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Abstract

Background: Physical inactivity is associated with numerous health risks, including cancer, cardiovascular disease, type 2
diabetes, increased health care expenditure, and preventable, premature deaths. The majority of Americans fall short of clinical
guideline goals (ie, 8000-10,000 steps per day). Behavior prediction algorithms could enable efficacious interventions to promote
physical activity by facilitating delivery of nudges at appropriate times.

Objective: The aim of this paper is to develop and validate algorithms that predict walking (ie, >5 min) within the next 3 hours,
predicted from the participants’ previous 5 weeks’ steps-per-minute data.

Methods: We conducted a retrospective, closed cohort, secondary analysis of a 6-week microrandomized trial of the HeartSteps
mobile health physical-activity intervention conducted in 2015. The prediction performance of 6 algorithms was evaluated, as
follows: logistic regression, radial-basis function support vector machine, eXtreme Gradient Boosting (XGBoost), multilayered
perceptron (MLP), decision tree, and random forest. For the MLP, 90 random layer architectures were tested for optimization.
Prior 5-week hourly walking data, including missingness, were used for predictors. Whether the participant walked during the
next 3 hours was used as the outcome. K-fold cross-validation (K=10) was used for the internal validation. The primary outcome
measures are classification accuracy, the Mathew correlation coefficient, sensitivity, and specificity.

Results: The total sample size included 6 weeks of data among 44 participants. Of the 44 participants, 31 (71%) were female,
26 (59%) were White, 36 (82%) had a college degree or more, and 15 (34%) were married. The mean age was 35.9 (SD 14.7)
years. Participants (n=3, 7%) who did not have enough data (number of days <10) were excluded, resulting in 41 (93%) participants.
MLP with optimized layer architecture showed the best performance in accuracy (82.0%, SD 1.1), whereas XGBoost (76.3%,
SD 1.5), random forest (69.5%, SD 1.0), support vector machine (69.3%, SD 1.0), and decision tree (63.6%, SD 1.5) algorithms
showed lower performance than logistic regression (77.2%, SD 1.2). MLP also showed superior overall performance to all other
tried algorithms in Mathew correlation coefficient (0.643, SD 0.021), sensitivity (86.1%, SD 3.0), and specificity (77.8%, SD
3.3).
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Conclusions: Walking behavior prediction models were developed and validated. MLP showed the highest overall performance
of all attempted algorithms. A random search for optimal layer structure is a promising approach for prediction engine development.
Future studies can test the real-world application of this algorithm in a “smart” intervention for promoting physical activity.

(JMIR Mhealth Uhealth 2023;11:e44296) doi: 10.2196/44296
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Introduction

Physical inactivity is associated with numerous chronic diseases,
including cancer, cardiovascular disease, type 2 diabetes [1-3],
increased health care expenditure [4], and preventable,
premature deaths [4]. Insufficient physical activity (PA) cost
$53.8 billion worldwide in 2013. Clinical guidelines indicate
8000-10,000 steps per day [5]; nevertheless, the majority of
Americans fall short of this goal [6].

In order to increase the level of PA, more than 300 commercial
mobile apps have been developed [7]. The recent development
of information technologies enabled mobile apps to deliver
behavior change support when the users need this the most or
when the utility (eg, how much the amount of PA was increased
by the in-app notification) is predicted to be high. This new,
promising type of intervention is called a just-in-time adaptive
intervention (JITAI) [8].

JITAIs are not widely used (eg, 2.2% in 2018 [7]) by
commercially available apps. However, it has been shown that
JITAIs have the capacity to improve adherence and efficacy
[9-11]. In addition, health behavior theories that commonly
work as theoretical foundations for JITAIs [9], including social
cognitive theory [12] and goal setting theory [13], emphasize
the importance of timely feedback and anticipatory intervention
[12,14-16]. Adaptation to individual, time-varying needs is
theorized to be an effective strategy [14] for implementing
time-accurate feedback and anticipatory intervention [16]. Since
the opportunity window to intervene depends on the individual’s
environment, a fully automatic, predictive algorithm that can
be run repeatedly is one of the key components of JITAI apps
[14]. Thus, developing accurate algorithms to empower JITAIs
to promote PA is a central task in overall JITAI development.

Prior JITAI studies used pure randomizations [17],
condition-triggered Boolean logic [18,19], a combination of
manually designed logics [20], or models that reveal the
mathematical relationships between input factors and the
behavior (eg, system identification [21]) so that researchers
could understand which factors are predictive of the behavior.
In this study, the models were evaluated mainly focusing on
predictive accuracy rather than explainability [22]. Time series
data of walking behavior (ie, steps per minute) measured by a
wearable sensor was used to predict future walking behavior.
Multiple algorithms were compared using various metrics,
including accuracy, Mathew correlation coefficient (MCC),
sensitivity, and specificity. If these algorithms can be produced,
it would be a critical step toward JITAIs that are cost-efficient
and fully autonomous (ie, without human couch interventions),

and thus, it could be a valuable part of overall approaches for
improving population health. To ensure the model's
cost-efficiency and real-time usage feasibility, the training
computation time was measured in the standardized computing
environment.

Methods

Source of Data
This study used the deidentified Jawbone walking data (ie, steps
per minute) from the HeartSteps study [23], conducted in the
United States from August 2015 to January 2016.

Ethical Considerations
The original study [23] was approved by the University of
Michigan Social and Behavioral Sciences Institutional Review
Board (HUM00092845) for data collection. As the data in this
study were deidentified prior to being provided, the study was
deemed as nonhuman subject research by the University of
California, San Diego Institutional Review Board. This study
adhered to the TRIPOD (Transparent Reporting of a
multivariable prediction model for Individual Prognosis or
Diagnosis) statement on reporting development and validation
of the multivariate predictive models [24] (Multimedia Appendix
1).

Study Design and Data Processing Protocol

Exclusion and Data Transformation
Minute-by-minute walking data (ie, number of steps per minute)
were preprocessed in the following three steps: (1) excluded
the participants who have the data of less than 10 days, (2)
excluded the data if the participant was inactive (ie, 0 step per
minute) or partially active (ie, less than 60 steps per minute)
during the minute, and (3) excluded short walks lasted less than
5 minutes. Then, walk data were used to decide whether the
participant was active or not during the hour. If there was one
or more walks (ie, more than 5 consecutive walking minutes)
during the hour, it was marked as an “active hour.” Then, the
data were transformed to fit the machine learning algorithms
(ie, from the time-series DataFrame objects of Pandas library
to numerical array objects containing vector objects of NumPy
library).

Training of Machine Learning Algorithms
The hourly walk data of the 5 prior weeks were used to predict
the outcome (ie, whether the participant will walk or not during
the next 3 hours). The following 6 sets of algorithms were used:
logistic regression, radial basis function support vector machine
[25], XGBoost [26], multilayered perceptron [27], decision tree,
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and random forest [28] (Figure 1). We used the implementation
of the open-source projects named “scikit-learn” [29], Keras

[30], XGBoost [26,31], and “Sci-Keras” [32] for each algorithm.

Figure 1. Brief algorithm descriptions of classification models. RBF: radial basis function.

Target Imbalance
Due to sleeping hours and sedentary hours, nonactive hours
usually outnumbered active hours. In machine learning
algorithms, the phenomena are called “target imbalance”
[33,34]. They usually critically reduce the performance of the
prediction algorithm. Thus, in this study, we randomly sampled
the nonactive hours to attain the same number as that of active
hours.

K-fold Validation
After balancing the targets, the data were shuffled to perform
K-fold validation [35] (Figure 2). We used K=10 in this study.
We divide the shuffled data into 10 parts. Then, 1 part was
separated to reduce the risk of overfitting the training data, and
1 part was separated for performance evaluation. In total, 8 out
of 10 parts were used for machine learning algorithm training
[35]. The process is iterated for 10 times, traversing each part
for validation. The method allows us to internally validate the
performance of the prediction engine. K (=10) sets of results
were compared across the algorithms.

Figure 2. Brief description of K-fold validation method (eg, K=10).

Outcomes
Hourly data were generated during the preprocessing step. For
the outcome variable, the activity data for 3 hours were merged.
If the participant walked during the 3 hours, the outcome was
assigned as “walked.”

Predictor Variables
In addition to 5 weeks’hourly walking data, the variables noting
the current date and time were used as predictors (Textbox 1).
Each variable was encoded by the “One-hot-encoding” method
[36]. It was a commonly used method to represent categorical

(including ordinal or finite scale) variables in machine learning.
The method converts the categorical variables (ie, N possible
options) into an N-dimensional vector. Integers such as a current
hour or current month were also converted into vectors. Each
element of the vector can be ones or zeros. Each position in the
vector denotes a particular value of options, and if a certain
position was 1, the original value was mapped correspondingly.
In a single vector, only one “1” was allowed. Since the encoding
method enables the machine learning algorithm to train fast, it
was commonly used. The discussion on the impact of the method
on prediction performance was inconclusive [36].
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Textbox 1. Variables used in classification algorithms.

Predictor variables

• Current hour (24 dichotomous variables, one-hot-encoded)

• Today’s day of the week (7 dichotomous variables, one-hot-encoded)

• Current month (12 dichotomous variables, one-hot-encoded)

• Current day of the month (31 dichotomous variables, one-hot-encoded)

• Five Weeks’ hourly walking (Yes/No/Missing, 3 dichotomous variables, one-hot-encoded)

Outcome variable

• Whether the individual will walk during the next 3 hours (Yes/No, 1 dichotomous variable)

Random Search for Multilayered Perceptron Model
Structure
Unlike other algorithms in this study, the multilayered
perceptron (MLP) algorithm uses layer architectures as one of

the critical performance factors. Optimization techniques such
as evolutionary programming [37] or random search or grid
search [38] may be used. A random search was used to minimize
the implementation burden while not losing too much
performance (Figure 3).

Figure 3. Pseudocode for searching optimal model structure.

Validation of the Models
The internal validation was performed by the K-fold validation
methods. We used K=10. Individual test results were used to
calculate the performance metrics such as accuracy, specificity,
sensitivity, or MCCs. Data separation for the K-fold validation
was conducted beforehand, which allows us to compare the
metrics across the algorithms.

Mathew Correlation Coefficient
MCC [39] was defined as follows:

Where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative.

MCC was sometimes used as an optimization metric. In this
study, we measured MCCs as a performance metric, not the
optimization metric. Since we have balanced the output (see

the Target Imbalance section), accuracy was used as the
optimization metric.

Computation Time
To conduct fair comparisons for the computation time, each
model was trained in an isolated, standardized computing
environment so that the system clock could measure the time
elapsed. The system was reset every time a single execution
was completed to minimize the fallout of the previous execution
to the upcoming execution. Elapsed times were averaged and
analyzed per algorithm.

Results

Study Population and Baseline Characteristics
A total of 41 (93%) out of 44 participants were included in the
analysis [23]. The population's average age was 35.9 years. Of
the 44 study participants, 31 (71%) were female, 26 (59%) were
White, and 13 (30%) were Asian, with 36 (82%) having college
degree or more. Moreover, 27% (n=12) of the participants had
used a fitness app or activity tracker (Table 1).
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Table 1. Baseline characteristics of participants at study entry.

ValueVariable

Gender, n (%)

31 (71)Female

13 (30)Male

Race, n (%)

26 (59)White

13 (30)Asian

2 (5)Black or African American

3 (7)Other

Education, n (%)

8 (18)Some college

13 (30)College degree

23 (52)Some graduate school or graduate degree

15 (34)Married or in a domestic partnership, n (%)

16 (36)Have children, n (%)

12 (27)Used fitness app before HeartSteps, n (%)

10 (22)Used activity tracker before HeartSteps, n (%)

Phone used for study app, n (%)

21 (48)Used personal phone

23 (52)Used study-provided phone

35.9 (14.7)Age (years), mean (SD)

Data Summary for Predictor and Outcome Variables
On average, participants had available walking data for 43.3
(SD 9.1) days and 145.7 (SD 44.6) minutes per day. The average
number of walking minutes per participant per day was reduced
to 53.3 (SD 26.1) minutes after filtering with the threshold of
60 steps per minute (Methods section). Participants had 2.6 (SD
1.7) walks (ie, 5 or more consecutive walking minutes) every
day (Methods section). Average length of each walk was 10.3
(SD 8.0) minutes. In hourly view, the participants had 0.6 (SD
0.1) “walking hours” (ie, the hours in which the participant

walked) per day (Figure 4). Missing data were also used as a
predictor state (Methods section). There were 18.1 (SD 13.4)
missed days on average per participant, equivalent to 36.9%
(SD 26.3%) of total days per participant. In the matter of
outcome variable, as training and validating data set, 8129
“walking hours” and 37,711 “non-walking hours” (eg, nighttime
or sedentary hours) were prepared (Methods section). Across
the data, 17.7% of the time included participant activity. Thus,
inactive time is 4.64 times more common than active time. The
target imbalance was handled by undersampling (Methods
section).
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Figure 4. Overall distribution of walking data (1 narrow cell=1 hour).

Development of Prediction Algorithms
The calculation time vastly varied (Table 2). The radial basis
function support vector machine algorithm and multilayered
perceptron algorithm took the longest period to run. Tree-based

algorithms such as decision tree and random forests were shorter
than others. Random search to discover the optimal layer
structure was tried. The optimization process improved the
accuracy of the MLP algorithms from 49.8% to 82.1%. The
process also improved all other metrics (Figure 5).

Table 2. Performance metrics of tried algorithms.

Specificity, mean (SD)Sensitivity, mean (SD)MCCa, mean (SD)Accuracy, mean (SD)Algorithms

0.749 (0.023)0.795 (0.015)0.545 (0.024)0.772 (0.012)Logistic regression

0.641 (0.017)0.746 (0.022)0.389 (0.020)0.693 (0.010)RBFb SVMc

0.711 (0.030)0.816 (0.010)0.530 (0.030)0.763 (0.015)XGBoost

0.778 (0.033)0.861 (0.030)0.643 (0.021)0.820 (0.011)Multilayered perceptron

0.762 (0.049)0.509 (0.075)0.281 (0.026)0.636 (0.015)Decision tree

0.614 (0.018)0.776 (0.019)0.396 (0.023)0.695 (0.010)Random forest

aMCC: Mathew correlation coefficient.
bRBF: radial basis function.
cSVM: support vector machine.
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Figure 5. Performance of tried neuron architectures (90 trials).

Validation and Model Performance
The reference algorithm (logistic regression) showed 77.2%
(SD 1.2%) accuracy. XGBoost showed 76.3% (SD 1.5%), radial
basis function support vector machine showed 69.3% (SD 1.0%),
decision tree showed 63.6% (SD 1.5%), and random forest
showed 69.5% (SD 1.0%), respectively. MLP performance
largely varied from 49.8% (SD 1.7%) to 82.1% (SD 1.3%).

Only 3 MLP architectures with the highest accuracies were
included (Tables 2 and 3; Figure 6). Sensitivities, specificities,
and MCC showed similar patterns to the accuracies. The
decision tree algorithm generally showed the lowest performance
overall, except on the dimension of specificity. MLP showed
the highest performance across metrics (82.0% accuracy, 86.1%
sensitivity, and 77.8% specificity).

Table 3. Average confusion matrix of each model of K-fold validation for the validation data set.

False negative, mean (SD)False positive, mean (SD)True negative, mean (SD)True positive, mean (SD)

166.2 (11.7)203.5 (18.8)609.0 (30.6)646.3 (27.3)Logistic regression

206.2 (19.5)292.2 (19.4)520.3 (18.3)606.3 (25.4)RBFa SVMb

149.5 (12.3)234.9 (24.7)577.6 (33.3)663.0 (18.3)XGBoost

112.6 (24.2)180.0 (27.5)632.6 (34.7)699.9 (35.2)MLPc

398.7 (56.5)192.8 (39.1)619.7 (52.5)413.8 (65.4)Decision tree

182.2 (20.7)313.5 (20.9)499.0 (18.2)630.3 (13.6)Random forest

aRBF: radial basis function.
bSVM: support vector machine.
cMLP: multilayered perceptron.
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Figure 6. Performance metrics of the tried models. The top 3 architectures were chosen among multilayered perceptron engines. MCC: Mathew
correlation coefficient.

Computation Time
In all the tested performance indicators, the optimized MLP
showed the best performance and showed the second-longest
training time of 225 seconds on average (Table 4). If we add
up the total training time of all 90 optimization experiments, it
took 56 hours. It was feasible to consistently evaluate training
speed, accuracy, MCC, sensitivity, and specificity within the
standardized performance evaluation framework. Through 90
random experiments, multiple MLP algorithms with optimized
performance were obtained. The development, validation, and
evaluation protocols can be used for similar prediction or
classification problems.

Python 3.7.3, Sci-Kit Learn 1.0.2, Numpy 1.21.6, and Pandas
1.3.5, Tensorflow 2.8.0, xgboost 0.90, keras 2.8.0 were used.

In the matter of computation cost-efficiency (ie, predictive
performance vs computation time), each algorithm showed
characteristic results. The logistic regression had reasonable
prediction performance and relatively low average computation
time cost, whereas MLP showed generally higher prediction
performance but had the second highest average computation
cost (Figure 7).

It was feasible to consistently evaluate training speed, accuracy,
MCC, sensitivity, and specificity within the standardized
performance evaluation framework. Through 90 random
experiments, multiple MLP algorithms with optimized
performance were obtained. The development, validation, and
evaluation protocols can be used for similar prediction or
classification problems (Figure 8).

Table 4. Computation time to reach optimally trained status (secondsa).

CIMean (SD)MaximumMinimumAlgorithms

19.43-25.3122.37 (1.50)24.8920.73Logistic regression

311.19-681.96496.57 (94.58)683.62413.09RBFb SVMc

59.30-76.2767.79 (4.33)73.7563.92XGBoost

149.24-301.46225.35 (38.83)300.36172.14Multilayered perceptron

0.65-11.145.89 (2.68)13.203.30Decision tree

1.68-11.576.63 (2.53)13.424.32Random forest

aComputation was done in Google Colaboratory Pro+ (High-RAM mode with GPU hardware accelerator); 8 cores of Intel Xeon CPU 2.00 GHz, 53.4GB
Memory, Tesla P100-PCIE-16GB.
bRBF: radial basis function.
cSVM: support vector machine.
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Figure 7. The comparisons between algorithms in the matter of mean computation time and mean prediction accuracy. RBF: radial basis function;
SVM: support vector machine.

Figure 8. The data processing protocol.

Discussion

Key Implications
The high-level focus of our work is to develop approaches for
using data from individuals themselves to create more
individualized and adaptive support via digital technologies. In
this paper, our goal was to test if predictive models could be
generated that would be useful in terms of sensitive and specific
probability estimates of the likelihood that someone will walk
within an upcoming 3-hour window and that it could be done
in a computationally efficient fashion. The latter part is
important as computational efficiency is needed to enable the
predictive models to be incorporated into future just-in-time
adaptive interventions (JITAIs) that could use these predictive
models to guide future decision-making. To support robust,
automated decision-making within a JITAI to increase walking,
our goal was to test if it would be feasible to produce predictive
models that are informative for individuals in terms of
identifying moments when a person has some chance of walking
as opposed to either times when a person will clearly walk and
thus does not need support, or times when there was near-zero
probability that, in a given 3-hour window, a person will walk.
If a predictive model could be produced that would provide this

information, it would enable a JITAI that could incorporate
these individualized predictions as a signal that could be used
for making decisions on whether a given moment would be a
just-in-time moment to provide a suggestion to go for a walk,
with the predictive model used to predict the likelihood that,
within the next 3 hours, the person would have the opportunity
to walk while also having a need for a suggestion (ie, a person
would not need a suggestion to walk if they are very likely to
walk anyway). Our results, overall, suggest it is possible to
generate said models in a scalable fashion, which could then be
incorporated into a future JITAI that incorporates these
individualized predictive models. Central to this work, the
models produced here are definitionally idiographic in nature
and thus appropriate for each individual. Thus, the results from
the model should not be generalized to other samples. Instead,
the key transportable knowledge from this work is the overall
approach used for selecting models to guide individualized
decision-making in future JITAIs (Figure 8).

Principal Findings
We developed 6 models (one of which was a group of models,
and we chose the best 3 model architectures) for predicting
future walking behavior within the subsequent 3-hour period
using the previous 5 weeks’hourly walking data. MLP algorithm
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showed the best performance across all 4 metrics within this
sample. A random search for MLP architecture produced an
optimal model with the best performance. Using predictive
engines to decide how to configure JITAIs could enable the
mobile physical activity app to deliver more timely, appropriate
intervention components such as in-app notifications. To the
best of our knowledge, interventions that use predictive models
to adjust to participant’s behavior are still uncommon. Thus,
our study makes a significant contribution by introducing the
use of predictive algorithms for optimizing JITAIs.

Methodological Considerations and Comparison With
Prior Work
In this study, we designed a protocol to develop and validate a
predictive model for walking behavior. While developing the
model, we had a few common issues that should be handled as
follows.

Small Data Sets and the Potential Risk for Low External
Validity
Despite the effort to validate the model with the K-fold
cross-validation, since we are using a small number of short
time-series data, high levels of external validity are not assumed.
However, since the model we developed in this study did not
assume any prior knowledge or variability (ie, nonparametric),
additional training data are theorized to harness better
performance. The model also did not use the pretrained
coefficients; we used randomized coefficients. This leaves room
for better performance and higher computation efficiency when
we use the pretrained model from this study to extend the
training. Publicly available lifestyle data, including the All-of-Us
project [40] and the ones available on the public data platforms
[41], will be a good way to extend the data set.

Target Imbalance
Target imbalance is defined as a significantly unequal
distribution between the classes [33]. In numerous clinical
[42,43] and behavioral [33] data modeling studies, target
imbalance is a common issue. Although a few oversampling
methodologies to tackle unbalanced output data have been
developed [44], this study used an undersampling approach due
to potential concerns of exaggerated accuracy [34]. The separate
analysis with oversampling of the same data and methodologies
showed 5%-10% increases in the accuracy. It is suspected that
the underlying individual behavior patterns in the training
samples are partly included in the test and validation samples.

Performance Metrics
Accuracy is the most commonly used performance metric to
evaluate classification algorithms. However, the accuracy metric
is also known to have the inability to distinguish between type
1 and type 2 errors [45]. The metrics of sensitivity and
specificity are also commonly used to overcome the limitation
of accuracy. The information represented by both metrics is
partial (ie, both are addressing either type of error). MCC [46]
is used more commonly in recent publications due to its
statistical robustness against target imbalance, which is a
common issue of clinical and behavioral data. Considering the

imbalance of the classification problem of interest, we included
MCC as a performance metric.

Limitations of This Study
The original study was designed for the purpose of pilot-testing
and demonstrating the potential of microrandomized trials. Thus,
these analyses are all secondary in nature. Further, the initial
study was a small study, with only a minimum amount of data
(n=41) used. Additionally, since the participants were recruited
in a homogeneous environment and demographic groups, the
external validity of the algorithms may be limited. With that
said, the overall approach for formulating predictive models
and their selection could feasibly be used in the future and, thus,
it is more of our protocol and approach that is likely to be
generalizable and generally useful for JITAIs compared to any
specific insights from the models we ran. We contend that, for
any targeted JITAI, a precondition for this type of approach is
the appropriate data available, and that, for any JITAI, it is more
valuable to build algorithms that match localized needs and
contexts than seek to take insights from some previous samples
that are different from a target population and assume they will
readily translate. This, of course, can be done with careful tests
of transportability using strategies such as directed acyclic
graphs to guide the production of estimands [47] that would
create formalized hypotheses of transportability. However, this
is a much higher bar for transportability that, while valuable,
can often be prohibitive for fostering progress in JITAIs. Within
our proposed approach, the strategy involves gleaning good
enough data to enable a localized prediction algorithm
appropriate for the targeted population to be produced, with
subsequent deployment factoring in strategies and approaches
for updating and improving the algorithms as new insights
emerge.

Implication and Future Work
The results of our study show that prediction algorithms can be
used to predict future walking behavior in a fashion that can be
incorporated into a future walking JITAI. In this study, we
modeled without contextual information other than the date,
time, or day of the week. However, if the machine learning
algorithm is trained using the other contextual information such
as intervention data (eg, whether the in-app notification message
is sent or not, which type of message is sent, and which
sentiment is used to draw attention), the prediction engine would
be capable of simulating how the intervention components might
change the behavior in the multiple hypothetical scenarios. This
capability would enable us to use the prediction algorithms
uniquely, that is, comparing two or more possible scenarios to
decide the optimal intervention mode of a JITAI. We could
decide whether to send a message, which message should be
sent, or what sentiment we could use to draw attention to our
intervention. A pragmatic study that assesses the efficacy of
such an approach is necessary.

The search methods for the optimal architectures of MLP could
be improved. Evolutionary programming [48] and
weight-agnostic neural network [37] are promising approaches.
Such improvement could find the MLP architectures’ better
performance in shorter computation time.
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Conclusion
The protocol for developing and validating a prediction engine
for health behavior was developed. As a case study, walking
behavior classification models were developed and validated.

MLP showed the highest overall performance of all tried
algorithms, yet it needed relatively higher computation time. A
random search for optimal layer structure was a promising
approach for prediction engine development.
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