show the results of using the 6 different
classifiers to predict next-day physiological stress and perceived
stress, respectively, and show F1 scores in descending order
using the associated subset of features identified by CFS. These
data in table format are shown in Tables S7 and S8 in
Multimedia Appendix 1.
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Figure 6. Predicting next-day physiological stress by using 6 different machine learning models using 5-fold cross-validation. Boxes indicate the IQR,
whiskers indicate the minimum and maximum, and solid lines indicate the median. AdaBoost: adaptive boosting; GBM: gradient boosting machine;
SVM: support vector machine.

Figure 7. Predicting next-day physiological stress by using 6 different machine learning models using 5-fold cross-validation. Boxes indicate the IQR,
whiskers indicate the minimum and maximum, and solid lines indicate the median. AdaBoost: adaptive boosting; GBM: gradient boosting machine;
SVM: support vector machine.

Feature Importance
We applied SHAP on the 8 features selected by the random
forest model (because random forest performed best with the
highest F1 score) to predict physiological stress. The top 5
features ranked by mean absolute SHAP values were as follows:
number of consecutive stress minutes by 10-minute minimum

threshold, count of interventions, number of consecutive stress
minutes percentage by 10-minute minimum threshold, number
of children, and PSS-Overcome (Figure 8). The following were
also predictive but exhibited mean SHAP values of <0.05,
suggesting lower predictive value: JIT intervention day,
intervention day, and binary stress.
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Similarly, SHAP was applied on 10 features selected by the
random forest model to predict perceived stress. The top 6
features ranked by mean absolute SHAP values were as follows:
PSS-4, PSS-Control, PSS-Overcome, number of children, happy
stress, and content stress (Figure 9). The following features
were also predictive but exhibited mean SHAP values of <0.05:
worried stress, binary stress, JIT intervention day, and
intervention day.

The SHAP analysis of physiological stress (Figure 10) showed
that the greater the number of consecutive stress episodes
(minimum of 10 minutes per stress event), the more likely the
following day would also be a physiologically stressful day.

Conversely, the greater the number of count interventions
(cumulative number of 1:1 interventions received up to the prior
day), the lower the physiological stress the next day.

The SHAP analysis of perceived stress (Figure 11) shows that
low values of PSS-4 (<4.0) are characterized by negative SHAP
values; this suggests that lower PSS-4 scores are related to a
lower likelihood of next-day perceived stress prediction. High
values of PSS-Control (>2.0; ie, not feeling as though one can
control important things) were generally associated with positive
SHAP values: predictions of higher perceived stress the next
day.

Figure 8. SHAP summary plot for feature importance in predicting physiological stress. JIT: just-in-time; PSS: Perceived Stress Scale; SHAP: Shapley
Additive Explanations.

Figure 9. SHAP summary plot for feature importance in predicting perceived stress. JIT: just-in-time; PSS: Perceived Stress Scale; SHAP: Shapley
Additive Explanations.
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Figure 10. SHAP dependence plot for physiological stress features with values >0.05. SHAP: Shapley Additive Explanations.

Figure 11. SHAP dependence plot for perceived stress features with values >0.05. PSS: Perceived Stress Scale; SHAP: Shapley Additive Explanations.

Furthermore, we observed a distribution of negative SHAP
values for happy stress scores >20 and content stress scores
>40, suggesting that higher scores in these areas tend to drive
predictions of less stress the following day. However, some
observations with positive SHAP values were distributed across
a wide range of scores; we suspect these were due to interactions
with other features.

The EMA-based feature PSS-Overcome (“Did you feel
difficulties piling up so you cannot overcome them?”) generally
seemed to predict lower levels of next-day physiological stress
but higher levels of next-day perceived stress (Figure 12).
Although the feature number of children scored highly important

when predicting next-day physiological stress and perceived
stress (Figures 8 and 9, respectively), according to the summary
plot (Figure 13), we see variability in how the number of
children a mother has influenced physiological and perceived
stress. Physiologically, having no child (and therefore being
pregnant with a first child) is positively associated with an
increase in physiological stress and having 2 children (and
therefore being pregnant with a third child) is associated with
a reduced probability of physiological stress for the next day.
Perceptually, it seems that the first time a mother is pregnant
while caring for her first child, she experiences greater stress
than when she has no existing children or has already gone
through the experience.

Figure 12. SHAP dependence plot for the shared physiological stress (left plot) and perceived stress (right plot) feature PSS-Overcome. PSS: Perceived
Stress Scale; SHAP: Shapley Additive Explanations.
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Figure 13. SHAP dependence plot for the shared physiological stress (left plot) and perceived stress feature (right plot) number of children. SHAP:
Shapley Additive Explanations.

User Feedback
Of the 14 participants, 10 (71%) completed the full feedback
survey on wearability and usability of the sensor (Figure 14).
Most (7/10, 70%) of the respondents reported that the device
was not painful; however, 20% (2/10) reported extreme pain
because of the accompanying strong adhesive of the device and
repeated application to the same location every day. When
considering physical discomfort when the device was worn,
50% (5/10) of the respondents reported discomfort to be a little
bit or not at all, whereas 50% (5/10) reported discomfort to be
ranging from somewhat to extreme. Most (8/10, 80%) of the
respondents found the device easy to use.

To measure the burden of self-report, we hypothesized that
frequent EMA surveys were burdensome to participants in
longitudinal studies [32] and because of burnout response rates
would diminish as participants continued in the study. In this
study, participant responsiveness peaked at the second week
and continuously decreased throughout the following weeks,
with the lowest response rates in the last week of the study
(Figure 15). In addition, many participants reported concerns
about the frequency of the EMAs. Of the 10 participants who
completed the survey, 4 (40%) stated that EMAs were sent too
often and 2 (20%) stated that the timing was not always
convenient, which may have been because of sending multiple
surveys that were ≥2 hours apart in a day.

Figure 14. Participants’ feedback regarding BioStampRC usability and wearability.

Figure 15. Average response rate to daily EMA surveys per study week. EMA: ecological momentary assessment.
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Discussion

Principal Findings
A total of 16 pregnant women enrolled in our pilot study for
predicting next-day stress in pregnant women participating in
a CBT-based course aimed at reducing stress. Overall, 4157.18
hours of data were collected and participants answered 2838
EMAs. Approximately half (142/256, 55.5%) of the days were
determined to be stressed days, which is in line with the results
from Wakschlag et al [45], who found that pregnant women
experience stress an average of 49.9% of the day. In our study,
we identified sensor-based features that best predicted next-day
physiological stress and EMA-based features that best predicted
next-day perceived stress. Notably, 2 features emerged for
predicting both physiological stress and perceived stress: the
EMA question PSS-Overcome and the number of children the
participant already had.

Our results inform opportunities and challenges with using
various measures to predict perceived and physiological stress
1 day in advance and highlight the temporal and relational
differences between perceived stress and physiological stress.
The significant input variables noted provide opportunity for
predictive systems, including machine learning models, to be
tailored using these variables in scheduling future interventions.
For instance, perhaps sensor data should not be used to predict
next-day perceived stress, which can be better predicted using
EMA data, the low-burden intervention-based data, or
covariates.

Explaining Important Features in Predicting Next-Day
Physiological Stress
After feature reduction using only sensor-based data with
covariates (average F1 score of 78.3%), all the important
features were consistently related to sustained attributes: number
of consecutive stress episodes of a minimum duration of 10
minutes, number of children, percentage of wear time episodes
spent stress positive (10-minute minimum threshold), number
of prior pregnancies, gestation week, age, and depression score.
Most features identified to be predictive are not prone to quick
change, suggesting that the carryover of physiological stress
can be a reflection of chronic stress.

The features with a SHAP value >0.05 that predicted next-day
physiological stress were as follows: number of consecutive
stress episodes of a minimum duration of 10 minutes,
intervention count, number of consecutive perceived stress
episodes of a minimum duration of 10 minutes, number of
children, and the EMA question PSS-Overcome. Overall, the
greater the percentage of episodes classified as stress positive,
the more likely the following day was classified as stress
positive. This suggests that when there is prolonged
physiological stress during a day, it is more likely that the next
day will continue to be physiologically stressful. This could
also indicate that a minimum duration of 5 minutes is required
to reduce the influence of false positives and capture more
substantial episodes of stress.

The high feature importance of count intervention, or the
cumulative number of interventions the participant received,

further suggests the lasting effects of physiological stress and
interventions. The more interventions the participant received,
the more likely they were to have lower stress the following
day up until 4 interventions were received, at which point the
effect flattened. A randomized controlled trial would be useful
to distinguish whether the interventions were actually effective
in lowering next-day stress and whether the mindfulness-based
skills were effective in lowering physiological stress. Moreover,
in-person visits are costly and affect the scalability of the
intervention. Our findings suggest that there may be an optimal
number of in-person visits needed to reduce stress. Further
research may aim to compare the effects of adjusting the number
of in-person visits and its effects on cost and physiological stress
reduction.

Explaining Important Features in Predicting Next-Day
Perceived Stress
Similar to our analysis of physiological stress, we analyzed the
dependencies of features that predicted next-day perceived stress
based on SHAP mean values >0.05. The highly predictive
features were as follows: PSS-4, PSS-Control, PSS-Overcome,
number of children, happy stress, and content stress. Our results
show that a participant’s perceived ability to control important
things were predictive of perceived stress the following day,
whereas happy stress and content stress were predictive of lower
perceived stress the following day. These results suggest that
there is a lasting effect of perceived stress into the following
day. The findings that perceived stress can carry over because
it may linger in the mind has been identified in previous studies
[54], and our findings confirm that this applies to pregnant
women. In addition, when studying the different combinations
of variable types for their ability to predict next-day perceived
stress, we found that models that excluded EMA features
performed poorly, suggesting that, unlike prediction of next-day
physiological stress, alternative data collection methods do not
replace EMA features. However, our user feedback survey
showed that participants considered the EMAs in our study to
be burdensome, confirming the need for lower-burden self-report
models for detection and prediction of stress; thus, future work
must confirm the most predictive features of next-day stress
before incorporating them into stress-reducing interventions to
ensure that the intervention does not lead to excess user burden
and thus increased stress.

In terms of next-day perceived stress, increased perceptions of
stress can carry over to the following day, as shown in our prior
findings and in previous literature [54]. However, it was
surprising that, generally, higher values of PSS-Overcome were
associated with lower probabilities of next-day physiological
stress. A prior study showed a moderate positive correlation
(r=0.48) between intended in-laboratory stressors and
PSS-Overcome [39]. Our findings suggest that PSS-Overcome
may have a reverse predictive value over time (ie, the next day).
Future research should investigate the predictive value of these
features over time.

Number of Children and Feeling Unable to Overcome
Difficulties
The covariate number of children and the EMA question
PSS-Overcome were ranked as highly important in predicting
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next-day physiological and perceived stress but in opposing
valence. This reinforces the narrative that physiological stress
and perceived stress are conceptually and temporally divergent.
Our results suggest that generally, for any given day, the more
children a participant had, the lower their physiological stress
was predicted to be the following day. This may be explained
by the initial stressful transition into motherhood and gradual
acclimation or accumulation of resilience with each new child.
Simultaneously, when it comes to predicting next-day perceived
stress, participants about to have their second child were
generally more likely to feel stressed the following day. Recent
research suggests that having a second child does worsen
parents’ mental health, in particular for women who often bear
the brunt of child-rearing tasks [55]. Our results suggest that
parents often do not expect that the work in raising a second
child would be exponentially greater after already having a
child. However, a drop in next-day perceived stress during a
third pregnancy may signify that coping strategies for handling
pregnancy and an additional child are learned. These findings
offer a unique perspective into physiological and perceived
experiences of stress through a cross-section of stages
throughout the journey of parenthood. Future studies are needed
to verify our findings through a longitudinal study.

Future of Mobile Health Systems in Mental Health
Prediction and Intervention
Future work in developing mobile health systems that detect
physiological and perceived incidences of problematic mental
health episodes should investigate and compare the predictive
value of sensor-captured data, self-reported measures, and other
incidentally captured data through means such as intervention
schedules and covariates. In this study, we investigated 2 types
of chronic stress: perceived stress and chronic strain, which
most consistently predict PD, making it an appropriate target
for PD prevention both psychologically and physiologically [1].
Using a multimodal detection system allowed us to not only
identify features that most strongly predicted physiological and
perceived stress but also allowed us to discover how to minimize
the features that are necessary to make next-day predictions.
Other developers of mobile health systems for mental health
detection may also consider identifying how specific episodes
manifest physiologically and perceptually. Ultimately, to create
an effective predictive mobile health system with JIT
interventions, each component—sensor, EMA, and
intervention—must be sustainable and usable.

The accompanying strong adhesive used in the sensors for
physiological stress detection was reported by 20% (2/10) of
the participants to cause extreme physical pain because of
repeated application to the same location every day, which is a
barrier to creating such a sustainable system. Prolonged wear
and comfort are critical because our findings highlight the
importance of predicting 10-minute bouts of physiological stress
through sensor data as potential indicators of chronic strain that
is likely to persist the following day. In addition, short battery
lifetime is a barrier to extended wear. To collect more robust
data, increasing battery lifetime and sensor size may stand in
opposition to the comfort of participants. Future work should
investigate finding a balance between the sensor’s robustness
and user willingness to wear it.

In the absence of costly and possibly uncomfortable sensors,
EMAs were a pathway to predicting next-day perceived or
physiological stress. However, responsiveness to EMAs
decreased after the first 2 weeks. Studies have shown that
user-friendly interfaces and directly useful features such as
allowing the data to be viewable to participants and increasing
their self-awareness and tracking their progress can increase
engagement with EMAs [56,57]. Creating a sustainable system
that incorporates the collection of perceived mental health status
will require directly providing more value to users. Furthermore,
as perceived stress is malleable to psychological intervention
whereas chronic stress is not, perceived stress is a viable
intervention target [45,58].

Incidentally captured data in the form of interventions,
covariates, or other nonsensor passively captured data offer
additional opportunity to predict next-day mental health
concerns. This category of features is low burden for individuals
to collect and may still be strong predictors. These data may
also offer more data in the form of contextualization to create
a robust system of sensing and intervention at the most
opportune times [59,60]. For example, knowing the timing and
effectiveness of a recently completed intervention may allow a
system to recommend related interventions in the future.

Limitations
To learn about the feasibility of wearing an ECG sensor
longitudinally, we conducted a study in a natural setting, but
this presents unavoidable natural variations in wear time. For
instance, over the 12-week period when participants wore the
device, the average wear time was 11.5 hours per day. Although
most participants found the device easy to use, albeit somewhat
painful (because of the repeated application of the strong
adhesive in the same location), the disagreement between
perceived stress and physiological stress could be a consequence
of participants not wearing the device specifically during
stressful moments of the day. Although minutes-ahead predictors
may hold for short-term studies, challenges with wearability
[61] and sensor quality [62] over time will still likely affect
prediction accuracy. Our analysis is limited by the distribution
of the participants’ ages, which were in the range of 30 to 39
years. Although this was not intentional, it allowed us to collect
data from a distribution of first-time pregnancies and
non–first-time pregnancies. However, these data do not reflect
mothers who may have had children earlier or later in life.

Conclusions
In this work, we used machine learning and SHAP to predict
and explain the relationships between potential predictors of
next-day physiological stress and perceived stress. We built
interpretable models to predict next-day physiological stress
with an F1 score of 83.6% and next-day perceived stress with
an F1 score of 74.4%. We further identified unique features
such as number and percentage of consecutive stress episodes
of a minimum duration of 10 minutes to be predictive of
next-day physiological stress. Using this technique, we evaluated
the feature space of intervention-, sensor-, and EMA-based data
to find features that can predict next-day physiological stress
and perceived stress. Our results show that it is possible to
predict next-day physiological and perceived stress while
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reducing the burden of data collection. Our study is the first of
its kind in terms of assessing pregnant women over a period of
12 weeks (vs a single day in the study by King et al [39]);
however, future studies should validate our models with a larger

participant sample. Although tomorrow’s stress is imminent,
future stress research should consider predicting further future
stress at other time points such as the following week to
understand the sustained predictive value of these features.
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