
Viewpoint

The Importance of Data Quality Control in Using Fitbit Device
Data From the All of Us Research Program

Lauren Lederer1, BS; Amanda Breton2, MS; Hayoung Jeong1, MS; Hiral Master3, PhD; Ali R Roghanizad1, PhD;
Jessilyn Dunn1, PhD
1Department of Biomedical Engineering, Duke University, Durham, NC, United States
2Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States
3Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, United States

Corresponding Author:
Jessilyn Dunn, PhD
Department of Biomedical Engineering
Duke University
1427 FCIEMAS, Box 90281
Durham, NC, 27708
United States
Phone: 1 919-660-5131
Email: jessilyn.dunn@duke.edu

Abstract
Wearable digital health technologies (DHTs) have become increasingly popular in recent years, enabling more capabilities to
assess behaviors and physiology in free-living conditions. The All of Us Research Program (AoURP), a National Institutes of
Health initiative that collects health-related information from participants in the United States, has expanded its data collection
to include DHT data from Fitbit devices. This offers researchers an unprecedented opportunity to examine a large cohort of
DHT data alongside biospecimens and electronic health records. However, there are existing challenges and sources of error
that need to be considered before using Fitbit device data from the AoURP. In this viewpoint, we examine the reliability of and
potential error sources associated with the Fitbit device data available through the AoURP Researcher Workbench and outline
actionable strategies to mitigate data missingness and noise. We begin by discussing sources of noise, including (1) inherent
measurement inaccuracies, (2) skin tone–related challenges, and (3) movement and motion artifacts, and proceed to discuss
potential sources of data missingness in Fitbit device data. We then outline methods to mitigate such missingness and noise
in the data. We end by considering how future enhancements to the AoURP’s Fitbit device data collection methods and the
inclusion of new Fitbit data types would impact the usability of the data. Although the reliability considerations and suggested
literature are tailored toward Fitbit device data in the AoURP, the considerations and recommendations are broadly applicable
to data from wearable DHTs in free-living conditions.
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Introduction
Wearable digital health technologies (DHTs) have become
increasingly popular in recent years, especially as DHTs
offer better user experiences, more capabilities, and greater
functionality to assess behaviors and physiology in free-living
conditions. The All of Us Research Program (AoURP) is an
initiative that is seeking to collect health-related information,
including DHT data, from a diverse cohort of over 1 million
participants in the United States. In the AoURP, DHT data are
collected alongside electronic health records, biospecimens,
surveys, and standardized physical measurements. The goal

is to make these data accessible to both researchers and
participants to advance precision diagnosis, prevention, and
treatment [1].

In 2019, the AoURP expanded its data collection with
the Fitbit Bring-Your-Own-Device (BYOD) project. This
expansion has allowed participants to share their historical
and ongoing Fitbit account data through the All of Us
participant portal [2]. The AoURP’s efforts to include Fitbit
device data have continued to expand with the WEAR study,
which gives eligible participants a no-cost Fitbit Charge 4
or Fitbit Versa 3 device [3]. Data from the BYOD project
are available through the AoURP Researcher Workbench,
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which offers data access and analysis tools for DHT data,
electronic health record data, biospecimens, surveys, and
physical measurements [4].

As of 2023, over 15,000 All of Us participants have shared
Fitbit device data [5]. The Researcher Workbench provides
access to these data, including Fitbit-defined heart rate by
zones that are based on percentages of estimated maximum
heart rate, minute-level heart rate, daily activity summaries,
minute-level intraday steps, daily sleep summaries, and sleep
levels [6].

Digital biomarkers derived from DHTs can potentially be
used to improve clinical diagnostics, predict disease status,
and support personalized clinical decision-making [7]. With
the increasing use of DHTs like Fitbit devices in the AoURP
and other research and clinical settings, it is important that
those working with these data consider the inherent limita-
tions of Fitbit devices, given their underlying technology.
This will enable improved data processing and fit-for-purpose
implementations of Fitbit devices in research and clinical
settings. Researchers might ask the following: “How reliable
is the data from these devices? What are the sources of noise,
error, and bias that should be accounted for when using this
data? How can these be accounted for?”

In this viewpoint paper, we examine the reliability of Fitbit
device data in the context of the AoURP’s BYOD program.
We focus on Fitbit devices, given their wide market share
[8,9], the ongoing collection of data from Fitbit users in
the AoURP (eg, BYOD program) [2,10], and these data’s
availability to registered Researcher Workbench users [5].
Data are currently not available from the AoURP regarding
the Fitbit device models included in their data set. For this
reason, the data cleaning strategies we present are device
model agnostic. This paper focuses specifically on data
considerations around physical activity (steps and movement
intensities) and heart rate measurements generated by Fitbit
devices on a daily and per-minute basis. Given that Fitbit
device sleep data are derived from the same underlying
sensors that determine heart rate and motion intensity metrics,
the same fundamental considerations surrounding inherent
measurement reliability should be considered when working
with Fitbit device sleep metrics.

Sources of Noise
Measurement error can affect the reliability of Fitbit device
data in both laboratory conditions and free-living conditions.
In this section, we discuss the most commonly recognized
sources of error that may be observed in Fitbit device data
collected through the AoURP.

Inherent Measurement Inaccuracies
Fitbit devices include a 3-axis accelerometer and photople-
thysmography (PPG) sensor, with more recent device models
including additional sensors, such as an altimeter, a gyro-
scope, a skin temperature sensor, and multipurpose electrical
sensors [11]. It may be helpful for researchers to consider the
data supply chain as they work with DHT data [12]; the data

that researchers generally have access to are processed, and
the firmware that performs such data processing is regularly
updated [13]. Aside from the data supply chain, there are also
inherent limitations of the accelerometer and PPG sensors
themselves that should be accounted for in data analysis.

All Fitbit models with Fitbit LLC’s patented PurePulse
technology (eg, Fitbit Charge, Fitbit Charge 2, Fitbit Charge
3, Fitbit Alta, Fitbit Versa, Fitbit Blaze, and Fitbit Ionic) use
the same PPG hardware and software for heart rate estimation
[14]. PPG sensors, which optically measure light absorption
under the skin, may be affected by user motion and activity
intensity, skin tone, and the wavelength of light used by the
sensor [15,16]. When compared to gold-standard electrocar-
diography, Fitbit devices tend to underestimate heart rate
[14,15,17]. Further, Fitbit device heart rate measurements
have higher reliability under stationary conditions [14,18].

Fitbit devices use the 3-axis accelerometer to determine
step count and categorize physical activity intensity (seden-
tary, light, moderate, vigorous, or moderate to vigorous)
[19-21]. Comparisons between Fitbit device step counts
using direct observation and gold-standard accelerometers,
such as the ActiGraph GT3X+, demonstrate mixed reliabil-
ity, depending on the type and speed of movement and
the on-body placement of the Fitbit. During normal walk-
ing for example, the torso placement of the Fitbit device
has resulted in the greatest accuracy, while ankle and wrist
placement have been the most accurate in slow-walking and
jogging, respectively [20]. Similar findings from other studies
demonstrate that step count and physical activity intensity
accuracy are affected by device placement and movement
type [22-26].
Skin Tone
Skin tone may be another inherent source of error for
DHTs that rely on optical measurements (eg, PPG or pulse
oximetry) [27,28]. Both melanin and skin with tattoos absorb
more green light, that is, wavelengths of around 530 nm,
which are the LED wavelengths commonly used in PPG
sensors [29]. There have been mixed findings in this area;
a study by Shcherbina et al [30] on older generations
(2014-2016) of consumer smartwatches found that darker
skin tones positively correlated with increased heart rate
error, whereas our study, in which we used more recent
devices (2014-2018), did not find a relationship between heart
rate measurement accuracy and skin tone across a subset of
consumer smartwatches [18]. Clinical-grade pulse oximeters
that rely on red and infrared optical measurement technology
may also be affected by skin tone [31].

Fitbit devices may use a combination of both green and red
wavelengths to estimate heart rate [15,32]. Although green
wavelengths can enable more accurate heart rate measure-
ments during movement when compared to red wavelengths,
green wavelengths are more readily absorbed by melanin
before reaching the photodetector [29]. Additional research
is needed on whether and how the accuracy of optical-based
DHT measurements, such as heart rate and saturation of
peripheral oxygen (SpO2), is affected by skin tone.
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The data collected by the AoURP currently do not include
data on skin color or the presence of tattoos under Fitbit
devices; therefore, it is not possible to directly account for
skin tone or wrist tattoos as a potential source of error in
AoURP heart rate data. As a result, researchers working with
All of Us data may need to take extra care when interpreting
or translating results that may be influenced by skin tone or
the presence of wrist tattoos, particularly when working with
heart rate data.
Movement and Motion Artifacts
Motion artifacts can also be a source of error for heart rate,
step count, and physical activity intensity data. Unexpected
noise with random amplitudes and frequencies can be seen in
raw sensor data and can cause the algorithms of Fitbit devices
to falsely detect movement or a heart beat [33]. For example,
the reliability of Fitbit Flex’s step count and moderate to
vigorous physical activity data was found to be dependent on
the activity type (walking, stair stepping, jogging, and incline
walking) [24], and step count error was shown to be higher
during activity than during rest [20]. Therefore, it is likely
that step count reliability varies, particularly during normal
household activities, which may be logged by Fitbit devices
as exercise movements.

Wearable device heart rate measurements are the most
accurate under circumstances of rest, followed by physi-
cal activity and then rhythmic activity, such as walking
or jogging. Our previous work demonstrated decreased
reliability during rhythmic activities, such walking or typing.
This was likely due to Fitbit devices mistaking the peri-
odic signal, which was being produced by the repetitive
movements, for the cardiovascular cycle. Although walking
resulted in heart rate measurements that were higher than the
true heart rate, typing resulted in heart rate measurements that
were lower than the true heart rate [18]. A study by Benedetto
et al [15] assessed Fitbit Charge 2 heart rate accuracy during
stationary biking and found that the device underestimated
heart rate when compared to electrocardiography.

Some possible reasons for heart rate measurement error
during motion include the device’s sampling and interpola-
tion methods, unstable device positioning, and variation in
the pressure applied to the skin by the sensor [15,18,34].
Researchers should be aware of the impact of physical
activity type (ie, motion intensity and periodicity) on Fitbit
device heart rate measurement error.

The body positioning and fit of DHTs can also be sources
of motion artifacts. For example, wrist-based Fitbit devices
can misclassify nonambulatory arm movements as total body
motion, which may result in the overestimation of physical
activity and motion intensity [35]. This misclassification of
physical activity may be worse if the device is not worn
correctly. To address this challenge, the Fitbit device user
manuals provide instructions for specific placement on the
wrist to enable the acquisition of more reliable data [36].

Sources of Data Missingness in Fitbit
Device Data
It can often be challenging to determine the minimum amount
of data necessary to achieve a particular analysis goal when
using DHT data. A systematic review by Chan et al [37]
pointed to a common definition for a “valid day” of wearable
data—at least 10 intermittent hours of data present within
1 day—and a “valid week” of data—at least 3 valid days
during the week. It is important for researchers to note that
most Fitbit devices need to be charged at least once per week
for 1 to 2 hours at the time of writing, and the need to
remove the device from the wrist to charge it results in at least
some data missingness. More than the minimal necessary data
missingness can occur in the event that the wearer forgets
to put the device back on their wrist after charging it [35].
Such nonwear is an example of structured missingness, where
a contiguous block of missing observations occurs when the
device is not being worn. At scale, there may be observa-
ble nonwear patterns, such as times when people commonly
remove their devices (eg, during sleep) [38].

In addition to nonwear, improper device wear can also
result in data missingness. Improper wear, such as insuffi-
cient tightening of the wrist strap, can lead to the sensor
orientation being askew or a loss of sensor-to-skin contact,
which is required for high-fidelity optical measurements,
such as PPG-based heart rate measurements [39]. Moreover,
observations can be impacted by large motion artifacts, and
such observations (eg, high accelerometry values) may be
removed by the device firmware. This leads to missing
values in the final data set. To explore the extent of such
data removal, our team recently compared data missingness
in optical heart rate and SpO2 observations across multiple
wearables [18,40]. We found that, for heart rate measure-
ments, the Fitbit Charge 2 had the highest amount of missing
data during both rest (18.7%) and physical activity (10.4%)
when compared to other consumer-grade wearables [18]. Data
missingness due to improper wear or firmware attempts to
account for motion artifacts may be seen in the data set
as random missingness, lacking structure and predictability.
However, some wearers may be more prone to improper wear
or high-intensity activity, which can lead to higher amounts
of missing data in individual data sets. Other factors that can
affect the presence or absence of Fitbit device data include the
frequency of syncing the device with the smartphone app and
poor device connectivity [41,42].

There is a taxonomy of mechanisms for missing data,
including (1) data missing completely at random (MCAR),
where missingness is unrelated to observed characteristics;
(2) data missing at random (MAR), where missingness is
related to observed characteristics; and (3) data missing
not at random (MNAR), where missingness is related to
unobserved characteristics. Different methods are required to
best account for these three missingness mechanisms during
data preprocessing; thus, identifying the type of missingness
is an important step in DHT data analysis. In the case of
Fitbit device data, observations that are MCAR may be due
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to nonsystematic device malfunctions, nonsystematic errors
in data transfer, or sporadic improper device wear. Observa-
tions that are MAR may be the result of a particular device
model missing a type of measurement capability (eg, a device
that is known to not report heart rate measurements under
high-intensity activity). An example of MNAR missingness
might be nonwear during a bout of illness or due to a user
having a poorly fitting device. In a free-living study, such as
the AoURP, all three missingness mechanisms are likely to
be present in the Fitbit device data and should be identified
and appropriately addressed when possible by, for example,
making assumptions about the reasons for the data missing-
ness upon analyzing missingness patterns [43].

Mitigating Missingness and Noise in
DHT Data
Accounting for Data Missingness
Avoiding data missingness is best done at the data collec-
tion stage. Prospective bring-your-own-device studies may
increase wear time and improve device fit by incorporating
reminders for users to wear the device, adding nonwear alerts
for users or the study team, and educating users on fit and
charging [44]. It should be noted that AoURP Fitbit device
data collection is purely observational and, at this time, does
not involve providing any alerts or interventions to improve
Fitbit device wear habits.

Some missingness in the data is inevitable. Accounting
for data missingness begins by thoroughly identifying the
reason for missingness and deciding upon the most appro-
priate strategy for mitigation. For AoURP researchers using
Fitbit device data collected in free-living conditions, it is not
always possible to distinguish MAR, MCAR, and MNAR
missingness; therefore, they may need to make assumptions

to decide how to proceed with mitigation [43]. In the context
of Fitbit device data, we can distill a few practical solutions
for addressing wear-related structured missingness [38].

The first step is to decide upon a definition for “wear” in
the context of the data and the question at hand. Depending
on what analysis or question is of interest, the definition
of “wear” can drastically change. For example, an analysis
involving sleep quality and staging may require the definition
of “wear” to include common sleep hours (eg, 8 PM to 8
AM) or a minimum monitored sleep duration time, such as
that reported by Fitbit devices, but other analyses may only
require a daily wear level, which gives an idea of a partici-
pant’s activity and physiological state without requirements
regarding wear during specific activities, such as sleep and
exercise, as described in the Sources of Data Missingness in
Fitbit Device Data section [37].

One way to calculate a daily wear level is to leverage
minute-level heart rate data, as most consumer devices only
collect these data when they are worn on the wrist. This
would, for example, help to avoid including step count data
that may have been collected when a device is in a purse. By
dividing the total count of minute-level heart rate observa-
tions collected within a single day by the total number of
minutes when such data were possible to collect (1440 min in
1 d), we can derive a reasonable estimate of the proportion of
the day when the device was on the wrist.

Once established, the daily wear level threshold can be
used for filtering out nonwear data and participants; the
optimal threshold for filtering should be selected carefully
to avoid unnecessary data loss (Figure 1A, Figure 1B). The
optimal threshold is where data loss is minimized and there
is adequate statistical power to draw conclusions from the
analysis (Figure 1C).
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Figure 1. Graphs A and B show the total counts of participants and days, respectively, that meet each wear threshold, with an optimal threshold of
<0.4. Graph C shows the mean and median total days (per participant) with a wear level greater than or equal to each wear threshold, demonstrating
an optimal threshold of between 0.3 and 0.4. The 95% CI (indicated in blue) was calculated as follows: μ ± σ/√n. The IQR (indicated in orange
dashed lines) indicates the first and third quartile values. The controlled tier AoURP version 7 data set (C2022Q4R9) was used to generate Figure 1.
AoURP: All of Us Research Program.

After removing nonwear data (ie, contiguous blocks of
missing observations), it is important to identify other sources
of data missingness and determine whether mitigation is best
done by using imputation or by using the complete case
method [43]. Sometimes, the decision can be made based
on the extent of the missingness relative to the overall data
volume needed for analysis, and at times, it may be deemed
that the original analysis cannot be performed as planned
due to insufficient data. As an example, a recent study on
COVID-19 detection via Fitbit device data calculated the
mean over 5-minute intervals of heart rate data; subsequently,
any missing data over full 5-minute intervals were imputed by
using the median heart rate value from a previously defined
14-day window [45]. Although it is common in wearable data
analysis to use the mean and median values of heart rate
data for imputation, new imputation methods for biomedi-
cal wearable data have also been developed to incorporate
machine learning for improved imputation accuracy [46,47].

Although imputation can be beneficial because it preserves
data, it should be noted that imputation is not always a good
idea, particularly in cases with substantial missingness for
which typical values cannot be established.
Accounting for Noise
Many methods exist to reduce noise in raw signal data
(ie, sample-level or high-frequency signal data), particularly
when the source of the noise is well characterized. Unfortu-
nately, consumer devices typically do not give access to such
high-frequency data, but their firmware and adaptive data
collection methods are thought to include steps that account
for skin tone–related errors and motion artifacts. Unfortu-
nately, the public has no way of assessing how well these
methods perform. Based on this, it is difficult for research-
ers to directly address errors resulting from skin tone or
motion artifact errors. However, some general data cleaning
strategies exist that may help to mitigate noise in the data,
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regardless of the source of the noise (Table 1). In this section,
we discuss how to leverage changes from an individual’s
baseline, filtering during repeated activities, and z score

normalization to improve the signal to noise ratio (SNR). We
recommend using these techniques in combination with one
another to best mitigate noise.

Table 1. Examples of noise mitigation methods for wearable data.
Baseline comparisons Sampling during periods of similar activity z score normalization

Description • Calculate the median value
during a defined baseline
period.

• Calculate the Δ from the
baseline for all other data.

• Establish specific wear times and use the
“Activity Type” metric to filter an individual’s
Fitbit device data during similar time periods
each day for comparable activity types.

• Conduct analysis using these segmented data
sets.

• Subtract the mean from each
observation and divide by the
SD.

Applicability • Mitigate consistent
measurement error (bias).

• Mitigate noise that is exacerbated under specific
conditions.

• Mitigate short periods of
noise.

Benefits • Provides a “usual” picture
of an individual [48].

• Assists in isolating confounding effects that may
arise in different activity types and heart rate
zones.

• Standardizes the comparison of data across
different individuals.

• Allows direct comparison of
2 observations originating
from different segments of
temporal data [49].

Limitations • Need ample data to
establish a baseline [48].

• Baselines can change over
time.

• Recommended for large sets of longitudinal data
to make accurate comparisons.

• Abstraction of units and
range may make it difficult to
interpret data.

On an individual level, the comparison of observations to a
reliable baseline can be helpful for determining changes in
biosignals over time while reducing the influence of both skin
tone and motion artifacts. Reliable baselines can be estab-
lished by first summarizing an individual’s measurements
during periods of sleep or inactivity or before a perturbation.
The determination of which time period to use to establish
a baseline is study dependent. Depending on the timescale
of the analysis, it is also useful to consider a sliding win-
dow approach, wherein new baselines are established during
predefined time periods to account for baseline changes over
time. The median value of the biosignal serves as a useful
baseline value because it is less susceptible to noise and
outliers compared to other statistical summary metrics and
provides a way to amplify the SNR during the next steps of
the analysis. The establishment of and comparisons to reliable
baselines have been performed in multiple studies [50-53].
One limitation of this approach is that substantial monitoring
time may be needed to establish a reliable baseline for an
individual due to inherent biological and behavioral variabil-
ity and the effects of external factors that may be difficult
to control for (eg, seasonality, circadian rhythms, weekdays
vs weekends, etc) [48]. It should also be noted that compar-
isons to a reliable baseline would not improve the SNR in
scenarios where there is a compound effect of the source of
noise and the conditions of measurement [54]. For example,
skin tone may only increase measurement error for certain
heart rate zones (eg, high heart rate) or under circumstances
of high motion. In such cases, removing data collected under
certain conditions that exacerbate measurement error may be
the most appropriate approach.

Another way to handle the challenge of confounding
sources of measurement error is to only compare segments of
data that are measured under the same conditions (eg, similar
movement types and heart rate zones) [15,18,20,24,55]. This
technique allows researchers to further isolate confounding

sources of measurement error that may be exacerbated
during different activities. First, one must define specific
wear times of interest, such as wear during specific times
of the day, which helps account for circadian variability.
Second, when available, researchers should use the “Activity
Type” provided by Fitbit devices to segment heart rate data
into comparable sections. Researchers can also leverage this
activity information to anticipate activities for which heart
rate data may be less accurate.

In circumstances where there are short periods of
incorrectly reported heart rates or step counts (eg, during
high-intensity motion), simple normalization methods, such
as z score normalization and minimum-maximum normal-
ization, are the most useful [56,57]. Minimum-maximum
normalization is useful when extreme outliers are not present
in the data, especially when the data have a fixed possible
range. z score normalization is particularly useful because
it centers and scales the Fitbit device data to a mean of
0 and an SD of 1. z score normalization helps to reduce
the comparatively higher impact of outliers within shorter
data segments because it leverages information from longer
segments (ie, the mean and SD) for normalization. Once
normalized, the data can be compared across wearable data
types and participants.

Future Directions
As the AoURP continues efforts to provide wearable data
to researchers and expand the scope of the Fitbit device
data made available on the Researcher Workbench, there are
several future directions to be considered. Although the ideas
presented herein are tailored to Fitbit device data originat-
ing from the bring-your-own-device facet of AoURP, Fitbit
device data are now actively being collected from other
studies, and these data may one day be integrated into the
Researcher Workbench [3]. Each additional study may have
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unique characteristics, including the target population, which
may play a role in the overall quality of the data. For
example, whether a Fitbit device was provided to participants
or whether they were using an existing device they purchased
may be a factor in a participant’s comfort level with using
the device properly and regularly. Understanding the nuances
and potential variations in data quality arising from different
study protocols and data sources within the AoURP ecosys-
tem necessitates further research. Investigating how specific
study designs, participant demographics, and data collection
protocols within the AoURP may influence the overall quality
of the collected data will be crucial for researchers seeking to
derive meaningful insights and improve the designs of future
studies that implement DHTs.

Although Fitbit device model data are not currently
available on the Researcher Workbench, it is worth consid-
ering how differing device models, software, and firmware
may affect the data collected. At the time of writing, the
underlying PurePulse PPG technology is the same across
all Fitbit LLC heart rate tracking devices [14]. The largest
differences in accelerometer-derived data have been observed
between Fitbit LLC’s early torso clip-on trackers and the
newer wrist-based devices [20]. Additional research is needed
to investigate whether there are any substantial differences
in accelerometry performance across Fitbit LLC wrist-based
models. With regard to data derived from heart rate and
accelerometry, such as sleep tracking data, prior to Fitbit
LLC’s release of heart rate tracking devices in 2014 [58],
Fitbit LLC’s early accelerometry-only devices estimated sleep
metrics based on movement alone. Only Fitbit devices with
heart rate tracking will include sleep staging, wake heart
rate, and sleep-time heart rate [59]. Identifying whether sleep

staging metrics are available for a particular individual may
be a convenient way to identify the broad type of Fitbit device
that was worn. The future incorporation of other contextual
information, such as environmental factors, user behaviors,
and device models, will enhance the ability to detect and
mitigate noise, improve overall data quality, and provide a
more comprehensive understanding of an individual’s health.

Conclusion
The development and validation of Fitbit device–derived
digital biomarkers offer the potential for remote and
continuous measurement of physiological data. Such digital
biomarkers can help inform medical decisions and predict
disease states [7]. The wide adoption of DHTs by both
consumers and programs like the AoURP make DHTs a great
source of data for researchers. Researchers can use various
analytical, statistical, and machine learning approaches to
further develop DHT data into digital biomarkers [60-63].
Like with any technology, there are inherent limitations and
sources of error that stakeholders (eg, researchers using DHT
data in their analyses) should be aware of. We encourage the
All of Us community to use data processing techniques that
address noise and missingness to reduce problems down-
stream in the data analysis. Although we focused on heart rate
and motion data in this work, the error mitigation methods
described are applicable to other forms of wearable data,
including sleep data. For example, changes in total sleep time
and sleep stages can be compared against baselines over time.
Researchers should consider their study goals and expected
outcomes when determining which data cleaning strategies
are the most salient to their goals.
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BYOD: Bring-Your-Own-Device
DHT: digital health technology
MAR: missing at random
MCAR: missing completely at random
MNAR: missing not at random
PPG: photoplethysmography
SNR: signal to noise ratio
SpO2: saturation of peripheral oxygen
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