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Abstract

Background: Over the past few decades, there has been a rapid increase in the number of wearable sleep trackers and mobile
apps in the consumer market. Consumer sleep tracking technologies allow users to track sleep quality in naturalistic environments.
In addition to tracking sleep per se, some sleep tracking technologies also support users in collecting information on their daily
habits and sleep environments and reflecting on how those factors may contribute to sleep quality. However, the relationship
between sleep and contextual factors may be too complex to be identified through visual inspection and reflection. Advanced
analytical methods are needed to discover new insights into the rapidly growing volume of personal sleep tracking data.

Objective: This review aimed to summarize and analyze the existing literature that applies formal analytical methods to discover
insights in the context of personal informatics. Guided by the problem-constraints-system framework for literature review in
computer science, we framed 4 main questions regarding general research trends, sleep quality metrics, contextual factors
considered, knowledge discovery methods, significant findings, challenges, and opportunities of the interested topic.

Methods: Web of Science, Scopus, ACM Digital Library, IEEE Xplore, ScienceDirect, Springer, Fitbit Research Library, and
Fitabase were searched to identify publications that met the inclusion criteria. After full-text screening, 14 publications were
included.

Results: The research on knowledge discovery in sleep tracking is limited. More than half of the studies (8/14, 57%) were
conducted in the United States, followed by Japan (3/14, 21%). Only a few of the publications (5/14, 36%) were journal articles,
whereas the remaining were conference proceeding papers. The most used sleep metrics were subjective sleep quality (4/14,
29%), sleep efficiency (4/14, 29%), sleep onset latency (4/14, 29%), and time at lights off (3/14, 21%). Ratio parameters such as
deep sleep ratio and rapid eye movement ratio were not used in any of the reviewed studies. A dominant number of the studies
applied simple correlation analysis (3/14, 21%), regression analysis (3/14, 21%), and statistical tests or inferences (3/14, 21%)
to discover the links between sleep and other aspects of life. Only a few studies used machine learning and data mining for sleep
quality prediction (1/14, 7%) or anomaly detection (2/14, 14%). Exercise, digital device use, caffeine and alcohol consumption,
places visited before sleep, and sleep environments were important contextual factors substantially correlated to various dimensions
of sleep quality.

Conclusions: This scoping review shows that knowledge discovery methods have great potential for extracting hidden insights
from a flux of self-tracking data and are considered more effective than simple visual inspection. Future research should address
the challenges related to collecting high-quality data, extracting hidden knowledge from data while accommodating within-individual
and between-individual variations, and translating the discovered knowledge into actionable insights.

(JMIR Mhealth Uhealth 2023;11:e42750) doi: 10.2196/42750
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Introduction

In tandem with the advent of consumer wearable technologies,
there has been a growing interest in using consumer sleep
tracking technologies for personal health management. Being
aware of the importance of having a good night’s sleep, many
individual users are routinely monitoring their sleep [1-3], and
sleep tracking has been a popular topic, especially in the
quantified-self community. Consumer sleep tracking
technologies are largely divided into 2 types: smartphone
dependent and smartphone independent. Smartphone-dependent
sleep tracking technologies leverage the integrated sensors of
a smartphone (eg, accelerometer, gyroscope, and microphone)
to measure body movements and ambient sound, based on which
a user’s sleep states can be estimated. Smartphone-independent
sleep tracking technologies use independent hardware with
multiple sensing modalities, such as accelerometers and
photoplethysmography. These devices often come in the form
of a wristband (eg, Fitbit [Fitbit Inc] and Apple Watch [Apple]),
headband (eg, SleepSheperd [Sleep Shepherd] and Neuroon
[Vandrico Inc]), or finger ring (eg, Oura [Oura Health Oy]),
and they rely on proprietary sleep staging algorithms to calculate
sleep metrics based on measurable physiological signals [4].
The accuracy of these consumer technologies has been
significantly improved over the years. Recent models have
proven to be reasonably accurate, especially in measuring the
time of sleep onset and offset, total sleep duration, and sleep
efficiency (SE) [5-7]. A recent study comparing 7 consumer
sleep tracking devices with polysomnography (the gold standard
of sleep measurement) demonstrated that their validity could
outperform medical-grade actigraphy [6]. In the past decade,
sleep tracking has become one of the most studied topics in the
research field of personal informatics. At the intersection of
ubiquitous computing, human-computer interaction, and sleep
science, researchers from multiple disciplines have made joint
efforts to investigate the validity of existing consumer sleep
tracking devices [5-10], develop accurate sleep staging
algorithms tailored to consumer sleep tracking devices [11-15],
develop smartphone apps for visualizing personal sleep data
[16-19], develop artificial intelligence–based sleep coaching
systems that help people improve sleep hygiene [20], and
understand the challenges for sleep tracking technologies to
eventually improve sleep health [3,21-23]. At a higher level,
sleep tracking studies have mostly been guided by general
self-tracking frameworks, such as the lived informatics model
[24] and the Prevetiver Health care on Individual Level
framework [25]. Both frameworks emphasize the iterative
exploration and analysis of the self-tracking data to gain insight
and drive behavioral changes.

One of the known challenges in sleep tracking is how to
empower layperson users to make sense of their sleep data and
to identify lifestyle or environmental factors that they can
modify for better sleep [22]. In the field of health informatics,
health data analytics could be divided into multiple levels

according to their analytical capabilities [26]. Depending on its
outcomes, health analytics can be descriptive, diagnostic,
predictive, or prescriptive in nature [27]. At the lowest level
lies descriptive analytics, which answers the question, what has
happened? This level of analytics describes data as is without
applying complex calculations and exploration. Common
techniques at this level, such as standard reports and alerts,
focus on categorizing, characterizing, aggregating, and
classifying data to understand the past and current states.
Existing sleep tracking analytics is mostly centered on this level,
which aims to help users gain a nice-to-know validation of their
subjective perception of sleep. At the second level is diagnostic
analytics, which focuses on possible antecedents and answers
the question, why did it happen? This level of analytics requires
extensive exploration and directed analysis and inference based
on existing data to identify the potential problems and their
probable causes. At the third level lies the predictive analytics,
which focuses on the possible consequences and answers the
question, what is likely to happen next? Sleep tracking
technologies at this level should be able to predict users’ sleep
quality in the near or far future by examining their historical
self-tracking data, detecting patterns, and then leveraging the
patterns to forecast. The highest level of analytics is prescriptive
analytics, which answers the question, what should be done
about it? It uses domain knowledge in medicine and health
science in addition to data to generate recommendations for
health interventions (eg, recommendations for better sleep).

Table 1 provides a mapping of the 4 levels of the analytics
framework by Burke [26] for sleep tracking. The descriptive
analytics would focus on answering questions such as “How
many hours did I sleep last night?” “How many awakenings
did I have last night?” and “What is the average deep sleep ratio
during the past one month?” So far, sleep tracking has
predominantly centered on such descriptive analytics, typically
by visualizing data with charts and tables on a dashboard. This
type of application could be meaningful in understanding users’
current sleep patterns. However, with a flux of multiple models
of sensor data, simple data visualization may miss important
patterns that are not easily observable through visual inspection.
As the complexity of sleep tracking data increases, it becomes
necessary to examine the data in a more structured manner using
advanced analytics. For example, diagnostic analytics could
help answer questions such as “Was my sleep normal?” or “Why
did I have so many awakenings last night?” Predictive and
prescriptive analytics could answer questions such as “How
will my sleep quality be in five years if I keep going to bed at
2:00 am?” or “Will I sleep better tonight if I work out 10 minutes
longer in the morning?” To achieve advanced analytics, it is
necessary to combine different streams of contextual information
into a sleep analysis. Although many consumers’ sleep tracking
systems support the simultaneous collection of multiple streams
of contextual information, these data are often visualized
separately and rarely integrated with sleep analysis. Currently,
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there is a paucity of advanced analytics in sleep tracking
research.

Knowledge discovery is the process of finding meaningful
patterns from data, and data mining is a central step within a
knowledge discovery process. Popular data mining techniques,
such as association rules mining and anomaly detection, are
widely used in many application domains to detect hidden
patterns in large data sets [26]. In this paper, we present a
scoping review on the application of knowledge discovery
methods in sleep tracking. Such a review is useful for technical
researchers interested in applying a wide range of machine
learning and data mining techniques to the personal health
domain as well as for sleep scientists who want to leverage the

latest wearable technology combined with a data-driven
approach for personalized and nonpharmaceutical interventions.
Previous reviews on consumer sleep tracking technologies have
dominantly focused on the utility and validity of these devices,
especially in terms of their strengths and limitations relative to
more widely accepted devices [4,28,29]. To the best of our
knowledge, this scoping review is the first to focus on the
advanced data analytics related to sleep tracking. An advanced
data-driven approach has the potential to discover meaningful
patterns or hidden correlations that could be used to guide
behavioral change for better sleep. On the basis of the scoping
review, we highlight the research opportunities for data-driven
sleep computing.

Table 1. Level of analytics and its mapping to sleep tracking.

Mapping to sleep trackingQuestions answeredAnalytics level

“How many hours did I sleep last night?”What has happened?Descriptive

“Why did I have so many awakenings last night?”Why did it happen?Diagnostic

“How will my sleep quality be in five years if I keep going to bed
at 2:00 am?”

What is likely to happen next?Predictive

“Will I sleep better tonight if I work out 10 minutes longer in the
morning?”

What should be done about it?Prescriptive

Methods

Research Questions
This scoping review was guided by the
problem-constraints-system framework, which is widely used
for conducting a literature review in computer science. The
problem-constraints-system framework focuses on 3 different
aspects of a research topic in computing research: a specific
problem of interest (P); systems, applications, or algorithms (S)
for tackling the problem; and constraints (C). After iterative
brainstorming, we proposed the following 4 research questions
(RQs) to anchor the entire review process:

• RQ1: What is the general research trend of knowledge
discovery in sleep tracking?

• RQ2: What sleep quality metrics and contextual factors
were considered, and how were they measured?

• RQ3: What knowledge discovery methods or algorithms
were applied? What knowledge was discovered?

• RQ4: What challenges exist? What are the opportunities
for future research?

Search Strategy and Query String
In this review, we focused on the application of data mining to
identify the relationships between sleep and contextual factors
with consumer wearable devices. Therefore, search results must
contain all 4 pertinent aspects: sleep metrics, contextual factors,
wearable devices, and knowledge discovery. Automated
searches were conducted in a number of databases, including
the Web of Science, Scopus, ACM Digital Library, IEEE
Xplore, ScienceDirect, Springer, Fitbit Research Library, and
Fitabase. As our review was centered on the computing aspect
rather than the clinical aspect of sleep tracking, we used
databases that focus more on engineering and computer science

publications, including the ACM Digital Library, IEEE Xplore,
ScienceDirect, and Springer. PubMed was not used because we
were not interested in cohort studies or medical assessments.
We also included gray literature such as the Fitbit Research
Library and Fitabase because of their relevance to our topics of
interest. The query strings were slightly different for each
database but always contained 4 main keyword combinations:
“sleep,” “lifestyle” AND “contextual,” “data mining” OR
“knowledge discovery,” and “wearable device.” Synonyms
words and words of related concepts (eg, “self-tracking,”
“sensors,” “machine learning,” “correlation,” and “statistics”)
were also listed to avoid missing out on related publications.
The search strategy varied for each search engine, as each of
them had different rules and options. The query string was
truncated in some databases (eg, Web of Science, ScienceDirect,
and IEEE Xplore) either because long query strings resulted in
many irrelevant entries or because of word limit. We included
several types of publications, including journal articles,
conference proceeding papers, workshop presentations, patents,
and gray literature, to gain a broad scope of the research topic.
Editorial articles, theses, and dissertations were also excluded.

Study Selection
The study selection process is shown in the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
flowchart in Figure 1. We applied the following exclusion
criteria to filter out irrelevant papers retrieved from the
databases: (1) studies not related to human sleep (eg, animal
studies and sleep mode of sensor system), (2) clinical studies
aiming at treating sleep disorders, (3) hypothesis-driven
laboratory-based studies using invasive sleep tests (eg,
polysomnography), (4) validation studies focusing on comparing
wearable devices with medical devices, (5) studies focusing on
estimating sleep architecture based on concurrent physiological
signals, and (6) papers not written in English. We retrieved the
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returned entries from each database and imported them into the
web-based review management software Rayyan (Rayyan). All
databases provided tools to export the returned entries in a single
file, except for the Fitbit Research Library and Fitabase. We
exported only 400 of the 2072 papers from the ScienceDirect
because the rest of the papers were not relevant to our review
topic. For the ScienceDirect database, the returned items were
first listed using the “relevant order” tool provided by the
database. We used an a prior condition to include the first 400
items. For the remaining items, we separated them into groups
of 200 items and randomly checked 50 items in each group. We
found that from the 400th item onward, the studies were off the
topic according to our exclusion criteria. Thus, we eliminated
these items because they did not help address our central RQs.

For example, the keyword “contextual” led to the retrieval of
papers in civil engineering on checking bedroom quality with
air condition, ambient light, and noise exposure. Those were
excluded based on the exclusion criterion 1. The keyword
“wearable device” led to the retrieval of papers in electrical and
mechanical engineering on hardware design for sensors,
batteries, and ergonomic design. Those were excluded based
on the exclusion criterion 4. For the Fitbit Research Library, 2
papers were missing because they were either retracted or no
longer available. Entries in Fitabase were screened for duplicity
before manually adding to Rayyan because Fitabase does not
support automatic export. As many of the Fitabase entries were
duplicates of publications from other databases, only 37 papers
were added to Rayyan.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart of article screening process.

In total, 1999 papers were imported to Rayyan. Screening for
duplication and written language was performed automatically
in Rayyan. After the rapid screening step, the first author
performed title and abstract screening and suggested the
inclusion of 341 papers. The second author repeated the title
and abstract screening of the 341 papers while paying special

attention to the exclusion criteria 3 and 5. Any conflicts were
resolved through discussion with the first author. After the
screening and eligibility checks, 29 papers remained. Both
authors read the full text of the 29 papers in detail and finally
selected 14 papers for the scoping review.
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Results

General Research Trend (RQ1)
Ubiquitous and personal sleep tracking has become an active
research area since approximately 2011, when a few pioneer
studies were published in the human-computer interaction
community [17,18,30]. Since then, a large number of studies
on sleep tracking have been published, but most of them are
dominantly centered on the validation of existing sleep tracking
devices or systems [5-10], on the development of new sleep
staging algorithms [11-15], or on the investigation into users’
experience with the technologies [3,21-23]. In contrast, studies
that focus on knowledge discovery in sleep tracking data are
scarce and ad hoc. The screening process identified only 14
relevant studies, of which more than half (8/14, 57%) were
conducted in the United States, followed by Japan (3/14, 21%).
The other publications were from China, Korea, Finland, and
Australia. Only 5 (36%) of the 14 publications were journal
articles, and the rest were conference proceeding papers.
Chronologically, studies by Jayarajah et al [31] and Gelman
and Hill [32] were one of the earliest studies in this field. The
authors developed a binary tree model to predict good and poor
sleep based on app use activity and social time during the day.
Since 2015, the topic of knowledge discovery in sleep tracking
has begun to attract more attention along with the advances in
consumer sleep tracking technologies. As a result, the number
of publications has increased slightly in the subsequent years,
but the total amount is still limited.

A common objective of these studies was to help users gain
insights into how their sleep quality was associated with other
aspects of their daily lives. Some of the specific motivations
are as follows:

• Identify aspects of daily life that demonstrate significant
associations with personal sleep quality from self-tracking
data [16,20,33]

• Highlight the potential for sleep metrics from wearable
devices to provide novel insights into data generated from
a large cohort [34-36]

• Detect aberrant sleep patterns or typical events during sleep
by considering individuals’ sleep baselines [37,38]

• Guide users in designing self-experiments to identify
personal modifiable lifestyle factors for better sleep health
[20]

• Develop a recommender system that provides both general
and personalized recommendations for better sleep health
[20]

The studies reviewed in this paper demonstrated a tendency to
analyze sleep tracking data along with a flux of contextual
factors. These factors were used as independent variables for
predicting sleep quality and, to a lesser degree, for identifying
antecedent events that affect sleep quality. In the scheme of
traditional sleep science studies, only a limited number of
independent variables were considered, and the confounding
effect of noninterested factors needed to be controlled through
a rigid experiment design. In comparison, data collection
experiments in ubiquitous sleep tracking studies are often
conducted in a naturalistic environment, making it challenging
to control for confounding factors. Therefore, advanced data
analysis techniques are required to control the effects of
confounding factors during the analysis. Another line of research
effort is the personalized detection of aberrant sleep. Although
sleep quality assessment may sound straightforward using
clinical standards [39], it remains challenging if personal
differences in sleep needs should be taken into consideration.
Studies in this direction are limited, and we identified only 2
relevant studies [37,40].

Quantification and Measurement of Sleep and
Contextual Factors (RQ2)
Human sleep can be quantified along multiple dimensions, such
as sleep duration, sleep continuity, sleep timing, and subjective
perception of the sleep event [41]. We found that not all studies
used the same set of metrics to characterize sleep quality. Even
the same sleep metric may be capsulated in different
terminologies across studies. To facilitate cross-study
comparisons, we mapped the sleep metrics in each study to
standard clinical terms, whenever possible. Original sleep
metrics that have no corresponding clinical terms were simply
left as they were. As presented in Table 2, the most used sleep
metrics among the reviewed studies were subjective sleep
quality (4 studies), sleep efficiency (SE, 4 studies), sleep onset
latency (SOL; 4 studies), and time at lights off (3 studies). Ratio
parameters such as deep sleep ratio and rapid eye movement
ratio were not used in any of the studies. Moreover, the cutoff
between good and poor sleep varied from study to study. A few
studies have adopted clinical cutoffs, particularly for the
Pittsburgh Sleep Quality Index (5) [31], SE (85%) [42], wake
after sleep onset (30 minutes) [16], and total sleep time (7-9
hours) [16]. The rest chose to use heuristic cutoffs that did not
comply with the clinical guidelines.

JMIR Mhealth Uhealth 2023 | vol. 11 | e42750 | p. 5https://mhealth.jmir.org/2023/1/e42750
(page number not for citation purposes)

Hoang & LiangJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Sleep quality metrics, measurement methods, and cutoff of good or poor sleep.

CutoffClinical term, original term, and measurement method

Subjective sleep quality

Good: ≤5 and poor: >5 [31]; good: ≤7 and poor: >7 [38]Pittsburgh Sleep Quality Index [31,38]

N/AaSleep rating (SleepAsAndroid app) [20]

N/ALeeds Sleep Evaluation Questionnaire [19]

N/ASleep rating (SleepApp) [19]

SEb

Good: ≥95% and poor: <95%SE (Fitbit) [33]

N/AEfficiency (MS Band) [43]

Good: >mean (SD) and poor: <mean (SD)SE (Polar) [40]

Good: ≥85% and poor: <85%SE (Garmin) [42]

SOLc (minutes)

N/AMinutes to fall asleep (Fitbit) [16]

N/ASOL (SleepAsAndroid app) [20]

Good: ≤15, average: 15-30, and poor: >30Sleep latency (Garmin) [42]

N/ATime to fall asleep (MS Band) [43]

Time at lights off

Normal bedtime: median of a participant’s bedtimes; deviation categories were
1-30 minutes, 30-60 minutes, 1-2 hours, 2-3 hours, and ≥3 hours

Bedtime (Fitbit) [35]

N/ABedtime (Fitbit) [37]

N/ABedtime as estimated by the time of the last network signal [36]

Wake after sleep onset (minutes)

Good: ≤20 and poor: >20Awake minutes (Garmin) [42]

Good: ≤30 and poor: >30Minutes awake (Fitbit) [16]

Number of awakenings >5 minutes

Good: ≤1 and poor: >1Awakenings >5 minutes (Garmin) [42]

N/ANumber of wakeups (MS Band) [43]

Time in bed (minutes)

N/ATime in bed (MS Band) [34]

Total sleep time (minutes)

Good: 420-540 and poor: <420 or >540Minutes asleep (Fitbit) [16]

Original metrics (no corresponding medical term)

Good: >90%, normal: 60%-90%, and bad: <60%Sleep ratio=the ratio of the sleep minutes with normal heart rate
versus total sleep time (Fitbit) [44]

N/ANumber of awakenings per hour [20]

N/AAwakening count including restlessness (Fitbit) [16]

N/APermutation entropy of Fitbit measured sleep state time series
[37]

aN/A: not applicable.
bSE: sleep efficiency.
cSOL: sleep onset latency.

Sleep quality metrics were measured using 3 methods:
questionnaire based, app based, and wearable based. The
Pittsburgh Sleep Quality Index was the most widely used

questionnaire to measure the subjective perception of sleep
duration, continuity, efficiency, and satisfaction [31,38]. The
SleepAsAndroid app was used to collect sleep data based on
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user movement patterns in the study by Daskalova et al [20],
and the SleepApp was used to collect users’ subjective sleep
quality ratings in the study by Ravichandran et al [19]. Although
sleep tracking apps such as SleepAsAndroid were widely
downloaded and used by millions of users, their ability to
distinguish between quiet awakenings, deep sleep, or empty
beds was still limited [20]. In a related vein, studies by Jayarajah
et al [31] and Faust et al [36] have defined sleep time as the
longest period during which there was no activity on users’
smartphones. However, the authors acknowledged that this
method was not reliable because not everyone had the habit of
using smartphones until they fell asleep. Most studies (9/14,
64%) used commercial wearable devices such as Fitbit
[16,33,35,37,44], Microsoft Band (MS Band) [34,43], Garmin
[42], and Polar [40]. Although all 3 methods are noninvasive,
easy to use, and allow longitudinal collection of sleep data, each
method has some limitations. The questionnaire-based method
is subject to memory recall bias. Sleep data collected by sleep
tracking apps and wearable sleep trackers provide an objective
description of sleep quality and sleep structure. However, they
may also be prone to measurement errors because of hardware
and software limitations [7,28]. They also require users to place
the smartphone nearby or to wear the device continuously, which
may cause discomfort during long-term use. Moreover, despite
being small and convenient, consumer wearable trackers cannot
provide hypnogram information that is as detailed as medical
devices.

Along with sleep quality metrics, researchers have considered
a wide range of contextual factors in their studies. As presented
in Table 3, the contextual factors of interest include the sleep
environment [16,20,42], daily activities
[16,19,20,31,36,37,40,42,43], physiological states
[16,35,36,43,44], and mental states [16,19]. It was a common
practice to collect demographic information (eg, age, gender,
and BMI) and medical history using questionnaires at the
beginning of a sleep tracking study [16,35,36,43,44]. Other
contextual factors were recorded during the data collection
experiments. Researchers have been curious about how web
activities of university students could be coupled with their
sleep quality [31,34,36]. These studies developed their own
tools to track users’ web-based behavior and linked them to
sleep quality metrics. Using consumer wearable trackers such
as Fitbit, MS Band, and Garmin, researchers were able to expand
their list of factors to include, for example, bedtime, steps,
distance, hours of exercise, and calories burned
[16,19,20,31,36,37,40,42,43]. Biosignals such as heart rate
during sleep and daytime activities were included in the studies
by Faust et al [35], Farajtabar et al [43], and Choi et al [44].
Several studies have also manually collected input features such
as coffee, alcohol, mood, and stress [16,19,20]. These factors
may have a significant effect on the circadian cycle of hormone
secretion and thus may provide useful information for sleep
quality prediction. However, collecting these data are nontrivial,
as users tend to forget to log the data on a daily basis. How to
collect these data more efficiently and how to reduce the risk
of missing data remain challenging.

JMIR Mhealth Uhealth 2023 | vol. 11 | e42750 | p. 7https://mhealth.jmir.org/2023/1/e42750
(page number not for citation purposes)

Hoang & LiangJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Contextual factors and measurement methods.

Data collection methodCategory and contextual factor

Physiological factors

Self-report [43,44]Age

Self-report [36,43]Sex

Fitbit [16] and self-report [43]Body weight

Self-report [44]BMI

Diary [16]Body temperature

Fitbit [35,44] and MS Band [43]Heart rate

Diary [16]Menstrual cycle

Fitbit [16] and MS Band [43]Calorie in and out

Fitbit [16]Activity calorie

Psychological factors

Diary [16]Stress

Diary [16] and SleepApp [19]Mood

Diary [16]Tiredness

Diary [16]Dream

SleepAsAndroid [20] and MS Band [43]Sleep quality the previous night

Keystroke time [34] and click time [34]Cognitive performance

Behavioral factors

Fitbit [16,37] and MS Band [43]Steps

Fitbit [37]Distance walked

Fitbit [16,37]Active time

SleepAsAndroid [20], MS Band [43], Polar [40], Garmin [42], and SleepApp [19]Exercise

Diary [16], SleepAsAndroid [20], and SleepApp [19]Coffee

Diary [16], SleepAsAndroid [20], and SleepApp [19]Alcohol

Self-report [44] and SleepApp [19]Tobacco

App use time (total and different app categories) [31], diary [16], Bing search logs [43],
SleepApp [19], and campus network [36]

Electronic device use

Diary [16], SleepAsAndroid [20], and SleepApp [19]Nap

Campus Wi-Fi [31] and Cortana [43]Location

GruMon (location estimation based on Wi-Fi signals) [31], diary [16], and Twitter [43]Social activity

Diary [16], smartphone camera [42], SleepApp [19], and campus smart card [36]Mealtime

SleepAsAndroid [20]Waketime

Fitbit [37], IoTa sensor [42], and SleepApp [19]Bedtime

Environmental factors

Diary [16] and IoT sensor [42]Ambient temperature

Diary [16] and IoT sensor [42]Ambient humidity

Diary [16] and SleepAsAndroid [20]Ambient light

SleepAsAndroid [20]Ambient noise

MS Band [43]Day of week

aIoT: internet of things.

We found that 13 (93%) of the 14 reviewed studies conducted
their own data collection experiments [16,31,33,37,38,43,44]

in free-living conditions. In these studies, sleep data were
recorded in participants’ usual sleep environments (eg, homes
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and caregiving facilities), whereas contextual factors were
recorded while participants were at schools, universities,
workplaces, or sports centers. In contrast, only 1 study used an
existing data set [35], which can be accessed over the web [45].
Data sharing is not yet a common practice in the field, and the
number of public data sets is limited.

Knowledge Discovery in Sleep Tracking (RQ3)

Data Preprocessing
All the reviewed studies used data sets that were collected in
free-living environments. Data collection “in the wild” increases
the ecological validity of the studies but at the sacrifice of data
quality. The first step in the knowledge discovery process is to
deal with missing, wrong, and duplicate data. Although there
are many methods for data cleaning in the literature, the methods
adopted in the reviewed publications are extremely simple and
straightforward. Most of the studies (5/14, 36%) simply
excluded records that contain missing values (eg, sleep logs
with missing fields or sleep duration of 0 minutes) [16,19,37]
or excluded users who do not contribute sufficient data (eg,
fewer than 30 sleep records) [35,36]. One study excluded a
certain data source (eg, search engine interactions originating
from mobile devices) to avoid causing distortion to the data
distribution [34].

Similarly, data out of logical ranges were removed. Users aged
<10 years or >100 years, with weight <22.7 kg or >112.5 kg,
or with height <127 cm or >457.2 cm were excluded in the study
by Farajtabar et al [43]. Extremely short (<0.5 or 4 hours) and
long (>12 hours) sleep records were removed in the studies by
Althoff et al [34] and Farajtabar et al [43]. Sleep entries with
bedtime between 7:00 AM and 7:00 PM were removed in the
study by Liang et al [33]. Exercise time is another criterion for
filtering out potentially erroneous data records. For example,
exercise events <5 or >180 minutes were removed in the study
by Farajtabar et al [43]. Exercises with calorie consumption per
hour <50 or >2000 calories or with a duration of <10 minutes
were excluded in the study by Liu et al [40]. In addition, data
records with steps <1000 and those with a sedentary time of 0
minute were removed in the study by Liang et al [16].

Time stamps are another focus in data preprocessing. The data
collection in the study by Ravichandran et al [19] primarily
relied on users’manual input in SleepApp and thus had a higher
risk of human errors. Consequently, all logs with aberrant
timestamps were removed. In addition, 12 hours were added to
or subtracted from the recorded bedtime or wake-up time where
the users might have forgotten to toggle the AM and PM switch

on the app. Dealing with timestamps involves not only data
cleaning but also temporal matching among multiple data
sources [42] as well as data type conversion (eg, 18:30 to 1830)
[16,37].

Other types of data preprocessing included selecting users with
larger variations in sleep and exercise [38], removing redundant
entries [19], and resampling the raw data (eg, the
photoplethysmography-derived heart rate time series was
aggregated every 3 minutes to achieve a constant sampling rate
[38]).

Some knowledge discovery processes that rely on machine
learning or data mining techniques may require a feature
engineering process instead of directly using the cleaned data
as input. For example, several studies have involved the
construction of secondary features from the cleaned data
[37,38,40]. Features were normalized to have a mean and SD
equal to 0 and 1 [42] or normalized over another feature (eg,
exercise intensity features were normalized by dividing the basal
metabolic rate [38]). Dimension reduction (eg, principal
component analysis) was applied to reduce the number of input
features to avoid the adverse effect of the “curse of dimension”
[31].

Data Mining
The selection of the data mining method depends on the purpose
of the studies and, to a lesser degree, on the size of the available
data set. Table 4 provides a summary of the data mining methods
and the specific techniques or algorithms used in the reviewed
studies. We also listed the independent variables (or input) and
dependent variables (or output) of the constructed models.
Correlation analysis, regression analysis, and rule induction are
the most used methods for finding meaningful associations
between contextual factors and sleep quality metrics. In total,
3 correlation analysis techniques, Pearson correlation, Spearman
correlation, and repeated measure correlation, were applied to
examine the strength of the pairwise linear relationships between
sleep and contextual factors [16,19,20]. Similarly, various
regression analysis methods have been used, ranging from
simple linear regression to linear mixed effects regression to
piecewise fixed effects regression [34,35,43]. Least square
estimation was the most popular technique for parameter
estimation in regression analysis and was used in the studies by
Althoff et al [34] and Farajtabar et al [43]. The study by Faust
et al [35] provided no information but is highly likely to use the
same technique. It is worth noting that the Pearson correlation
coefficient is equivalent to the standardized slope of a simple
linear regression line.
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Table 4. Summary of the data mining methods used in the reviewed studies.

Dependent variableIndependent variableData sizeData mining method and techniques or algorithms

Correlation analysis

SOLb, NAWKc, and
sleep rating

TSTa and contextual
factors

Preliminary study: 24 users over 20
days; final study: 19 users over 21 days

Pearson correlation [20]

TST, WASOd, NAWK,

SOL, and SEe

Contextual factors12 users over 2 weeksSpearman correlation [16]

SE, SOL, NAWK, rest-
lessness, TIB, and

LSEQg

Bedtime, TIBf, and
contextual factors

10 users over 2 weeksRepeated measure correlation [19]

Regression analysis

Cognitive performanceTime of day, time after
waking up, and sleep
duration

31,793 users over 18 months; all
American users

Piecewise fixed effects regression [34]

SOL, NAWK, and SEContextual factorsApproximately 20,000 users over 4
months

Simple linear regression [43]

Resting heart rateBedtime regularity557 users over 1 yearLinear mixed effects model [35]

Rule induction

SEContextual factors1 user over 180 days; 4 users over 2
weeks

A priori algorithm [33]

Sleep ratioContextual factors280 users over 1 month; only the data
of males were used

Learn from Examples using Rough Sets [44]

SOL, WASO, NAWK,
and SE

Contextual factors1 user over 800 daysEvent mining (+causal inference) [42]

Causal inference

SOL, NAWK, and SEContextual factorsApproximately 20,000 users over 4
months

Stratified propensity score analysis [43]

Contextual factors and
bedtime

Contextual factors and
bedtime

5200 users over 6 monthsBayesian network analysis [36]

Time series analysis

Permutation entropy of
sleep time series

Fitbit measured intra-
day time series, TST,
WASO, NAWK, and
bedtime

1 user over 35 daysAnomaly detection [37]

PSQIiHeart rate time series
data

100 users over 10 weeksSAXh-based motif matching and principle optimiza-
tion [38]

Statistical test

Statistical differences be-
tween good and poor
sleep

Contextual factors271 users over 8 monthsUnpaired 2-samples Wilcoxon test [40]

Decision tree

PSQIContextual factors400 users over 15 monthsJ4.8 Classifier [31]

aTST: total sleep time.
bSOL: sleep onset latency.
cNAWK: number of awakenings.
dWASO: wake after sleep onset.
eSE: sleep efficiency.
fTIB: time in bed.
gLSEQ: Leeds Sleep Evaluation Questionnaire.
hSAX: Symbolic Aggregate Approximation.
iPSQI: Pittsburgh Sleep Quality Index.
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Although correlation analysis and regression analysis (except
piecewise constant approximation) capture the relationships
between sleep and contextual factors in the entire sampling
range, the piecewise regression in the study by Althoff et al [34]
shared some resemblance with rule induction methods that
capture the relationship between sleep and contextual factors
within a constrained range. However, in contrast to piecewise
regression, which quantifies the covariance between 2 variables
in each partitioned segment, rule induction methods focus on
extracting frequent patterns in the data sets that characterize the
co-occurrence of 2 variables when their values fall into the
corresponding ranges specified in a rule. Moreover, rule
induction methods are usually robust to missing data. As the
rule induction methods were originally developed to analyze
categorical data, numerical data need to be converted to
categorical data through a discretization step before rule
induction methods can be applied. There are 4 discretization
methods used in the reviewed studies: equal size discretization
[33,44], equal frequency discretization [33], k-means clustering
discretization [33], and discretization with heuristically defined
cutoffs [42]. Association rules mining is a popular rule induction
method that has been widely used in traditional medical and
health informatics applications; however, it has only been used
in 1 study among all the studies we reviewed [33]. In that study,
the a priori algorithm was applied for rule induction. The quality
of the induced association rules was validated by higher local
correlation coefficients (ie, the Pearson correlation coefficient
when the variables fall into the ranges specified in a rule) than
the global correlation coefficients (ie, the Pearson correlation
coefficient between 2 variables within the entire sampling
range). To better handle the potential inconsistency (eg,
conflicting records) in the data set, Rock-Hyun et al [44] applied
another rule induction algorithm named learning from examples
using rough sets. The global covering algorithm computes the
lower and upper approximations of all the target sleep quality
metrics (eg, sleep ratio=“good”) if the input data set contains
conflicting records. The quality of the induced rules was
assessed based on the predictive accuracy of the target sleep
metrics. Although association rules mining and learning from
examples using rough sets capture only the parallel
co-occurrence of 2 items (ie, when the values of 2 variables fall
into the corresponding ranges specified by a rule), event mining
can also capture the co-occurrence of 2 items with a time lag
(ie, the temporal sequence when the 2 items occur) [46]. To a
certain degree, event mining resembles sequential pattern mining
[47]; however, this characteristic was not used in the study by
Upadhyay et al [42].

Causal inference is a powerful approach to reduce potential bias
in the identified relationships between sleep and contextual
factors because of observed confounding factors. This method
is likely to outperform simple correlation analysis or rule
induction–based methods. In the study by Farajtabar et al [43],
stratified propensity score analysis was performed to isolate the
effects of potential confounding factors. A similar technique
was used in the study by Upadhyay [42] to enhance the quality
of the induced rules by accommodating confounding factors.
In addition, the Bayesian network was applied to explore the
relationship between sleep schedules and behavioral factors
[36].

Statistical tests and decision trees were also used in the existing
literature, but only in 1 study each. The unpaired 2-samples
Wilcoxon test was applied to identify significant differences in
a set of selected contextual factors between good and poor
sleepers [40]. Despite its simplicity, this method does not
generate quantitative relationships between the contextual
factors and sleep quality. In contrast, decision trees were used
in the study by Jayarajah et al [31] to predict sleep quality using
contextual factors as input features.

In addition to the abovementioned methods, time series analysis
was also used but only in 2 studies [37,38]. Dimension reduction
and anomaly detection were combined to identify aberrant sleep
recordings while counting in personal sleep baseline in the study
by Liang et al [37]. Feng and Narayanan [38] introduced a
method to discover motifs in heart rate time series, which were
signal patterns that appeared most frequently during sleep [38].
They then used these motifs as features to predict sleep quality.
In contrast, although the study by Upadhyay et al [42] adopted
a streaming data perspective, it did not incorporate any formal
time series analysis technique [39].

Knowledge Discovered
The knowledge discovery process in the reviewed studies
identified interesting associations both at the cohort level and
the individual level. First, significant associations were found
among the sleep quality metrics. Late bedtime was associated
with a higher permutation entropy of the Fitbit measured sleep
time series (indicating a higher chance of aberrancy) [37].
Bedtime deviation was correlated to longer SOL [19]. In
addition, sleep duration was positively associated with subjective
sleep satisfaction [19,20].

Regarding the relationship between sleep quality and contextual
factors, exercise was the most identified association factor
[33,40], but the relationship between exercise and sleep was
complex [40,43]. First, not all exercise features have a predictive
power of sleep quality. For example, Liu et al [40] found that
exercise duration, relative calories consumption, and exercise
timing could be used as predictors of sleep quality, but exercise
intensity was not significantly associated with sleep quality.
Second, exercise may be positively associated with some sleep
quality metrics but negatively associated with others. For
example, exercise before bed may be linked to shorter SOL and
higher SE [43], and exercise seems to improve SOL the most
among all the sleep quality metrics [42]. However, the results
diverged as different types of exercises were considered. Taking
more steps meant fewer awakenings, whereas running and
burning more calories were correlated with more awakenings
[43]. Moreover, longer exercise duration (eg, >100 minutes)
may be associated with good sleep for some users but poor sleep
for others [40]. Furthermore, confounding factors may modulate
the relationship between sleep and exercise. With causal
inference, it was found that pleasant ambient temperature at
bedtime significantly strengthened the relationship between
exercise and sleep, whereas having a poor sleep the previous
night detracted from the beneficial effects of exercise [42].

Digital device use is another important factor that correlates
with sleep quality and sleep schedule. No web searches before
bed correlated with shorter SOL and higher SE, whereas web
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searches before bed correlated with more awakenings [43]. The
association between app use and sleep quality was modulated
by the frequency and timing of use [31]. In particular, low social
app use was associated with good sleep, and more app use
correlated with good sleep if used for >4 hours before sleep.
Reading and gaming app use within 1 hour before bedtime
correlated with poor sleep. A strong connection between internet
surfing habits and bedtime was identified by Guo et al [36].
Video lovers tended to go to bed later than game fans. Going
to bed late, in turn, has negative consequences. Deviations from
usual bedtime may result in a higher resting heart rate during
sleep [35]. Students who went to bed late were more likely to
have a poor academic performance [36]. Late bedtime (in
relation to one’s circadian cycle) reduced cognitive performance
the next day, whereas early bedtime did not have the same
negative effect [34]. In contrast, having a sufficient sleep was
important for maintaining normal cognitive performance [34].

As expected, caffeine and alcohol consumption were significant
association factors. Consuming caffeine late in the day was a
universal negative factor in subjective sleep ratings [20]. Alcohol
consumption was positively correlated with SE and wake-up
freshness and was negatively correlated with wake after sleep
onset and number of awakenings for some users but not all users
[16].

Not just personal activities or substance consumption associated
with sleep, but places visited before bedtime and social life also
play a role. One study found that students who spent more time
with friends had better sleep quality than those who stayed alone
on campus most of the time [31]. In addition, if students spent
most of their time outside campus, good quality sleep was found
for those who spent <15% of their time being alone. Another
study tracked users’ location during the day and stated that users
took longer to fall asleep if they visited food-related or
bank-related locations close to bedtime [43]. In addition, sleep
quality may vary depending on the environment in which sleep
takes place. The most common relationship identified for many
users by Daskalova et al [20] was the pair of noisiness and
number of awakenings [16]. Temperature was positively
associated with all sleep metrics except for SOL [42].

Challenges and Opportunities (RQ4)
Knowledge discovery in sleep tracking is the process of
extracting nonobvious hidden knowledge from self-tracking
sleep data and other available contextual information. Preparing
a data set of a sufficient size is the first step in this process.
Almost all the reviewed studies (13/14, 93%) conducted original
data collection experiments using noninvasive wearable and
mobile sensors. The existing literature highlighted several
challenges of data collection in sleep tracking. First, the absence
of an objective, quantifiable, and universal definition of good
sleep places a big challenge in annotating the collected sleep
data [16,19]. Without a well-annotated data set, it is not feasible
to apply supervised data mining techniques, and the absence of
ground truth impedes the unbiased evaluation of the knowledge
discovery process. Second, some contextual factors are
considered difficult to quantify. These factors include digital
device use, caffeine and alcohol consumption, and social
interaction [16], to name but a few. The timing of data logging

may also influence the results [20]. For example, users were
advised to avoid using digital devices 2 hours before bedtime
but had to log on to their smartphones to submit daily data at
the end of the day. Third, existing passive sensing methods may
have strong limitations [34]. For example, some studies (2/14,
14%) assume that users check their smartphone right before
bedtime and immediately after waking up [31,36] and thus may
miss out on users who have no such habits. Consumer wearables
may have limited accuracy in measuring sleep stages and other
factors [7], but the issue of data quality was not considered in
the reviewed studies [35].

Moreover, interpreting the knowledge discovery outcome is not
always straightforward. Correlation analysis essentially captures
the covariance of 2 variables. Users with regular sleep and daily
life routines may end up with no significant correlations found
because of the lack of variability in their data. However, users
may misinterpret this as having no relationship [16]. Rule
induction methods usually generate a large number of rules, but
not all of them are useful. Long rules with too many factors in
the antecedent, despite of being explainable, provide no
actionable insights because of their complexity (eg, “IF 17.85
< BMI < 25.21 AND Smoking is Yes AND 61.81 <
Normal_Avg_HR < 79.0 AND 0 < Normal_Awake <19.0 AND
1.5 < Normal_Really_Awake < 24.0 AND 1.5 < High_Asleep
< 606.5 AND 1.5 < High_Awake < 155.0 AND 0.5 <
High_Really_Awake < 175.5 THEN Sleep Quality Status is
‘Bad’ with support 8”) [44]. In contrast, short association rules
may be more comprehensible (eg, “minutes very active={33;
38}=> good sleep or steps={18,658; 20,263}=> good sleep”
[33]). However, heuristic discretization without a semantic
meaning may impede understandability [20].

Despite the challenges, the reviewed studies highlighted several
opportunities for future research. In total, 3 studies suggested
considering more contextual factors in addition to the ones
already studied, such as emotion, diet, productivity, and
chronotypes [31,34,36,42]. Acknowledging that the correlations
at a cohort level may be weak [31], argues for an
individual-centric approach to identifying the most important
contextual factors for each user. Along the same line [43], it
was pointed out that building predictive models within similar
user groups is more practical. They proposed a hierarchical
modeling scheme with a top layer containing population
parameters and lower layers personalized to individual users.
Similar user profiling and segmented modeling proposals were
presented in the studies by Liang et al [33] and Farajtabar et al
[43].

Discussion

Principal Findings
Sleep tracking using consumer wearable devices and mobile
apps has attracted remarkable attention from the research
community. However, sleep tracking studies have focused on
developing sleep tracking technologies for accurately measuring
sleep per se, and little attention has been directed to the
extraction of patterns and insights from these data. To the best
of our knowledge, this scoping review is the first to map the

JMIR Mhealth Uhealth 2023 | vol. 11 | e42750 | p. 12https://mhealth.jmir.org/2023/1/e42750
(page number not for citation purposes)

Hoang & LiangJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


existing literature from a knowledge discovery perspective in
sleep tracking.

Our analysis results showed that the number of publications on
the topic of interest has slightly increased over the years but is
still low, probably because the data-driven scheme has not been
fully embraced in personal informatics. Nonetheless, we found
that the existing literature covered all 4 levels of analytics, as
presented in Table 1. Most of the 14 studies that we reviewed
applied simple correlation analysis, regression analysis, and
rule induction methods to discover the associations between
sleep and other aspects of life. Although most consumer sleep
tracking technologies allow users to visually inspect their sleep
data (which is descriptive in nature), the reviewed studies
demonstrated the feasibility of diagnostic analysis with a flux
of sleep and contextual data. Although correlation does not
necessarily indicate causality, a combination of association
analysis and causal inference—as was done in the study by
Upadhyay et al [42]—may help users narrow down the scope
of possible modifiable factors that are likely to affect their sleep
quality. Machine learning and data mining techniques were only
used in a few studies for anomaly detection (which is diagnostic)
[37] or sleep quality prediction (which is predictive) [31,43].
In total, 2 studies developed computational models to generate
personalized recommendations for better sleep and showed
promise in prescriptive analysis of sleep tracking [20,42]. The
most used sleep metrics among the reviewed studies were
subjective sleep quality, SE, SOL, and time at lights off.
Exercise, digital device use, places visited during the day and
before bedtime, and sleep environment are the major factors
that significantly correlate with various dimensions of sleep
quality.

Taken together, there are a few key challenges that are relevant
to the findings. On the one hand, it is nontrivial to collect
high-quality data in naturalistic settings. Challenges include
how to motivate users to overcome tracking fatigue, how to
enhance the reliability of consumer wearables and apps, and
how to quantify and automate the collection of contextual
information to represent the current challenges surrounding the
collection of sleep tracking data sets. On the other hand, how
to extract hidden knowledge from data, how to accommodate
commonness and individuality, and how to interpret data mining
results are topics for future studies.

Nuance in Handling Within-Individual Variation
The selection of appropriate data mining methods relies on a
correct understanding of the nature of the sleep tracking data
set. Researchers often conduct longitudinal data collection
experiments that involve the collection of multiple
measurements of the same variables (eg, sleep quality, exercise,
and ambient light) from each individual user. The data form a
hierarchical or clustered structure when aggregated at the cohort
level. Caution must be exercised when applying traditional
analytic and modeling techniques developed for single-level
data, as hierarchical data are likely to violate the assumption of
independent errors of those techniques. In particular, although
a hierarchical data set offers the benefit of a larger amount of
data, the within-individual variation at the individual level needs

to be addressed carefully through multilevel analysis and
modeling.

In a multilevel analysis framework, the repeated measures are
clustered within the level of an individual, and each individual
is treated as a cluster unit. Depending on whether the analysis
of one cluster involves pooling the data of other clusters, there
are 3 approaches to analyzing a hierarchical data set: complete
pooling, no pooling, and partial pooling. Complete pooling
completely ignores the variation between individual users and
treats all samples as being drawn from the same population. A
dominant portion of the studies reviewed in this work
[16,31,33,34,36,38,40,43,44] adopted this approach.
Nonetheless, this approach is undesirable, as it violates the
assumption of independence. The results could have been
distorted when the between-individual variation was high. At
the other end of the spectrum lies the no pooling approach,
where the analysis of the relationship between sleep and
contextual factors was performed only on the data of each
individual user without considering data from other users.
Daskalova et al [20] Upadhyay et al [42] embraced an N-of-1
design and correspondingly adopted the no pooling approach
to analyze the collected data. At the surface, this approach is
plausible for fully handling the within-individual variation.
However, it bears the risk of overstating the variation between
individual users because of potential overfitting when the
number of samples from individual users is small. Partial
pooling or multilevel modeling compromises between pooled
and unpooled estimates, with the relative weights of pooling
determined by the sample size of each individual user and the
variation within and between individuals. Multilevel modeling
automatically adjusts the degree of pooling with a “soft
constraint,” which ensures strong pooling for users with fewer
records and weak pooling for users with abundant records in
the data set [32]. We found that only Ravichandran et al [19]
and Faust et al [35] used the multilevel modeling approach and
explicitly considered the within-individual variation.

Most reviewed studies (8/14, 57%) seem to have relied on the
undue assumption of an independent and identically distributed
data set. As a result, some studies (2/14, 14%) found mixed or
even conflicting results on the relationships between sleep and
contextual factors at the cohort level [40,44] and, consequently,
generated no valuable insights. Studies using an N-of-1 design
are interesting exceptions. In these studies, analysis was
conducted on each user’s data, thus eliminating the effect at the
cohort level. However, the robustness and generalizability of
the findings are questionable. Even in studies with an N-of-1
design, it may still be helpful to partially pool some samples
from the population to increase the reliability of the model
parameter estimates. As such, Gelman et al [48] suggested
always using multilevel modeling (ie, “random effects”) as a
rule of thumb, for example, linear mixed effect model over
simple linear regression model and generalized linear mixed
model trees [49] over the J4.8 classifier.

Limitations of the Study
There is room for improvement in several aspects of this study.
First, because of the limitations inherent in scoping reviews,
this study is exploratory and primarily qualitative in nature.
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Limited by the review methodology, we were unable to generate
a quantitative “summary of findings, ” as required for systematic
reviews or meta-analyses. Second, our method is nonstandard
in a sense that we performed prescreening on the items identified
in the ScienceDirect database before importing all entries into
Rayyan. Although we made an effort to ensure that the removed
items were not relevant, we cannot rule out the possibility of
missing publications that should have been included. Third, we
did not conduct critical appraisal on the quality of the selected
papers or perform a risk of bias assessment, which may have
led to potential bias in the selection and interpretation of the
papers. Despite these limitations, this review provides a
well-scoped summary of existing research and could lay the
groundwork for future systematic reviews. The research gaps
that we identified can be used to inform future research agendas.

Conclusions
This scoping review built an understanding of the scope and
nature of existing literature on knowledge discovery in
ubiquitous and personal sleep tracking. To the best of our
knowledge, this is the first review that exclusively focused on
the knowledge discovery aspect of self-tracking in the realm of

sleep health. In total, 14 studies were included in the review
based on the exclusion criteria. We found that the existing
literature covered all 4 levels of the analytics framework in
health informatics. However, half (7/14, 50%) of the studies
have only applied simple correlation analysis and regression
analysis, aiming to discover significant associations between
sleep and available contextual information. Machine learning
and data mining techniques have not yet been widely used,
probably because of the lack of large and quality data sets.
Exercise, digital device use, places visited during the day and
before bedtime, and sleep environment were the most identified
factors associated with sleep quality. We identified key
challenges surrounding the collection of high-quality sleep
tracking data sets with consumer-grade sensors and in
naturalistic settings as well as the extraction of hidden
knowledge that could be translated into actionable insights and
personalized behavior interventions. We highlight that future
research should develop data analytics techniques and prediction
models that properly handle the within-individual variation and
between-individual variation in sleep tracking data sets. We
hope that this scoping review could lay the groundwork for
future research on ubiquitous and personal sleep tracking.
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Abbreviations
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
RQ: research question
SE: sleep efficiency
SOL: sleep onset latency
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