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Abstract

Background: Smartphones are often equipped with inertial sensors that measure individuals’ physical activity (PA). However,
their role in remote monitoring of the patients’ PAs in telemedicine needs to be adequately explored.

Objective: This study aimed to explore the correlation between a participant’s actual daily step counts and the daily step counts
reported by their smartphone. In addition, we inquired about the usability of smartphones for collecting PA data.

Methods: This prospective observational study was conducted among patients undergoing lower limb orthopedic surgery and
a group of nonpatients as control. The data from the patients were collected from 2 weeks before surgery until 4 weeks after the
surgery, whereas the data collection period for the nonpatients was 2 weeks. The participant’s daily step count was recorded by
PA trackers worn 24/7. In addition, a smartphone app collected the number of daily steps registered by the participants’smartphones.
We compared the cross-correlation between the daily steps time series obtained from the smartphones and PA trackers in different
groups of participants. We also used mixed modeling to estimate the total number of steps, using smartphone step counts and the
characteristics of the patients as independent variables. The System Usability Scale was used to evaluate the participants’experience
with the smartphone app and the PA tracker.

Results: Overall, 1067 days of data were collected from 21 patients (n=11, 52% female patients) and 10 nonpatients (n=6, 60%
female patients). The median cross-correlation coefficient on the same day was 0.70 (IQR 0.53-0.83). The correlation in the
nonpatient group was slightly higher than that in the patient group (median 0.74, IQR 0.60-0.90 and median 0.69, IQR 0.52-0.81,
respectively). The likelihood ratio tests on the models fitted by mixed effects methods demonstrated that the smartphone step

count was positively correlated with the PA tracker’s total number of steps (χ2
1=34.7, P<.001). In addition, the median usability

score for the smartphone app was 78 (IQR 73-88) compared with median 73 (IQR 68-80) for the PA tracker.

Conclusions: Considering the ubiquity, convenience, and practicality of smartphones, the high correlation between the smartphones
and the total daily step count time series highlights the potential usefulness of smartphones in detecting changes in the number
of steps in remote monitoring of a patient’s PA.

(JMIR Mhealth Uhealth 2023;11:e44442) doi: 10.2196/44442
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Introduction

Background
Daily physical activity (PA) is crucial for maintaining physical,
mental, and social health [1]. For patients undergoing orthopedic
surgery, resuming PA as soon as possible is vital to enhance
recovery and prevent complications [2]. In addition, assessing
PA after surgery can provide valuable information regarding a
patient’s health condition, allowing for individualized
rehabilitation based on the patient’s condition and demands
[3-5]. However, some limitations and challenges exist regarding
the measurement of PA. Current patient-reported outcome
measures (PROMs) such as questionnaires and surveys might
seem convenient for evaluating the level of PA; however, they
have limitations such as low patient adherence, floor effects,
and recall bias and are inefficient in measuring walking as an
important PA [6]. In addition, PROMs are often obtained at
specific and broad intervals. Therefore, the objective
measurement of PA after discharge is of increasing interest [7].

Smartphones and other digital devices are currently equipped
with sensors allowing the quantification of an object’s motion
by converting inertial forces into measurable electrical signals
[8]. This makes them valuable tools for remotely monitoring
patients’ PA during recovery after surgery. Smartphones have
also become increasingly prevalent across all age groups and
are now ubiquitous [9]. For instance, in Denmark, 90% of the
population has access to smartphones [10], making them a
widespread technology with the potential for broad societal
impact. Using smartphones in remote monitoring the patients
also offers the possibility of applying supplementary PROMs.
A recent study on patients undergoing hip replacement surgeries
demonstrated the patients’ interest in using smartphone apps
and learning how to use wearable sensors [11]. Collecting
activity data and PROMs with a smartphone for this group of
patients has proven feasible [12].

Given the increasing prevalence of smartphones in the general
population and their growing application in telemedical methods,
these devices can play a prominent role in collecting objective
PA data. However, their capability has not been fully explored,
especially in free-living settings and over extended periods,
such as follow-up after surgeries. In addition, some uncertainties
have been discussed regarding the validity of the measurements,
as the patients usually do not carry their smartphones all the
time [13]. Specifically, changing daily life routines during and
immediately after surgery may cause the patients not to carry
their devices as usual. Accordingly, the amount and the
significance of the nonmeasured activity in the perioperative
periods are unknown.

Objectives
In this study, we explored the utility of smartphones in
measuring daily PA compared with wearable sensors in
orthopedic patients during the perioperative period. The PA

trackers were used to record step counts during regular
continuous walking, sporadic walking, and slow continuous
walking. The primary objective of this study was to determine
the correlation between the daily step counts obtained from
smartphones and the step counts registered by the PA trackers
during these different types of walking. In addition, we
investigated the ability of smartphones to predict the total
number of daily steps taken during each type of walking. The
secondary objective was to evaluate the usability of a
smartphone app designed to collect health data.

Methods

Study Design and Setting
This prospective observational study was conducted at the
Aalborg University Hospital, Denmark, between November
2021 and August 2022. The project was registered at North
Jutland Research Database in Denmark (2021-119).

Ethics Approval
This study was approved by the Regional Committee on Health
Research Ethics (reference 2021-000438). This study complies
with the Strengthening the Reporting of Observational Studies
in Epidemiology guidelines [14].

Participants

Overview
We included 2 groups of participants in this study to compare
the results of the patients undergoing orthopedic surgeries with
those of a control group. First, all participants were informed
about the study process and were asked to sign informed consent
forms. Subsequently, the participants were instructed to install
and use the smartphone app and the PA trackers and transfer
the data.

Patients
Patients undergoing lower limb orthopedic surgery were eligible
for inclusion if they were smartphone users. No limitation was
placed regarding the participant’s age or the type of surgery.
However, older, frail patients who required a wheelchair for
ambulation or who could not walk independently were not
included.

Patients’ data were collected from at least 2 weeks before
surgery until 4 weeks after surgery.

Nonpatients
We also included volunteers without orthopedic problems as
the control group. Data regarding the step counts for at least 14
consecutive days were collected in this group.

Data Sources and Measurements

Participants’ Characteristics
The patients’ basic and demographic information, including
their age, sex, BMI, comorbidities (history of medical illness),
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and previous orthopedic surgery on the lower limbs, were
registered in a REDCap (Research Electronic Data Capture;
Vanderbilt University) database hosted by the North Jutland
Region, Denmark [15].

PA Tracker
SENS sensors (SENS Motion) were used to record the patients’
daily number of steps. SENS Motion is a wearable PA sensor
worn as a patch on the lateral distal thigh and collects PA data

by registering 3D linear acceleration data (Figure 1). Some
studies have investigated the reliability and validity of the SENS
PA trackers’measurements [16,17] and demonstrated favorable
results. As the sensors were attached 24/7 to the patients, we
considered their measurements as the total daily step counts.
To ensure that the patients wore the sensors for the entire
duration, we observed the sensors’ relative temperature data in
addition to the linear acceleration daily time series.

Figure 1. The photograph demonstrates the SENS Motion physical activity tracker at the lateral side of the distal thigh of 1 of the participants in the
study.

The SENS Motion algorithm calculates the number of steps
taken during sporadic and continuous walking, as well as
training, in three different categories:

1. Steps-1: Summarized number of steps during continuous
walking and training, based on analysis in the frequency
domain.

2. Steps-2: Steps taken during sporadic and irregular walking
where no continuous frequency can be recognized in the

5-second interval are summarized as 2 steps per 5-second
interval.

3. Steps-3: Steps taken during slow walking where a
continuous frequency can be recognized, but the intensity
of the accelerations is lower than that in usual walking.

We calculated the total PA tracker steps as the sum of the 3
abovementioned variables.
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Smartphone App (OrtoApp)
OrtoApp (Alexandra Institute) is a smartphone app developed
to collect step counts and PA data from the Apple HealthKit
application programming interface (API) on iOS and the Google
Fit API on Android smartphones [18,19]. During the study, the
app was installed on patients’ smartphones and automatically
recorded the steps registered by the Apple HealthKit and the
Google Fit APIs. Furthermore, if a person also wears a
smartwatch, the Apple HealthKit and Google Fit APIs will
collect the data from both devices (the smartwatch and the
smartphone), and the step counts will be calculated based on
both inputs.

In addition, OrtoApp allows users to record their daily mood
and pain levels on an 11-point visual analog scale (0-10).
However, we did not use the data regarding the pain and mood
scores in this study.

Usability of the Smartphone App and PA Tracker
We used the System Usability Scale (SUS) to evaluate
participants’ experience with the smartphone app and the PA
tracker. The SUS is developed as a survey scale that allows
quick and easy assessment of the usability of a given product
or service [20]. The original SUS instrument comprises 10
statements scored on a 5-point scale of the strength of
agreement. Final SUS scores can range from 0 to 100, with
higher scores indicating better usability [21]. In this study, we
used the translated and validated Danish version of the SUS
[22].

After the data collection period was over, we assessed the
usability only in the patient group by distributing the SUS
questionnaire via the REDCap web application.

Steps Data Analysis
We generated 5 time series for each participant, including 1 for
the daily steps recorded by the smartphones and 4 for the daily
PA trackers’ measurements (steps-1, steps-2, steps-3, and PA
tracker total steps). These time series were then plotted for each
participant, and we compared the smartphone data’s time series
with the different variables of the PA trackers using
cross-correlation. Before conducting the cross-correlation
analysis, we differentiated the time series data to remove any
trends or changes in the mean that may have affected the results.
This was done by calculating the difference between consecutive
time points (days). Next, we calculated the cross-correlation
between the resulting time series using a standard method [23].
We specifically calculated the cross-correlation at 0 days lag
(ie, the same day) to assess the immediate relationship between
the variables. We used Fisher Z transformation to calculate the
95% CI for the correlation coefficients and to compare the
correlation coefficients [24]. The comparisons were performed
between various groups based on different criteria, including
patient or nonpatient status, preoperative or postoperative status
(for patients), age (>60 years or <60 years), comorbidities,
history of lower limb surgery, day of data collection
(weekday—Monday through Friday—or weekend—Saturday
and Sunday), content type of the smartphone used, and the use
of a smartwatch.

In addition, we applied mixed effects models to investigate
whether the smartphone’s step counts could predict the total
number of steps. Only the data from the patient group were used
for mixed effects modeling. To prepare the data for regression
analysis, we applied the moving average method to calculate
the average values for the 3 preceding days (trailing moving
average with a window of 3 days). In time series data analysis,
the moving average method helps discover certain traits by
smoothing the variations and reducing the noise [23].
Subsequently, we scaled the data to have a mean 0 and a SD
equal to 1.

We used different subjects as random intercepts in the models
and by-subject PA tracker–smartphone steps slope variance as
random slopes. We included the following variables and all
possible interaction effects between the variables to fit the
models:

1. Smartphone steps:
• Scaled 3-days moving average as a continuous variable

2. Participants’ characteristics:
• Age in years as a continuous variable
• Sex as a categorical variable (male or female)
• BMI in kg/m2 as a continuous variable
• Comorbidity as a categorical variable (yes or no)
• History of lower limb surgery as a categorical variable

(yes or no)

3. Characteristics of data collection day:
• Preoperative versus postoperative as a categorical

variable

4. Smartphone health app:
• Apple HealthKit versus Google Fit as a categorical

variable

5. Smartwatch:
• Using a smartwatch as a categorical variable (yes or

no).

The variables included in the best-performing models were
selected by backward elimination, that is, if they did not improve
the model, the variables were omitted.

Four models were created for the different variables from the
PA tracker (steps-1, steps-2, steps-3, and PA tracker total steps).
In the best-fitted models for the steps-2, steps-3, and PA tracker
total steps, the selected variables were the period (preoperative
or postoperative) and the presence of comorbidities in addition
to smartphone steps. However, in the PA steps-1 model, the
history of medical disease did not improve the model
performance and hence was excluded.

The coefficients for the fixed and random effects variables in
the best-fitted models and the performance metrics for the
goodness of fit for the models (described in Statistical Methods
section) were computed. The 95% prediction intervals for the
models were created and plotted by bootstrapping techniques.
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Statistical Methods
We used the R statistical package (version 4.1.0; R Foundation
for Statistical Computing) for the statistical analyses and lme4
package [25] for the mixed effects models.

Descriptive statistics were used to describe participants’ basic
information. The counts and percentages were used for the
discrete variables, including the number and sex of the
participants and the number of days for data collection. Means
and SDs were used to describe the participants’ age and BMI.
We presented the cross-correlation coefficients between the
time series as means and 95% CIs. The SUS values for the
smartphone app and PA trackers were provided as median and
IQR.

Mixed effects models were created using the restricted
maximum likelihood approach. The repeated measures and
covariance matrix were modeled as unstructured. No violation
of the model assumptions regarding the linearity,
homoscedasticity, and normality of residuals was detected. The

goodness of fit of the models was assessed by calculating the
deviance, Akaike information criterion, Bayesian information
criterion [26], intraclass correlation coefficient, and conditional

and marginal pseudo-R2 [27]. Marginal pseudo-R2 represents
the variance explained by the fixed effects, whereas conditional

pseudo-R2 is interpreted as a variance explained by the entire
model, that is, both fixed and random effects. The scaled step
counts were back transformed into actual values in the plots.
We compared the best-fitted models with and without the
smartphone step counts by using likelihood ratio tests to
calculate P values. The significance level was set at α=.05.

Results

Participants’ Characteristics
Overall, 35 participants were included in the study; however,
4 participants were excluded, and data of 31 participants (n=21,
68% patients and n=10, 32% nonpatients) were analyzed. Table
1 presents the characteristics of the participants.

Table 1. Characteristics of the participants in the study.

Total (n=31)Nonpatient (n=10)Patient (n=21)Variable

55.1 (14.9)49.9 (10.2)57.6 (16.4)Age (years), mean (SD)

17 (55)6 (60)11 (52)Sex (female), n (%)

17 (55)1 (10)16 (76)History of lower limb surgery, n (%)

17 (55)5 (50)12 (57)Comorbidities, n (%)

28.1 (5.3)26.9 (5.3)28.7 (5.2)BMI (kg/m2), mean (SD)

Smartphone health app, n (%)

25 (81)8 (80)17 (81)Google Fit

6 (19)2 (20)4 (19)Apple HealthKit

6 (19)2 (20)4 (19)Smartwatch, n (%)

Participants were excluded owing to surgery cancellation (2/4,
50%) and technical problems with the sensor (1/4, 25%) or the
smartphone app (1/4, 25%). In addition, data from 3 patients
only contained preoperative data because one of the patients
discontinued collecting data after the surgery, the surgery was
postponed in another patient, and the sensor was lost in the
operating room in the third patient. The time series from patients
who only had preoperative data were used for cross-correlation
analysis and comparison, but they were not included in the
regression analysis.

In the patient group, the surgical procedures performed included
total hip arthroplasty (11/21, 52%), total knee arthroplasty (5/21,
24%), osteosynthesis (3/21, 14%), and high tibial osteotomy
(2/21, 10%). The most common symptoms were pain (20/21,
95%), walking problems (18/21, 86%), and joint stiffness (7/21,
33%). In total, 17 participants had comorbidities, and 15
participants took daily medications for high blood pressure

(8/21, 38%), heart disease (3/21, 14%), diabetes (2/21, 10%),
high cholesterol (2/21, 10%), and other diseases (4/21, 19%).
Regarding the history of lower limb surgeries, 7 patients had
previous knee surgery, 3 had hip surgery, and 6 had other
surgeries. In the nonpatient group, 1 person had previous knee
surgery.

We collected 1067 days of data (915 days from the patients and
152 days from the nonpatients). The number of data collection
days per patient was between 10 and 16 (mean 14) days in the
nonpatient group and between 39 and 69 (mean 49) days in the
patient group, except for 3 patients with only preoperative data
(with 8-, 10-, and 13-day data).

Step Count Analysis
The median and IQR for the step counts from the PA tracker
and the smartphone and the percentages of different step types
(steps-1, steps-2, and steps-3) in the total PA tracker step counts
in various groups of the participants are provided in Table 2.
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Table 2. Median and IQR of step counts measured by smartphone and physical activity (PA) tracker by participant characteristics and distribution of
step types (steps-1, steps-2, and steps-3) within PA tracker total steps.

PA tracker total steps composition, median (IQR)PA tracker total steps,
median (IQR)

Smartphone steps, medi-
an (IQR)

Days, nVariables

Steps-3aSteps-2aSteps-1a

Group

29 (24-32)21 (16-33)48 (35-57)6500 (3800-10,800)2000 (700-4800)915Patient

25 (20-28)17 (14-19)58 (52-65)14,800 (10,600-18,300)4600 (2300-9400)152Nonpatient

Period

28 (24-31)18 (14-23)53 (47-60)9600 (6000-13,600)2700 (1000-6300)394Preoperative

30 (24-33)27 (18-44)42 (22-51)5300 (2800-7700)1400 (400-35,000)521Postoperative

Age (years)

27 (23-31)18 (14-24)54 (45-61)8000 (4400-13,500)3200 (900-6500)560≤60

29 (23-33)24 (17-39)44 (27-54)6800 (4100-11,000)1600 (600-3600)507>60

Sex

27 (22-31)20 (16-34)49 (36-58)9300 (5000-14,500)2600 (700-6400)540Female

30 (25-33)19 (14-28)50 (40-59)6200 (4000-10,000)2000 (800-4500)527Male

Comorbidity

27 (22-31)20 (16-30)50 (40-59)9500 (5200-14,300)2100 (600-5300)504Negative

29 (25-33)20 (15-30)49 (37-58)6200 (3900-10,000)2400 (900-5900)563Positive

Previous surgery

28 (24-32)17 (14-22)55 (47-61)7800 (4900-13,800)3100 (1200-7300)394Negative

29 (23-32)22 (17-38)46 (30-55)7100 (3900-11,500)1900 (600-4500)673Positive

Day of week

28 (23-32)20 (15-30)50 (38-59)7200 (4200-12,000)2200 (800-5600)755Weekday

28 (24-32)20 (16-29)50 (38-58)7900 (4300-12,800)2200 (700-5100)312Weekend

Smartwatch

29 (25-32)28 (19-40)42 (27-55)6800 (4500-11,100)2900 (1500-5900)217Yes

28 (23-32)19 (15-27)51 (42-59)7600 4200-12,600)2000 (600-5300)850No

Smartphone health app

29 (24-32)20 (16-29)49 (38-58)7300 (94,100-12,200)2200 (800-5600)904Apple HealthKit

27 (23-31)18 (13-31)54 (39-60)8400 (94,800-12,400)2400 (800-4800)163Google Fit

28 (23-32)20 (15-30)50 (38-59)7400 (4300-12,400)2200 (800-5500)1067All participants

aCorrespond to the proportions of total PA tracker steps in percentages.

In Figure 2, the time series data for each patient during the
preoperative and postoperative periods and for the nonpatient
group are presented for both the smartphone and PA trackers.
Table 3 shows the cross-correlation coefficients (r) at lag 0
between the smartphone time series and the time series for

different PA tracker step counts (steps-1, steps-2, steps-3, and
total steps) for each participant in the study.

Table 4 displays the median and IQR of the cross-correlation
coefficients between the daily step count time series of
smartphones and PA trackers for various variables (steps-1,
steps-2, steps-3, and total steps).
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Figure 2. The upper panel shows the time series for step counts recorded by the smartphone and physical activity tracker for each patient (P) before
and after the surgery, whereas the lower panel displays the same for nonpatient participants (C). Each plot corresponds to 1 participant, and the bold
black font indicates their ID, which matches the IDs in Table 3. In the patient group, each gray horizontal gridline represents 5000 steps, and each gray
vertical gridline represents 5 days. In the nonpatient group, each gray horizontal gridline represents 5000 steps, and each gray vertical gridline represents
2 days.
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Table 3. Cross-correlation at lag 0 between smartphone and physical activity (PA) tracker step count variables, with correlation coefficients (r) and P

values for each participanta.

PA tracker total steps vs
smartphone steps

Steps-3 vs smartphone
steps

Steps-2 vs smartphone
steps

Steps-1 vs smartphone
steps

GroupID

P valuerP valuerP valuerP valuer

<.0010.60<.0010.47.0010.40<.0010.70PatientP1

<.0010.65<.0010.62.200.19<.0010.66PatientP2

<.0010.84<.0010.41.0090.26<.0010.92PatientP3

<.0010.73<.0010.72<.0010.57<.0010.78PatientP4

<.0010.93<.0010.78<.0010.77<.0010.97PatientP5

<.0010.91<.0010.74.0030.45<.0010.94PatientP6

<.0010.68<.0010.57<.0010.48<.0010.72PatientP7

<.0010.75<.0010.63.0010.48<.0010.88PatientP8

<.0010.84<.0010.72.0050.44<.0010.86PatientP9

<.0010.67.0520.27.010.34<.0010.78PatientP10

<.0010.96<.0010.93.030.32<.0010.95PatientP11

<.0010.80<.0010.79<.0010.63<.0010.78PatientP12

.300.16.400.11.400.13.030.30PatientP13

<.0010.74<.0010.66.060.28<.0010.74PatientP14

<.0010.55.0010.51.0020.50<.0010.55PatientP15

<.0010.70.070.26.0470.27<.0010.82PatientP16

<.0010.96<.0010.89<.0010.78<.0010.96PatientP17

<.0010.90<.0010.82<.0010.64<.0010.92PatientP18

.100.72.080.30.0010.44.010.92Patient (only preoperative)P19

.300.66.020.46.020.20.080.83Patient (only preoperative)P20

.080.53.060.45.020.49.020.73Patient (only preoperative)P21

.010.61.300.26.200.29.0050.66NonpatientC1

<.0010.82.500.17.500.15<.0010.90NonpatientC2

.010.68.900.00.800.06.010.84NonpatientC3

.0020.90.0020.88.020.69.0020.91NonpatientC4

.0070.63.600.11.500.15.0070.78NonpatientC5

.010.66.100.39.300.26.010.78NonpatientC6

.0030.82.0070.51.0060.76.0030.86NonpatientC7

<.0010.96.010.62.040.52<.0010.99NonpatientC8

.100.38.400.24.700.09.100.55NonpatientC9

.010.73.060.54.400.24.010.82NonpatientC10

aThe corresponding time series are demonstrated in Figure 2.
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Table 4. Cross-correlation coefficients and corresponding 95% CIs between daily smartphone step counts and different step counts from the physical

activity (PA) tracker (steps-1, steps-2, steps-3, and total steps)a.

P valuePA tracker total
steps vs smart-
phone steps, mean
(95% CI)

P valueSteps-3 vs smart-
phone steps, mean
(95% CI)

P valueSteps-2 vs smart-
phone steps, mean
(95% CI)

P valueSteps-1 vs smart-
phone steps, mean
(95% CI)

.07.50.80.02Group

0.70 (0.62-0.77)0.48 (0.38-0.58)0.35 (0.23-0.47)0.79 (0.72-0.85)Patient

0.77 (0.66-0.88)0.41 (0.20-0.59)0.33 (0.09-0.53)0.88 (0.74-0.94)Nonpatient

.02.06.06.02Period

0.74 (0.62-0.83)0.53 (0.37-0.67)0.41 (0.21-0.59)0.82 (0.72-0.89)Preoperative

0.64 (0.53-0.74)0.42 (0.31-0.52)0.28 (0.16-0.39)0.75 (0.62-0.84)Postoperative

.10.10.10.09Age (years)

0.75 (0.65-0.82)0.46 (0.34-0.56)0.39 (0.27-0.53)0.83 (0.73-0.89)≤60

0.70 (0.58-0.79)0.48 (0.33-0.61)0.30 (0.15-0.44)0.79 (0.70-0.86)>60

.40.30.60.40Sex

0.71 (0.58-0.81)0.45 (0.30-0.57)0.34 (0.18-0.48)0.80 (0.69-0.88)Female

0.74 (0.67-0.79)0.50 (0.39-0.59)0.36 (0.21-0.50)0.82 (0.75-0.87)Male

.97.40.60.30Smartwatch

0.73 (0.46-0.87)0.40 (0.15-0.60)0.31 (0.01-0.55)0.84 (0.61-0.94)Yes

0.72 (0.65-0.78)0.49 (0.39-0.58)0.36 (0.24-0.47)0.80 (0.74-0.85)No

.01.30.40.003Smartphone health app

0.75 (0.68-0.81)0.49 (0.39-0.58)0.37 (0.24-0.48)0.84 (0.77-0.90)Apple HealthKit

0.53 (0.42-0.62)0.35 (0.26-0.44)0.25 (0.06-0.42)0.63 (0.49-0.73)Google Fit

—0.70 (0.53-0.83)—0.45 (0.23-0.66)—0.30 (0.10-0.56)—b0.82 (0.64-0.90)All participants

aP values for group comparisons are provided.
bNot available.

Regression Models for Step Counts
Tables 5-7 present the coefficients for the fixed and random
effects for the regression models that best fit the data for steps-1,

steps-2, steps-3, and the total steps recorded by the PA trackers,
along with the goodness-of-fit metrics.

Table 5. Fixed effects for the best-fitted models estimating daily step counts using smartphone step countsa.

ModelsVariablesa

P valuePA tracker total
steps

P valueSteps-3P valueSteps-2P valueSteps-1

<.0010.67 (0.37 to
0.96)

.0020.76 (0.32 to
1.2)

.010.68 (0.14 to
1.23)

<.0010.33 (0.07 to
0.59)

Intercept, α (95% CI)

Slope, β (95% CI)

<.0010.85 (0.67 to
1.04)

<.00010.85 (0.56 to
1.14)

.0010.34 (0.15 to
0.52)

<.0010.82 (0.66 to
0.99)

Smartphone steps

<.001−0.47 (−0.65 to
−0.30)

<.001−0.52 (−0.72 to
−0.32)

.02−0.30 (−0.53 to
−0.06)

<.001−0.44 (−0.61 to
−0.26)

Period (postoperative)

.007−0.53 (−0.89 to
−0.18)

.06−0.53 (−1.09 to
0.03)

.02−0.84 (−1.55 to
−0.13)

——bPositive medical history

aThe values in this table regard the scaled step counts.
bNot available.
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Table 6. Random effects variances for the best-fitted models estimating daily step counts using smartphone step counts.

ModelsRandom effects

PA tracker total
stepsSteps-3Steps-2Steps-1

0.150.320.470.22The variance between individuals’ intercepts

0.030.250.020.08The variance of PA tracker—smartphone steps slope between individuals

0.100.180.200.07The variance of the residuals

Table 7. Goodness-of-fit metrics for the best-fitted models estimating daily step counts using smartphone step counts.

ModelsModel metrics

PA tracker total stepsSteps-3Steps-2Steps-1

66311111211402AICa

71411631263449BICb

6411089118938Deviance

0.750.800.780.83ICCc

0.920.900.830.94Conditional pseudo-R2

0.680.510.250.65Marginal pseudo-R2

aAIC: Akaike information criterion.
bBIC: Bayesian information criterion.
cICC: intraclass correlation coefficient.

Figure 3 displays the outcomes of various models, along with
the 95% prediction intervals for all patients.

The models with the smartphone steps provided a better fit for
the total step counts than the models without this variable. The
likelihood ratio tests for comparing the selected models with

and without smartphone steps demonstrated that the smartphone
steps were positively correlated with PA tracker total steps

(χ2
1=34.7, P<.001), steps-1 (χ2

1=36.8, P<.001), steps-2

(χ2
1=11.4, P<.001), and steps-3 (χ2

1=22.1, P<.001).
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Figure 3. Results of the different models for estimating the daily step counts of the physical activity (PA) tracker, including the total steps, steps-1,
steps-2, and steps-3. The mean values are depicted by solid lines, whereas the 95% prediction intervals are shown as light green shaded areas for each
model.

Questionnaires and SUS Scores
Overall, 94% (17/18) of the patients filled out the questionnaires
regarding SUS. The median scores were 78 (IQR 73-88) for the

smartphone app and 73 (IQR 68-80) for the PA tracker,
respectively. The scores were higher in female patients and in
those aged <60 years (Table 8).

Table 8. The median and IQR of the System Usability Scale (SUS) scores for the smartphone app and the physical activity (PA) tracker for different
age and sex groups.

SUS, median (IQR)Variables

PA trackerSmartphone app

Age (years)

88 (75-95)93 (83-96)≤60

70 (66-73)73 (65-76)>60

Sex

69 (65-76)73 (65-80)Male

78 (70-80)83 (73-95)Female

73 (68-80)78 (73-88)Total

Discussion

Principal Findings
In this study, we explored the feasibility of using smartphones
for remote monitoring of orthopedic patients’ PA. To achieve
this, we analyzed the correlation between the step counts
recorded by a smartphone and a 24/7 PA tracker. Our results
indicated a high correlation (r=0.70) between the time series of

daily smartphone steps and daily PA tracker total steps. In
addition, we found that the number of steps recorded by the
smartphone was a strong predictor of changes in total daily
steps. However, the absolute number of daily steps predicted
using smartphone data was neither precise nor reliable.

The role of smartphones in remote monitoring of patients’ PA
has not yet been clearly defined because of 2 main reasons.
First, concerns persist regarding the validity and reliability of
PA data collected by smartphones, as conflicting results have
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been reported in the literature [28]. For example, in a systematic
review, the difference between smartphone measurements and
a gold standard in a laboratory setting varied from 0.1% to
79.3%, and the reliability of smartphone measurements ranged
from poor to excellent (intraclass correlation coefficient between
0.02 and 0.99) [13]. Second, the relationship between
smartphone PA data and total PA data in different individuals
is not fully understood and depends on various factors. The
smartphone only records a variable proportion of the total daily
PA, which is the time the person carries the device. Ignoring
this point can lead to conflicting results, especially in studies
with free-living settings. In this study, we investigated the
relationship between the 2 variables and found that, despite
considerable variability, a high correlation exists between
smartphone step counts and total daily step counts.

The correlation between smartphone and total daily steps can
vary significantly in a free-living setting, both between and
within individuals. Several studies have found inferior results
regarding the validity and reliability of smartphone
measurements in free-living measurements compared with
laboratory settings [29-31]. The variations may be even higher
in orthopedic patients owing to pain and mobility issues during
the early postoperative period, which could affect smartphone
use and measurements. In a recent pilot study, Vorrink et al
[32] found a mean correlation of 0.88 between smartphone and
PA tracker measurements in a group of nonorthopedic patients,
which was higher than the correlation we found in this study.
However, we calculated the correlation between the time series
after differentiating and detrending. Our analysis of different
step count variables from the PA tracker revealed that the
correlation with smartphone steps was the highest for steps-1
and the lowest for steps-2. We also found that the correlation
between PA tracker’s steps-1 and PA data collected by
smartphone was higher in the nonpatient group than in the
patient group and during the preoperative period compared with
the postoperative period. However, the correlation remained
relatively high even during the postoperative period (r=0.64
and r=0.75 for total steps and steps-1, respectively). This
discrepancy in the correlation could be attributed to the
possibility that patients do not carry their smartphones as
frequently during the postoperative period as they would under
normal circumstances, or it could be because of the lower
measurement accuracy in lower walking velocities, which has
been demonstrated in previous studies [33,34]. Regarding the
PA tracker’s steps-2 and steps-3, we could not find a significant
difference in the correlations between subject groups with
different characteristics (the P values were between .06 and
.80).

Most participants (>80%) in our study used iOS smartphones,
and we observed a stronger correlation in PA tracker’s steps-1
and total steps with smartphones equipped with Apple HealthKit
APIs. However, we were unable to compare different
smartphone types owing to the small sample size of participants
with Google Fit API in our study. Several studies have
investigated the impact of smartphone type on the accuracy and
precision of PA measurements [35-38]. For instance,
Höchsmann et al [38] found lower accuracy in an Android
smartphone during low-velocity gait when compared with other

smartphones and PA trackers. Moreover, we did not observe a
high correlation between smartwatch users and the total PA
tracker steps. This finding can be attributed to the lower
proportion of steps-1 in the total steps composition among
smartwatch users (ie, smartwatch users took fewer continuous
regular walking steps [steps-1] in this study), as shown in Table
2. As the highest correlation between the smartphone and PA
tracker step counts was observed for steps-1, we would not
expect an increase in the correlation between the smartphone
and the total PA tracker steps.

We applied mixed effects modeling to predict different step
types (continuous regular walking, sporadic walking, and slow
continuous walking) by using the smartphone step counts. Mixed
effects models are a type of regression analysis and are
especially useful in longitudinal studies with repeated
measurements or when the measurements are made on cluster
units [39]. Although we could fit mixed effects models with
relatively high-performance metrics, the bootstrapping methods
demonstrated wide prediction intervals. Therefore, estimating
the daily number of steps by using the smartphone step counts
without further precalibration would be imprecise and
inaccurate. The best-fitted model was achieved for continuous
regular walking (steps-1), which is consistent with the
observation of the highest correlation between smartphone step
counts and continuous regular walking (steps-1). On the basis
of the models’ coefficients, we found that the postoperative
period and a positive medical history were negatively associated
with the total daily steps. The mixed effects models could also
describe the variance in data between and within different
individuals. We found that the variation between individuals in
both the intercept and the slope of the PA tracker–smartphone
steps was higher for sporadic walking (steps-2) and slow
continuous walking (steps-3), which makes estimating these
variables more difficult. In all 4 fitted models, the variance of
the random effects intercept between individuals was more
pronounced than that of the random effects slopes.

In this study, the PA tracker and the smartphone app obtained
SUS score higher than the acceptable value, which was assumed
to be 70 [21]. However, the SUS score cannot independently
make absolute judgments about the goodness of a product.
Factors such as success rate and the nature of the observed
failures should play a prominent role in product usability [40].
During this study, we observed 1 smartphone app failure, which
led to participant exclusion. This participant unintentionally
removed the app from her smartphone and could not reinstall
it because of technical issues. Furthermore, we found higher
usability scores in patients aged <60 years and female patients.
The effects of age and sex were analyzed in SUS applied for
different products. A significant but not strong negative
correlation has been demonstrated between SUS scores and age;
however, no significant difference has been found in the mean
SUS scores between female participants and male participants
[21]. Some studies have also shown that the young adults and
female participants were associated with higher PA tracker use
[41,42].
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Strengths and Weaknesses of the Study
This longitudinal study is the first of its kind to evaluate the
correlation between the daily steps recorded by a smartphone
with the total number of steps in patients undergoing orthopedic
surgeries for several weeks before and after surgery and in a
nonpatient group. We also analyzed different walking types
(regular continuous, sporadic, and slow continuous walking)
and demonstrated that smartphones are more competent in
capturing the steps during regular continuous walking. Detecting
different gait patterns by smartphones and PA trackers has
recently received considerable attention [43-45]. Indisputably,
we must acknowledge the limitation that the validity of the 3
categories of steps measured by the PA tracker in this study has
not yet been fully explored and must be scrutinized.
Furthermore, our study had other limitations, such as the
inability to obtain information regarding the smartphone use
habits of the participants, including how and where the user
carries the smartphone. Nevertheless, we used mixed effects
modeling and random effects variables to account for individual
differences to increase the generalizability of the findings.
Another limitation of the study was that owing to the setting of
the study, we could not use direct observation as the gold
standard for counting the steps. However, to reduce data
collection bias, we used a previously validated PA tracker that
measured PA continuously 24/7.

Implications and Future Research
In this study, we found a high correlation between the number
of steps recorded by smartphones and the total number of daily

steps. However, owing to the limitations and impact of
participant dropouts and missing data, we recommend
interpreting the findings with caution and conducting further
investigations with larger sample sizes and more robust data
collection methods. In addition, further investigations with
larger sample sizes and more robust data collection methods
are necessary to explore determining factors in the predictability
of smartphone measurements and their role in remote patient
monitoring. The study also demonstrated the predictive value
of the postoperative period and positive medical history in
estimating the total daily steps, but more homogenous samples
may increase the precision of these prediction models. In future
research, it would be valuable to compare the measurements of
other well-known PA trackers with varying characteristics to
smartphone measurements [46].

Conclusions
This study highlights the potential of smartphones for
monitoring changes in PA, showing a strong correlation between
daily steps recorded by smartphones and total daily steps,
especially during continuous walking. This finding suggests
that smartphones could be a valuable tool for remote patient
activity monitoring. However, accurately predicting the precise
daily step counts from smartphone data still requires further
investigation, as our results suggest that the current methods
may lack the necessary precision and accuracy.
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