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Abstract

Background: Various populations with chronic conditions are at risk for decreased cognitive performance, making assessment
of their cognition important. Formal mobile cognitive assessments measure cognitive performance with greater ecological validity
than traditional laboratory-based testing but add to participant task demands. Given that responding to a survey is considered a
cognitively demanding task itself, information that is passively collected as a by-product of ecological momentary assessment
(EMA) may be a means through which people’s cognitive performance in their natural environment can be estimated when formal
ambulatory cognitive assessment is not feasible. We specifically examined whether the item response times (RTs) to EMA
questions (eg, mood) can serve as approximations of cognitive processing speed.

Objective: This study aims to investigate whether the RTs from noncognitive EMA surveys can serve as approximate indicators
of between-person (BP) differences and momentary within-person (WP) variability in cognitive processing speed.

Methods: Data from a 2-week EMA study investigating the relationships among glucose, emotion, and functioning in adults
with type 1 diabetes were analyzed. Validated mobile cognitive tests assessing processing speed (Symbol Search task) and
sustained attention (Go-No Go task) were administered together with noncognitive EMA surveys 5 to 6 times per day via
smartphones. Multilevel modeling was used to examine the reliability of EMA RTs, their convergent validity with the Symbol
Search task, and their divergent validity with the Go-No Go task. Other tests of the validity of EMA RTs included the examination
of their associations with age, depression, fatigue, and the time of day.

Results: Overall, in BP analyses, evidence was found supporting the reliability and convergent validity of EMA question RTs
from even a single repeatedly administered EMA item as a measure of average processing speed. BP correlations between the
Symbol Search task and EMA RTs ranged from 0.43 to 0.58 (P<.001). EMA RTs had significant BP associations with age
(P<.001), as expected, but not with depression (P=.20) or average fatigue (P=.18). In WP analyses, the RTs to 16 slider items
and all 22 EMA items (including the 16 slider items) had acceptable (>0.70) WP reliability. After correcting for unreliability in
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multilevel models, EMA RTs from most combinations of items showed moderate WP correlations with the Symbol Search task
(ranged from 0.29 to 0.58; P<.001) and demonstrated theoretically expected relationships with momentary fatigue and the time
of day. The associations between EMA RTs and the Symbol Search task were greater than those between EMA RTs and the
Go-No Go task at both the BP and WP levels, providing evidence of divergent validity.

Conclusions: Assessing the RTs to EMA items (eg, mood) may be a method of approximating people’s average levels of and
momentary fluctuations in processing speed without adding tasks beyond the survey questions.

(JMIR Mhealth Uhealth 2023;11:e45203) doi: 10.2196/45203
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Introduction

Background
Various illnesses are risk factors for decreased cognitive
performance, including type 1 diabetes (T1D), type 2 diabetes,
depression, and cardiovascular disease [1-4], making the
assessment of cognition in these populations important.
Although the measurement of the cognitive performance of
individuals with various chronic illnesses in their real-world
environments is potentially useful (eg, as it provides ecologically
valid measures) [5], formal ambulatory cognitive assessment
is at times infeasible because of limited resources and time
demands already placed on participants from other ambulatory
assessment tasks. We attempt to capitalize on the growing use
of the ecological momentary assessment (EMA) methodology
in behavioral health research [6-8] and propose a novel approach
for assessing a central cognitive measure, processing speed,
using EMA survey paradata. Paradata are data about the
response process, such as response times (RTs) when answering
survey questions [9,10], that can be passively captured alongside
survey responses. Measuring cognitive performance via EMA
paradata could create novel opportunities for researchers to
examine respondents’ real-time cognitive performance in studies
in which formal ambulatory cognitive testing cannot be readily
implemented. This, in turn, could allow for a more frequent
investigation of the antecedents, correlates, and consequences
of changes in processing speed across a wider range of
individuals and populations with chronic conditions.

Several behavioral health-focused EMA studies have used
formal ambulatory cognitive tests in various populations,
including individuals with T1D [11-13], breast cancer survivors
[14], and people with fibromyalgia [15]. Formal ambulatory
cognitive assessments have been viewed as a gold standard for
capturing people’s cognitive performance in their natural
environment and overcome several limitations of traditional
cognitive testing, including the ability to represent cognitive
performance in real-world settings, increased frequency with
which tests can be administered, and the ability to capture
changes over short time frames [5]. However, formal ambulatory
cognitive assessments often require more time to complete than
other EMA measures. For instance, assessing a single aspect of
cognition often requires 45 to 60 seconds [5,16], whereas the
measurement of constructs such as stress requires the completion
of a single item. Therefore, to administer formal ambulatory
cognitive tests, researchers must at times limit the number of

survey items included to keep the overall time to complete EMA
surveys manageable. They also often require a costly setup and
the use of specific programs or apps, which can be obstacles to
implementation for many researchers. The difficulties in
implementing formal ambulatory assessments limit our ability
to more frequently investigate cognitive performance in
everyday real-world settings in populations with chronic
conditions. When considering T1D specifically, ambulatory
cognitive performance has rarely been assessed [12,13,16],
limiting our understanding of time-varying correlates and
ultimately our understanding of the multifactorial pathways
connecting diabetes to cognitive performance and decline.

Cognitive performance may potentially be inferred from EMA
survey paradata (eg, RTs to mood items) and thus could be a
means to approximate people’s momentary cognitive functioning
in their natural environments without the time demand of
additional formal cognitive testing. Paradata have been
investigated as a means of approximating the cognitive aspects
underlying survey responding in traditional (non-EMA) survey
studies. For instance, a study examining survey response
behaviors at older ages found that the time of survey initiation
and time of survey completion were related to mild cognitive
impairment [8]. In another study, survey RTs and answer
changes were operationalized as indicators of cognitive effort
[9]. However, to date, very few studies have investigated the
potential use of paradata in EMA surveys as indicators of
cognitive performance [10]. One study found a moderate
association between the time to complete EMA surveys and
processing speed [10] but did not examine the effect of the types
of EMA items or the degree of within-person (WP) reliability
of EMA RTs.

This Study
The purpose of this study was to investigate whether the RTs
to noncognitive EMA questions (eg, mood, stress, and activity
done) can serve as approximate indicators of person-level
differences and momentary WP fluctuations in processing speed.
Aside from individuals’average processing speed (person-level
differences), momentary fluctuations in processing speed may
also be useful to assess via EMA survey paradata. For instance,
intraindividual cognitive variability increases with age, even
among those who remain cognitively healthy [17], and
variability is a risk factor for mild cognitive impairment and
Alzheimer disease and related dementias [18-22], even after
adjusting for average performance [18]. In addition, WP
variability in processing speed, as measured by formal cognitive
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tests, has been shown to be affected by momentary factors,
including caffeine consumption [23], social context [24], and
fatigue [14]. We acknowledge that RTs to survey items have
been proposed to contain different types of information,
including the level of cognitive effort invested [25]; processing
speed [26]; and, for self-reports of current mood, the level of
emotional clarity [27]. Therefore, survey item RTs likely reflect
a combination of several factors. Thus, we did not expect a
complete overlap between RTs and the results of mobile
cognitive testing but did expect a substantial association.

We capitalized on preexisting data from an EMA study in which
adults with T1D completed 2 weeks of EMA surveys together
with smartphone-based mobile processing speed and sustained
attention tests [16]. Cognitive tests provided validated
processing speed and attention measures against which we
compared the EMA survey RTs. The makeup of the sample,
adults with T1D, allowed for analyses in a sample for which
processing speed may be especially relevant. In individuals with
T1D, previous studies have found relationships between blood
glucose metrics and cognitive performance, including processing
speed [11,28,29].

As the primary test of convergent validity, we examined the
associations between the RTs to different subsets of EMA items
and the scores of mobile processing speed tests. We
hypothesized that if EMA survey RTs captured processing
speed, slower RTs would be associated with worse performance
on the formal processing speed test, both at the between-person
(BP) and WP levels.

As secondary tests of convergent validity, we examined the
associations between the RTs to different subsets of EMA items
and depression symptoms, age, fatigue, and a diurnal cycle. In
a review, individuals with major depression were found to have
lower processing speed than controls [30], so we expected
greater depression symptoms to be associated with slower mean
EMA survey RTs. Aging has often been linked to decreased
processing speed through various neurobiological pathways
[31,32], so greater age was hypothesized to be associated with
slower mean EMA survey RTs. We hypothesized that fatigue
would have associations with EMA survey RTs at both the BP
and WP levels. At the BP level, chronic fatigue syndrome has
been associated with slower overall processing speed [33]. At
the WP level, processing speed was slower among breast cancer
survivors reporting higher than usual fatigue [14]. Finally,
cognitive abilities have been found to be at the lowest level
during early morning and nighttime, increasing throughout the
day until evening [34]. EMA survey RTs were expected to
follow a similar diurnal pattern.

To assess divergent validity, we tested the association between
EMA item RTs and sustained attention ability. We anticipated

that if EMA RTs are indicators of processing speed, they would
have stronger associations with processing speed than with
sustained attention ability. Although both processing speed and
sustained attention ability are fundamental cognitive skills, they
are distinct aspects of cognitive performance that are measured
using different tests [5,35]. For instance, sustained attention
tests are often scored for accuracy, whereas processing speed
tests are scored for speed [36].

Methods

Study Design
The goal of the EMA study from which data were analyzed was
to investigate the relationships among momentary emotion,
function, and glucose, the full methodology of which has been
outlined previously [16]. Participants were recruited from 3
clinical sites, and the inclusion criteria were as follows: age of
>18 years, familiarity with using a smartphone, and sufficient
visual acuity, cognitive ability, and manual dexterity to complete
study tasks, such as processing speed tests [16]. Consent to
participate was provided on the web through the REDCap
(Research Electronic Data Capture; Vanderbilt University)
e-consent framework [37]. Study procedures included the
completion of baseline surveys; 2 weeks of phone-based EMA
and cognitive testing with 5 to 6 assessments per day, wearing
a continuous glucose monitor and accelerometer during the
EMA period; and follow-up surveys.

Ethics Approval
The data collection procedures were approved by the University
of Southern California institutional review board (proposal
#HS-18-01014).

Measures

EMA Item RTs
RTs to the 22 noncognitive EMA survey items listed in Table
1 were examined as potential processing speed indicators. All
items were derived from validated measures or used in prior
EMA research [16]. The items were presented one at a time on
study phone screens via the mobile EMA app [38]. The
participants were not informed that their EMA survey RTs were
being measured. Whether participants should be informed of
the collection of paradata continues to be debated [39]. RTs
were recorded in seconds (to three decimal places) for each
item. Values of <0.2 seconds or >30 seconds were considered
missing in analyses (5979/461,896, 1.29% of observations)
because prior literature suggested that ultrafast EMA RTs are
likely indicative of careless responding [40] and because RTs
of >30 seconds were deemed outliers that may have been caused
by disruptions in completing the survey. Log transformation
was applied to the RTs to create more normal distributions.
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Table 1. Ecological momentary assessment items from which response times were analyzed.

Response option or optionsItem type and question or questions

16 slider scale items

0 (not at all) to 100 (extremely)Positive affect

Right now, how content do you feel?

Right now, how happy do you feel?

Right now, how excited do you feel?

Right now, how enthusiastic do you feel?

0 (not at all) to 100 (extremely)Negative affect

Right now, how disappointed do you feel?

Right now, how sad do you feel?

Right now, how upset do you feel?

Right now, how anxious do you feel?

Activity engagement (with reference to the activity the participant reporting doing right before the survey)

0 (unable) to 100 (extremely well)How well were you able to do this activity?

0 (not satisfied) to 100 (extremely satisfied)How satisfied are you with the way you did this activity?

0 (not important) to 100 (extremely important)How important is this activity to you?

Stress

0 (not at all stressed) to 100 (extremely stressed)How stressed are you right now?

0 (not at all stressed) to 100 (extremely stressed)How stressed do you feel about your diabetes or diabetes management right now?

0 (not at all) to 100 (extremely)Right now, how tense do you feel?

Fatigue

0 (not at all) to 100 (extremely)At this moment, how tired do you feel?

Pain

0 (none) to 100 (extreme pain)At this moment, how much bodily pain do you have?

3 multiple-choice items

Activity done

10 choices (eg, work and relaxing)What were you doing right before starting this survey?

Where activity was done

5 choices (eg, home)Where were you when doing this activity?

Subjective blood sugar level

Likert 0-4: very low, low, just right, high, and very
high

How does your blood sugar feel right now?

3 checkbox items

With whom

8 choices (eg, alone and friend)Who were you with when doing this activity?

Diabetes intrusiveness

4 choices (eg, no and yes because of my devices)Did your diabetes get in the way of doing this activity?

Eat or drink

Ate, drank, and neitherDid you eat or drink in the last 3 hours?

Our primary set of noncognitive EMA survey RTs was the RTs
to the 16 slider items, but other noncognitive EMA survey RT
combinations were also examined. To compare the reliability
and validity of EMA RTs across types of EMA items, we
classified the items by response option type and further by item

content domains, where possible, as presented in Table 1. We
note that the EMA items were chosen to serve the goal from
the overarching study of investigating the relationships between
various measures and blood glucose metrics and were not
deliberately crafted to ensure a sufficient range of item
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characteristics. The 16 slider items were designated as primary
because they comprised the largest group of items with the same
type of response options and thus seemed most likely to have
the highest reliability among the EMA item groups. As there
were relatively few multiple-choice and checkbox items, we
did not create subgroups by item content for the items with these
response options. Grouping was applied to the extent feasible
to allow for the investigation of the impact of item
characteristics on the validity and reliability of EMA RTs as
indicators of processing speed. Given the prior findings that the
content of survey items and the type of response options may
affect RTs [41,42], we carefully examined the extent to which
the association between EMA survey RTs and processing speed
differed according to these item characteristics.

Processing Speed Test
At the end of each EMA survey, participants were prompted to
complete the Symbol Search task, a phone-based mobile
processing speed test [5]. This task has previously demonstrated
construct validity and was found to correlate at r=0.74 with its
standard laboratory version [5]. In this task, participants were
presented with 2 cards at the top and bottom of the screen, each
with 2 symbols (Figure 1). They were asked to choose the card
at the bottom of the screen that matched the card on top as
quickly as they could for 20 trials. One Symbol Search session
was approximately 45 seconds long. When Symbol Search RTs
were <0.2 or >5 seconds (9557/287,543, 3.32% of observations)
or they were part of sessions with <70% accuracy (a cutoff for
inattentive responding; 2956/287,543, 1.03% of observations)
[43], they were considered missing (12,513/287,543, 4.35% of
observations).

Figure 1. Processing speed test (Symbol Search) on study phone screen, where participants are asked to choose a card on the bottom that matches the
card on top as quickly as they can for 20 trials.

Other Measures
The measures of fatigue, depression, age, and the time of day
were also used for validity testing. The momentary fatigue item
(ie, “At this moment, how tired do you feel?”) was similar to
that used in a previous EMA study [14]. Depression was
measured using the Patient Health Questionnaire-8 (PHQ-8)
[44] at baseline, along with age. The time of day when each
ambulatory assessment was completed was automatically
recorded using the EMA app. Sustained attention ability was
assessed using an ambulatory cognitive assessment, the Go-No
Go task [35], which was administered immediately before the
Symbol Search task. In the Go-No Go task, the participants
were shown a series of 75 images of a mountain or city,
presented one at a time for 800 ms. They were asked to tap an
indicated button when seeing an image of a city but to abstain
from tapping when presented with an image of a mountain. The
measure d prime (d’) was computed as the sustained attention
ability score, a metric that considers both the number of correct

city taps and incorrect mountain taps using a signal detection
approach [35].

Statistical Analyses

Analysis Strategy Overview
Multilevel modeling was used to evaluate (1) the WP and BP
reliability of EMA RTs, (2) WP and BP correlations of EMA
RTs with the Symbol Search task (primary convergent validity
test), and (3) WP and BP associations of EMA RTs with other
constructs (secondary convergent validity and divergent validity
tests). Analyses of reliability and convergent validity were
conducted in a parallel fashion for EMA RTs and for the Symbol
Search task. Thus, the results of the reliability and validity
testing of EMA RTs could be directly compared with the
findings from the Symbol Search analyses. For instance, the
magnitude of the correlation between EMA RTs and fatigue
can be compared with the size of the association between the
Symbol Search task and fatigue.
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To examine the extent to which the characteristics of EMA
items may impact the reliability and validity of EMA RTs,
analyses were conducted using the RTs to all 22 EMA items,
as well as using the RTs to subgroups of EMA items and the
RTs to individual items. The groupings of item RTs were as
presented in Table 1: 16 slider scale items, 4 positive affect
slider items, 4 negative affect slider items, 3 activity engagement
slider items, 3 stress slider items, 3 multiple-choice items, and
3 checkbox items. The 16 slider items consisted of the slider
item subgroups and slider items addressing fatigue and pain in
combination. Single-item EMA RTs from each of the 22 EMA
items were also included in the analyses as the lower
benchmarks of the reliability and validity of EMA RTs provided
by this minimal information source and to examine the extent
to which the various individual item RTs provided similar or
markedly different information when used as an indicator of
processing speed.

Reliability
Both the BP and WP reliabilities of EMA RTs and the Symbol
Search task were estimated. BP reliability describes the
consistency of a person’s mean value across all measurement
occasions of a given measure (ie, RTs) [45]. It can be calculated
as BP reliability = Var(BP)/(Var(BP) + Var(WP)/n) [46], where
Var(BP) is the BP variance in the average of scores across
measurement occasions, Var(WP) is the variance of scores
across measurement occasions within a person, and n is the
number of measurement occasions. The equation implies that
greater WP variation in EMA RTs decreases the consistency of
the average of RTs across all measurement points and that a
greater number of measurements (eg, more EMA surveys)
increases reliability. An average of 70 surveys were completed
over the 2 weeks of the study, and we estimated the BP
reliabilities for increasing numbers of measurement occasions
(from 2 to 70). This allowed the examination of how BP
reliability increased as a function of the number of ambulatory
assessments. The variance components Var(BP) and Var(WP)
were estimated using a 2-level multilevel model, in which
measurement occasions were nested in participants. BP
intraclass correlation coefficients (ICCs) were also computed
for each measure, which represent BP reliabilities associated
with a single measurement occasion (ie, n=1).

To estimate the WP reliabilities of the measures, we capitalized
on the fact that the RTs from multiple EMA items (and from
multiple Symbol Search trials) were available at each
measurement occasion (ie, at each EMA prompt). WP reliability
is the consistency of the mean RT across EMA items within a
single measurement occasion. The formula is WP reliability =
Var(WPoccasion)/(Var(WPoccasion) + Var(WPtrial)/i) [47], where
Var(WPoccasion) is the variance within a person across different
measurement occasions, Var(WPtrial) is the variance of RTs
across the EMA items administered within a given measurement
occasion, and i is the number of EMA items. The variance
components Var(WPoccasion) and Var(WPtrial) [48] were estimated
using 3-level multilevel models (EMA items or trials nested in
measurement occasions nested in people).

Validity
As the primary convergent validity test, the WP and BP
correlations of EMA RTs with the Symbol Search task were
examined using bivariate multilevel models, in which both
measures were entered as bivariate (ie, correlated) dependent
variables. Specifically, 3-level models (items nested in
measurement occasions nested in people) were specified,
whereby the WP correlation was estimated at level 2 and the
BP correlation was estimated at level 3. This had the advantage
that the correlations at both levels were adjusted for the
unreliability due to variance in RTs within measurement
occasions (estimated at level 1). For exploratory purposes,
2-level models were also examined to allow for comparison
with the results from the 3-level models. In these 2-level models,
rather than estimating the variance in RTs within measurement
occasions at level 1, we used the observed (manifest) average
of RTs.

Secondary convergent validity and divergent validity tests were
conducted similarly with 3-level multilevel models. As fatigue
ratings and Go-No Go (sustained attention ability) varied both
within and between individuals, we estimated both
between-individual and within-individual correlations of fatigue
and Go-No Go with EMA RTs (and, for comparison, with the
Symbol Search task, examined in separate models). For the BP
variables age and depression, we estimated only BP correlations
with EMA RTs (and with the Symbol Search task, in separate
models). The diurnal cycle of EMA RTs was also examined to
test whether the pattern was consistent with previous research
on the diurnal cycle of cognitive performance. A multilevel
cosinor model [49] was used, in which EMA RTs for a
measurement occasion were regressed on the sine and cosine
of the hour (0-24 hours) during which the survey was conducted.
A 3-level multilevel model (EMA items nested in measurement
occasions nested in individuals) was used again, in which EMA
RTs were regressed on the sine and cosine of the time of day
at level 2 to estimate WP changes in EMA RTs by the time of
day. For comparison, a cosinor model was also tested for the
Symbol Search task. All reliability and validity analyses were
conducted in Mplus (version 8.8; Muthén & Muthén) [50] with
the R package MplusAutomation [48] in the statistical software
R (R Foundation for Statistical Computing) [51].

Results

Sample Characteristics
The analyses were conducted on data from 198 participants
(Table 2). A total of ≥4 EMA prompts (together with Symbol
Search assessments) were completed on 81.9% (2321/2834) of
the data collection days pooled across all participants. The
median EMA completion rate over the 2-week study period was
92%. The mean score on the PHQ-8 was 5.44 (SD 4.30), with
scores of >9 indicating moderate or more severe depressive
symptoms. Overall, 15.7% (31/198) of the participants had
PHQ-8 scores of >9. In terms of fatigue, the mean level reported
in EMA was 42.70 (SD 18.60), with ratings given on a scale
ranging from 0 to 100.
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Table 2. Demographic and health characteristics (n=198).

ValuesCharacteristic

39.8 (14.4; 18-75)Age (years), mean (SD; range)

Gender, n (%)

89 (44.9)Men

109 (55.1)Women

Ethnicity, n (%)

57 (28.8)White

81 (40.9)Latino

29 (14.6)African American

14 (7.1)Multiethnic

7 (3.5)Asian

6 (3)Other

4 (2)Not reported

Preferred language, n (%)

177 (89.4)English

21 (10.6)Spanish

Employment status, n (%)

70 (35.4)Full time

23 (11.6)Part time

10 (5.1)Full-time homemaker

18 (9.1)Student

27 (13.6)Unemployed

15 (7.6)Retired

23 (11.6)Disabled

8 (4)Other

4 (2)Not reported

Education, n (%)

50 (25.3)High school graduate or less

68 (34.3)Some college

55 (27.8)Bachelor’s degree

22 (11.1)Graduate degree

3 (1.5)Not provided

Annual household income (US $), n (%)

48 (24.2)<25,000

44 (22.2)25,000-49,999

15 (7.6)50,000-74,999

40 (20.2)≥75,000

51 (25.8)Not provided

183.6 (55.0; 98.5-419.8)Average blood glucose over at least 10 days of CGMa data (mg/dL; n=154), mean (SD; range)

20.9 (12.6; 1-57)Time since T1Db diagnosis (years; n=195), mean (SD; range)

Insulin delivery system, n (%)

45 (22.7)AIDc
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ValuesCharacteristic

70 (35.4)Non-AID CGM

83 (41.9)No CGM

aCGM: continuous glucose monitor.
bT1D: type 1 diabetes.
cAID: automated insulin delivery.

Reliability
The reliabilities of the Symbol Search task and EMA RTs are
listed in Table 3. The Symbol Search task had a BP ICC of 0.71,
suggesting acceptable BP reliability from 1 assessment. With

3 measurement occasions, the BP reliability for the Symbol
Search task increased to 0.88. The WP reliability of the Symbol
Search task was 0.76, indicating acceptable consistency (>0.7)
[52] of the RTs within a single Symbol Search measurement
occasion.

Table 3. Reliability of the response times to the Symbol Search task and different sets of ecological momentary assessment (EMA) items.

Slider,
MC, and
check box
items

3 checkbox
items, 3-8 box-
es

3 MCb

items, 5-10
choices

3 stress
items

3 activity engage-
ment items

4 negative af-
fect items

4 positive af-
fect items

16 slider
items

20 SSa

trials

0.560.390.310.440.420.430.440.560.71ICCc

0.790.660.570.700.690.700.700.790.88Between-person
reliability of the
mean of 3 EMA
surveys

0.990.980.970.980.980.980.980.990.99Between-person
reliability of the
mean of 70
EMA surveys

0.800.220.080.490.600.590.580.820.76Within-person
reliability

aSS: Symbol Search (higher values indicate worse processing speed).
bMC: multiple-choice.
cICC: intraclass correlation coefficient.

EMA RTs from the 16 slider items had a BP ICC of 0.56, which
was lower than the BP Symbol Search ICC. With 3 measurement
occasions, the BP reliability of EMA RTs from the 16 slider
items increased to 0.79. The WP reliability of EMA RTs from
the 16 slider items was 0.82, which was slightly higher than
that of the Symbol Search task. The BP and WP reliability
values of EMA RTs from all 22 EMA items were nearly
identical to those from the 16 slider items.

In terms of RTs from other sets of EMA items comprising 3 to
4 questions, BP ICCs ranged from 0.31 for the 3 multiple-choice
items to 0.44 for the 4 positive affect slider items. With 3
measurement occasions, only the BP reliability of the RTs for

the 3 multiple-choice items was notably <0.70, with a value of
0.57. WP reliability for the EMA RTs of the slider item
subgroups ranged from 0.49 to 0.60. RTs for the 3
multiple-choice and 3 checkbox items had much lower WP
reliabilities, with values of 0.08 and 0.22, respectively.

Figure 2 depicts how the BP reliability for both the Symbol
Search task and EMA RTs to 16 slider items varies as a function
of the number of measurement occasions. For the Symbol Search
task, just 1 measurement occasion is sufficient for a BP
reliability of at least 0.70. RTs for 16 slider items crossed the
threshold of 0.70 BP reliability upon the completion of 2 EMA
surveys.
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Figure 2. Between-person reliability of the Symbol Search task and ecological momentary assessment (EMA) response times to 16 slider items by the
number of measurement occasions.

Figure 3 shows the WP variability of the Symbol Search task
and RTs to 16 EMA slider items as a function of the number of
Symbol Search trials or EMA items completed. Increasing the
number of EMA RTs to items of the same type (here slider)
steadily increased WP reliability, and the rate of increase

roughly mirrored that of the Symbol Search task. For the Symbol
Search task, 16 trials were required for a WP reliability of at
least 0.70. EMA RTs for 16 slider items crossed the threshold
of 0.70 WP reliability upon the completion of 9 items.

Figure 3. Within-person reliability of the Symbol Search task and ecological momentary assessment (EMA) response times to 16 slider items by the
number of trials or the number of EMA items completed. Note that each Symbol Search session had 20 trials, but only the reliability of up to 16 trials
was plotted in the figure to correspond with the 16 slider items.

BP reliabilities for the RTs to single EMA items are presented
in Tables S1 and S2 in Multimedia Appendix 1. Note that using
RTs from a single item does not allow for the calculation of
WP reliability. Overall, the BP reliabilities of single items from
a single EMA measurement occasion (ICC) ranged from 0.17
for the multiple-choice activity engagement item to 0.36 for the
diabetes stress item. For the average of 3 measurement
occasions, the BP reliabilities of the RTs to single EMA items
ranged from 0.50 to 0.63. For the average of 7 measurement
occasions, BP reliabilities were at least 0.7 for all items except
the multiple-choice items.

Validity

Associations Between EMA RTs and the Symbol Search
Task
At the BP level, the correlation between the Symbol Search task
and EMA RTs was 0.58 when all EMA items were used, and
correlations ranged from 0.49 to 0.57 when subsets of EMA
items were used to estimate person-level average EMA RTs
(Table 4). At the WP level, medium associations were found
between the Symbol Search task and EMA RTs for all item sets
except the multiple-choice items, with correlations ranging from
r=0.29 (P<.001) to r=0.40 (P<.001); multiple-choice items had
a larger correlation with the Symbol Search task (r=0.58,
P<.001; refer to the “within-person correlations” category in
Table 4).
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Table 4. Between-person (person-level) correlations between response times from different items (columns) and other variables (rows) as calculated
from 3 level models.

22 slider,
MC, check

3 check
items

3 MCd

items
3 Stress slid-
er items

3 activity
slider items

4 NAc slid-
er items

4 PAb slid-
er items

16 slider
items20 SSa trials

Between-person correlations

SS

0.580.550.570.520.490.550.540.551.00r

<.001<.001<.001<.001<.001<.001<.001<.001<.001P value

Fatigue

−0.030.000.00−0.01−0.030.00−0.10−0.03−0.07r

.37.50.49.46.37.47.08.28.18P value

Depression

0.050.070.100.030.060.050.020.050.06r

.29.17.08.32.23.23.38.26.20P value

Age

0.540.540.520.540.470.530.490.520.42r

<.001<.001<.001<.001<.001<.001<.001<.001<.001P value

GNGe

0.1−0.03−0.080.20.110.10.160.17−0.15r

.04.33.16<.001.07.08<.001.02<.001P value

Within-person correlations

SS

0.370.400.580.350.350.290.300.351.00r

<.001<.001<.001<.001<.001<.001<.001<.001<.001P value

Fatigue

0.070.050.050.060.050.080.060.080.14r

<.001<.001.11<.001<.001<.001<.001<.001<.001P value

GNG

0−0.030.020.020.01−0.03−0.010−0.04r

.41.06.29.08.18.02.14.45<.001P value

aSS: Symbol Search (higher values indicate worse processing speed).
bPA: positive affect.
cNA: negative affect.
dMC: multiple-choice.
eGNG: Go-No Go (higher values indicate better sustained attention ability).

The WP and BP correlations between EMA RTs from single
items and the Symbol Search task are presented in Table S3 in
Multimedia Appendix 1. To summarize, BP correlations with
the Symbol Search task ranged from 0.43 to 0.58, close in
magnitude to the BP correlations with RTs from the larger EMA
item sets. The WP correlations ranged from 0.09 to 0.21.

Secondary Convergent Validity and Divergent Validity
Tests
At the BP level, neither the EMA RTs from different sets of
items nor the Symbol Search task were significantly associated
with average fatigue (P=.18) or depression ratings (P=.20),
contrary to our hypothesis (Table 4). Older age was significantly

positively correlated with worse Symbol Search RTs (r=0.42;
P<.001); and age was similarly correlated with EMA RTs, with
magnitudes ranging from 0.47 to 0.54 (P<.001). Consistent with
our hypothesis, EMA RTs were more highly correlated with
the Symbol Search scores (r values ranging from 0.49 to 0.58;
P<.001) than with the Go-No Go scores (r values ranging from
−0.08 to 0.20; 4 of 8 nonsignificant P values of .08, .07, .16,
and .33).

At the WP level, the correlations were overall consistent with
our hypotheses (Table 4). Worse Symbol Search RTs were
significantly associated with greater momentary fatigue levels
(r=0.14; P<.001). Slower RTs for EMA items were similarly

JMIR Mhealth Uhealth 2023 | vol. 11 | e45203 | p. 10https://mhealth.jmir.org/2023/1/e45203
(page number not for citation purposes)

Hernandez et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


associated with greater momentary fatigue, and this relationship
was significant for RTs from all sets of EMA items (r values
ranging from 0.05 to 0.08; P<.001), except for those from
multiple-choice items (P=.11). EMA RTs were again more
highly correlated with the Symbol Search scores (r values
ranging from 0.29 to 0.58; P<.001) than with the Go-No Go
scores (r values ranging from −0.03 to 0.02; 7 of 8
nonsignificant P values of .45, .14, .18, .08, .29, .06, and .41).

Tables S4 and S5 in Multimedia Appendix 1 show the BP and
WP correlations among the study measures, as calculated from
2-level models instead of the 3-level models presented earlier.
The greatest difference is that WP correlations between the
Symbol Search task and EMA RTs were somewhat lower in
the 2-level models (eg, r=0.27 in a 2-level model vs r=0.35 in
a 3-level model for the 16 EMA slider items). RTs from
multiple-choice EMA items showed the biggest difference in
WP correlation with the Symbol Search task when comparing

2-level and 3-level models (r=0.18 in a 2-level model vs r=0.58
in a 3-level model).

The diurnal cycle of EMA RTs was examined and compared
with that of the Symbol Search RTs. As shown in Figure 4, the
average Symbol Search RTs were lowest around 3 PM to 4 PM
and highest in the morning and evening. The standardized
amplitude of the diurnal cycle was 0.34 z scores (SE 0.03;
P<.001), which translated to RT fluctuations of 0.34 × 2 = 0.68
SDs within a day, corresponding to a medium to large effect
size [53]. EMA RTs had a similar but less pronounced diurnal
cycle (Figure 5). RTs to the 16 slider EMA items were, on
average, slowest during the early morning and evening and
fastest from 2 PM to 4 PM. The standardized amplitude of the
diurnal cycle was 0.16 (SE 0.02; P<.001), meaning that RTs
fluctuated by approximately 0.16 × 2 = 0.32 SDs (z scores)
within a day, corresponding to a small effect size [53]. Diurnal
plots for the other EMA item sets demonstrated similar trends
(not shown here).

Figure 4. The mean Symbol Search response times (RTs) during typical waking hours (6 AM-12 AM), the period during which most surveys were
completed. The black line is the predicted Symbol Search RT from the cosinor model, the band is the 95% CI of the predicted RTs, and the red dots are
the observed averages of the Symbol Search RTs.

Figure 5. The mean response times (RTs) to 16 slider scale items during typical waking hours (6 AM-12 AM), the period during which most surveys
were completed. The black line is the slider scale RT from the cosinor model, the band is the 95% CI of the predicted RTs, and the red dots are the
observed averages of the slider scale RTs.
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Discussion

Overview
Overall, our results suggest that EMA RTs can serve as
approximate indicators of both momentary and average
processing speeds. The EMA RTs for the items analyzed in this
study were better indicators of average, as compared with
momentary, processing speed. A formal processing speed test
(Symbol Search) and EMA RTs had correlations of
approximately 0.5 at the BP level and 0.3 at the WP level. These
correlation sizes may be acceptable in research contexts in which
investigators do not have the resources for administering formal
cognitive testing. Correlations of these magnitudes may be
sufficient to detect strong associations with processing speed,
although weaker associations may be missed. The findings of
the reliability and validity tests are described in greater detail
in the subsequent sections.

Reliability
Overall, EMA RTs showed acceptable reliability under
conditions (ie, number of items and measurement occasions)
typical of many EMA studies. Furthermore, BP reliability for
EMA RTs were similar to that for Symbol Search RTs, and WP
reliability for RTs to the 16 EMA slider items slightly exceeded
that for the Symbol Search task.

The BP reliability of EMA RTs from various item sets differed
largely as a function of the number of EMA measurement
occasions. With just 3 EMA measurement occasions, BP
reliability was acceptable (approximately 0.70), except for RTs
from the 3 multiple-choice and 3 checkbox items. The lower
BP reliability in these item sets may have been due to their
greater heterogeneity (eg, different item content and number of
response options), leading to greater variability (ie, more error
variance) in mean RTs. For single items, except for
multiple-choice questions, the average RTs had a reliability of
at least 0.70 with 7 EMA measurement occasions. This suggests
that with a relatively small number of EMA measurement
occasions, even RTs from single EMA items will likely have
acceptable BP reliability. For 16 slider items, the completion
of just 2 EMA surveys was sufficient to cross the threshold of
0.70 BP reliability, likely because it was a larger set of items
that shared the same type of response options. With more than
16 items sharing similar response options, it would perhaps be
possible to obtain a reliable assessment of EMA survey RTs
from just 1 measurement occasion.

In terms of the WP reliability of EMA RTs (consistency of RTs
within a single EMA measurement occasion), the number of
EMA questions and the type of response options appeared to
be major contributing factors. The RTs to the 16 slider items
had a WP reliability of 0.82, considerably higher than the WP
reliability of the RTs to the item sets with only 3 or 4 items.
These smaller item sets had reliability values between 0.08 and
0.60, limiting their precision for capturing WP changes in
processing speed with 2-level (and not 3-level) modeling. Of
the item sets with 3 or 4 items, the more homogenous sets (slider
items by topic) had much greater WP reliability than the
heterogeneous sets (multiple-choice and checkbox questions
with differing numbers of response options). WP reliability

improved after combining RTs from various slider items,
suggesting that item content was not as important to reliability
as the response option type. When considering RTs from the
heterogeneous response option item sets, in addition to the 16
slider items, the WP reliability was similar to that found for the
16 slider items alone. Thus, for the WP reliability of EMA RTs,
considering RTs from more items may not always be beneficial,
specifically when the additional items have different response
options.

Validity
Although some findings were contrary to our hypotheses (ie,
no relationship between EMA RTs and depression or fatigue),
the results appeared overall supportive of the validity of EMA
item RTs as an approximate measure of processing speed. In
our primary convergent validity test at the BP level, EMA RTs
had moderate to large correlations with the Symbol Search task,
a magnitude expected if EMA RTs were indicators of processing
speed. In terms of secondary convergent validity tests at the BP
level, observed relationships with EMA RTs were sometimes
contrary to our hypotheses but were typically very similar to
the associations seen with the Symbol Search task. At the BP
level, we hypothesized that slower EMA RTs would be
associated with greater average fatigue and greater depressive
symptoms. Neither of these relationships was confirmed. For
fatigue, this may have been because previous research found
associations between slower processing speed and chronic
fatigue syndrome (more severe than typical fatigue) [33], but
the mean level of fatigue reported in the EMA in our sample
may have been less severe (mean 42.70, SD 18.60; scale of 0
to 100). In terms of depression, the proportion of people in our
sample with any severity of depression (ie, PHQ-8 scores of
>9) was 15.7% (31/198), which was greater than the 8.58%
(17,040/198,678) found in a previous study on the general
population [44]. Associations between depressive symptoms
and EMA RTs were trending in the theoretically expected
direction (ie, more depressive symptoms were associated with
slower processing speed), but our sample may have been
underpowered to detect small BP relationships. Symbol Search
RTs did not show significant relationships with either fatigue
(P=.18) or depression (P=.20). Significant BP correlations were
found between age and both RTs to EMA items (P<.001) and
the Symbol Search task (P<.001). Consistent with our
hypothesis, EMA RTs had a greater BP association with the
Symbol Search task than with the Go-No Go task. Overall, we
interpret the BP correlations as being supportive of the validity
of EMA item RTs as approximate measures of processing speed.

At the BP level, higher sustained attention ability was correlated
with greater processing speed as measured by the Symbol Search
task and was generally weakly associated with EMA RTs.
Interestingly, at the BP level, better sustained attention ability
was associated with faster Symbol Search RTs but with slower
EMA RTs for 4 of the 8 EMA RT item sets. We can only
speculate why this might be the case. Perhaps participants with
greater sustained attention ability were better able to process
information quickly when they were explicitly instructed to
respond as fast as possible (in the Symbol Search task), whereas
they may have more deliberately read the EMA items and more
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carefully considered their responses, leading to slower RTs in
EMA.

At the WP level, the results were also overall supportive of the
validity of EMA item RTs as measures of processing speed.
Most importantly, moderate or larger correlations between
different sets of EMA RTs and the Symbol Search task were
observed. The diurnal cycle of EMA RTs roughly approximated
the daily pattern for Symbol Search RTs. Slower EMA RTs
were associated with greater fatigue for all item sets, except for
multiple-choice questions. Notably, fatigue was associated with
processing speed and EMA RTs at the WP level but not at the
BP level. It is possible that participants in our sample did at
times experience fatigue (within level) but not frequently enough
that the average level of fatigue experienced was associated
with decrements in processing speed on average (between level).
Consistent with our hypothesis, EMA RTs had greater WP
associations with the Symbol Search task than with the Go-No
Go task.

Although associations between EMA RTs and the Symbol
Search task were observed, the relationships were not strong
enough to argue that they provided identical measures. From
the outset, we did not advocate for RTs of EMA items to serve
as a replacement for formal cognitive testing; rather, we sought
to examine whether they can serve as rough processing speed
indicators when formal tests are not available. The tasks of
completing a formal processing speed test and completing EMA
items differ in several aspects. For instance, one common formal
processing speed test is searching for a figure that matches a
given image. In this task, RTs conceptually capture perceptual
speed [5], a component of processing speed [31]. RTs in EMA
may be more likely to capture decisional speed when faced with
a moderately complex task (eg, answering survey items), a
conceptually related but different processing speed indicator
[31]. As another example, formal processing speed tests often
have explicit performance and speed expectations, whereas
EMA surveys do not, particularly if participants are not aware
that their time to answer questions is being measured. EMA
RTs may, therefore, be more affected by distractions because
participants may assume that they can attend to distractors and
then return to answering EMA questions at their own pace.
Given the differences between formal processing speed tests
and EMA surveys, their RTs and, by extension, their measures
of processing speed were unlikely to correspond exactly with
one another. However, because perceptual speed and decision
speed both fall under the umbrella of processing speed [31],
some associations were expected.

Validities of EMA RTs With Low Reliabilities
The RTs to single EMA items appeared to lack WP validity, as
evidenced by low WP correlations with the Symbol Search task,
but they may have some degree of BP validity with sufficient
EMA measurement occasions. With an average of 70 EMA
surveys completed, the BP association between the RTs to single
EMA items and RTs to the Symbol Search task ranged from
0.43 to 0.58. The results of reliability analyses suggested that
slightly more than 7 EMAs may result in a BP reliability of at
least 0.7, indicating that a relatively small number of EMA

instances (eg, 2 days with 4 EMA surveys daily) is sufficient
to recover high BP associations with the Symbol Search task.

The RTs to the 3 multiple-choice items notably had the highest
WP correlation with the Symbol Search task (r=0.58) but also
a WP reliability much lower than other item sets. Three-level
modeling helped to compensate for this low reliability by
removing the errors from item-level RT variance, and the result
was a much higher correlation compared with when a 2-level
model was used (r=0.18). The practical implication may be that
EMA RTs with low WP reliability, such as those from a few
multiple-choice items differing in content and the number of
response options, would not be useful to model with the 2-level
approach and requires 3-level modeling. However, with a greater
number of parameters specified, 3-level versions of 2-level
models require larger sample sizes.

Another implication of the relatively high WP correlation
between the RTs to the multiple-choice items and the Symbol
Search task may be that multiple-choice question RTs deserve
further investigation as potential processing speed indicators,
even with the low WP reliability found here. The 3
multiple-choice items asked about activity done before the EMA
(from 10 choices), where the activity was done (from 5 choices),
and the perceived level of blood glucose (from 4 choices). In a
future study, it may be useful to more formally investigate the
extent to which item content and the number of response options
in multiple-choice questions affect relationships with a formal
processing speed test.

Limitations
The RTs from only a small subset of possible question types
were investigated here. For multiple-choice and checkbox items,
there were not enough items to investigate the effect of the
number of response choices or the topics covered by these
response option types. Although the effect of question topic did
not appear to exert a large impact on EMA RTs for the slider
items in this study, we cannot say whether the content of EMA
items influences the reliability or validity of RTs to
multiple-choice and checkbox items.

Data from standard laboratory-administered cognitive
assessments were not collected. Therefore, we could not
examine the convergent validity of individual differences in
EMA item RTs using a full-length laboratory assessment of
processing speed. Although a previous study found a high
correlation between standard laboratory and ambulatory
assessments of processing speed [5], whether EMA item RTs
are associated with laboratory-based processing speed tests
needs to be examined.

The recommended outcome measure for the Symbol Search
task, the median reaction time in accurate trials [5], was not
used here. This median RT score provides only 1 processing
speed measure per Symbol Search session, which does not allow
for modeling the Symbol Search scores as a 3-level multilevel
model (with items nested in survey sessions nested in people).
To allow such modeling, the log-transformed RT for each
Symbol Search trial was computed. In preliminary 3-level
multilevel model analyses, the mean of the logged RTs of
accurate trials (modeled at all levels) correlated with the median
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RT of accurate trials (modeled at levels 2 and 3), r=0.99
(P<.001) at the BP level (level 3) and r=0.97 (P<.001) at the
survey session level (level 2). The close correspondence between
the 2 appeared to justify the use of mean RTs for accurate trials,
instead of the median, to enable the modeling of the Symbol
Search task at 3 levels.

This study was conducted with a sample of adults with T1D
experiencing various stages of the COVID-19 pandemic, which
may limit the generalizability of the results. For instance, study
participants were more likely to complete EMA surveys at home
during times of stricter social distancing requirements. The
completion of EMA surveys at home may have less potential
for exposure to environmental distractors, which may have
reduced the variability in item RTs. As we only examined EMA
RTs as processing speed indicators in adults with T1D, further
research may be needed to investigate whether findings can be
replicated in other populations. For instance, the causes of
processing speed fluctuations are often chronic condition
specific. In adults with T1D, acute hypoglycemia has been
associated with decreased processing speed [28,29]. In adults
with fibromyalgia, greater momentary experiences of pain has
been associated with decreased processing speed [54]. The
different causes of processing speed fluctuations may also
impact the relationship between EMA RTs and scores on formal
processing speed tests.

Conclusions
Overall, EMA RTs appeared to be reliable and valid indicators
of average and momentary processing speeds. They were not
correlated to the extent that EMA survey RTs can replace formal
processing speed tests. Rather, EMA survey RTs may be
serviceable as rough processing speed indicators when formal
processing speed testing is not feasible and when the magnitude
of associations with processing speed is large. The reliability
and validity of EMA survey RTs as measures of processing
speed differed according to the sets of items from which the
RTs were extracted, implying that EMA items can potentially
be intentionally crafted to have greater associations with
processing speed. For instance, in a future study, factorial
analyses or machine learning models could be used to identify
the specific combinations of EMA items for which the pattern
of RTs is the most predictive of scores from a formal processing
speed test. Analysis of RTs from EMA items may be a method
of assessing average and momentary processing speeds in
people’s natural environments, which does not require
participants to complete additional tasks beyond answering
EMA survey questions. RTs to noncognitive EMA items may
be important to facilitate research on the impacts of processing
speed on daily functioning, especially for populations with
chronic conditions.
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