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Abstract

Background: Depressive and manic episodes within bipolar disorder (BD) and major depressive disorder (MDD) involve
altered mood, sleep, and activity, alongside physiological alterations wearables can capture.
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Objective: Firstly, we explored whether physiological wearable data could predict (aim 1) the severity of an acute affective
episode at the intra-individual level and (aim 2) the polarity of an acute affective episode and euthymia among different individuals.
Secondarily, we explored which physiological data were related to prior predictions, generalization across patients, and associations
between affective symptoms and physiological data.

Methods: We conducted a prospective exploratory observational study including patients with BD and MDD on acute affective
episodes (manic, depressed, and mixed) whose physiological data were recorded using a research-grade wearable (Empatica E4)
across 3 consecutive time points (acute, response, and remission of episode). Euthymic patients and healthy controls were recorded
during a single session (approximately 48 h). Manic and depressive symptoms were assessed using standardized psychometric
scales. Physiological wearable data included the following channels: acceleration (ACC), skin temperature, blood volume pulse,
heart rate (HR), and electrodermal activity (EDA). Invalid physiological data were removed using a rule-based filter, and channels
were time aligned at 1-second time units and segmented at window lengths of 32 seconds, as best-performing parameters. We
developed deep learning predictive models, assessed the channels’ individual contribution using permutation feature importance
analysis, and computed physiological data to psychometric scales’ items normalized mutual information (NMI). We present a
novel, fully automated method for the preprocessing and analysis of physiological data from a research-grade wearable device,
including a viable supervised learning pipeline for time-series analyses.

Results: Overall, 35 sessions (1512 hours) from 12 patients (manic, depressed, mixed, and euthymic) and 7 healthy controls
(mean age 39.7, SD 12.6 years; 6/19, 32% female) were analyzed. The severity of mood episodes was predicted with moderate
(62%-85%) accuracies (aim 1), and their polarity with moderate (70%) accuracy (aim 2). The most relevant features for the former
tasks were ACC, EDA, and HR. There was a fair agreement in feature importance across classification tasks (Kendall W=0.383).
Generalization of the former models on unseen patients was of overall low accuracy, except for the intra-individual models. ACC
was associated with “increased motor activity” (NMI>0.55), “insomnia” (NMI=0.6), and “motor inhibition” (NMI=0.75). EDA
was associated with “aggressive behavior” (NMI=1.0) and “psychic anxiety” (NMI=0.52).

Conclusions: Physiological data from wearables show potential to identify mood episodes and specific symptoms of mania and
depression quantitatively, both in BD and MDD. Motor activity and stress-related physiological data (EDA and HR) stand out
as potential digital biomarkers for predicting mania and depression, respectively. These findings represent a promising pathway
toward personalized psychiatry, in which physiological wearable data could allow the early identification and intervention of
mood episodes.

(JMIR Mhealth Uhealth 2023;11:e45405) doi: 10.2196/45405

KEYWORDS

depression; mania; bipolar disorder; major depressive disorder; machine learning; deep learning; physiological data; digital
biomarker; wearable; Empatica E4

Introduction

Mood disorders, including bipolar disorder (BD) and major
depressive disorder (MDD), are ranked among the top 25 leading
causes of disease burden worldwide [1] and are associated with
recurrent depressive and manic episodes. Manic episodes are
characterized by increased activity and self-esteem, reduced
need for sleep, and expansive mood and behavior, whereas
during depressive episodes, patients experience decreased energy
and activity, sadness, low self-esteem, and social withdrawal
[2-4]. These changes in mood, sleep, and activity during mood
episodes translate to changes in physiological data that novel
research-grade wearables can capture with high precision in
real time [5,6]. Linking these digital signals with illness activity
could potentially identify digital biomarkers [7].

Biomarkers are characteristics that are measured as an indicator
of pathogenic processes (disease-associated biomarkers) or
responses to an exposure or intervention (drug-related
biomarkers) [8]. These can include molecular, histological,
radiographic, or physiological characteristics. Digital biomarkers
are objective, quantifiable, and physiological, and behavioral
measures are collected using digital devices that are portable,
wearable, implantable, or digestible [9]. Traditional biomarkers
can be invasive and expensive to measure and are difficult to

collect over time, thus giving an incomplete view of the
complexity and dynamism of the disease. Alternatively, digital
biomarkers are usually noninvasive, modular, and cheaper to
measure, and they provide access to continuous and longitudinal
measurements, both qualitative and quantitative. Moreover,
they offer novel ways of measuring health status by providing
perspectives into diseases that were unavailable before, which
can supplement and enhance conclusions from traditional
biomarkers [10]. Digital biomarkers have the potential to
redefine diagnosis, improve the accuracy of diagnostic methods,
enhance monitoring, and personalize interventions [11], leading
to precision medicine, especially in psychiatric diseases [12].

In the last decade, there has been an exponential growth in the
number of digital biomarker studies in the health domain,
especially in cardiovascular and respiratory diseases [9].
Wearables are the most common type of digital devices used
in digital biomarker studies, especially those incorporating
accelerometer sensors that measure physical activity [13].
Wearable devices include wristbands, smartwatches, smart
shirts, smart rings, smart electrodes, smart headsets, smart
glasses, and so on. Wrist-worn devices are the most common
type of wearable device in mental health studies and have shown
to be effective in diagnosing anxiety and depression. However,
none of the studies used it for treatment. The most commonly
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used category of data for model development was physical
activity data, followed by sleep and heart rate (HR) data [14].
There are several areas in health care in which wearable devices
have shown potential, including monitoring, diagnosis,
treatment, and rehabilitation of diseases. Even though wearables
have shown accurate activity-tracking measurements and are
acceptable for users [15], including feasibility studies in people
with mental health problems [16], their implementation in usual
clinical practice is still challenging [17].

Wearables collecting actigraphy, the noninvasive method of
monitoring human rest and activity [18], can capture altered
sleep rhythms in remitted BD [19] and also depressive symptoms
[20]. In addition, actigraphy data from wearables have shown
to accurately predict mood disorder diagnoses and symptom
change [21]. Moreover, wearables collecting blood pulse have
shown differences in HR variability (HRV) between BD and
healthy controls (HCs) [22], as well as between affective states
in BD [23]. In addition, people with bipolar and unipolar
depression and suicidal behavior have long shown autonomic
alterations that can be captured as hyporeactive electrodermal
activity (EDA) [24,25], and in recent years, research-grade
wearables have incorporated sensors allowing continuous EDA
collection [26]. With these upgrades, in the latest years, it is
now feasible to monitor mood changes in patients with MDD
[27] and also predict the presence and severity of depressive
states in BD and MDD with promising accuracy using wearable
physiological data [28]. Despite these promising results, the
specific roles of these digital signals and their longitudinal
potential to measure illness activity and treatment response in
mood disorders are still unknown.

The conjuncture of advances in machine learning [29] and the
improved precision of wearable devices [30] may help identify
physiological patterns of illness activity in mood disorders.
Firstly, considering this promising background, we explored
whether physiological wearable data could predict the severity
of an acute affective episode at the intra-individual level (aim
1) and the polarity of an acute affective episode and euthymia
among different individuals (aim 2). Secondarily, we explored
which physiological data were related to prior predictions,
generalization across patients, and associations between affective
symptoms and physiological data.

Methods

Study Design
A prospective exploratory observational study with 3
independent groups (Figure 1): group A, patients on acute
affective episodes, manic episodes in BD (n=2), major
depressive episodes in BD (n=2) and MDD (n=2), and mixed
features manic episodes in BD (n=2); group B, euthymic patients
with BD (n=2) and MDD (n=2); and group C, HC (n=7).
Potential participants were identified at the outpatient and the
acute inpatient or hospitalization at home units by their clinicians
(ie, psychiatrists). Physiological data were recorded across 3
consecutive time points for group A: T0-acute (T0): current
acute affective episodes according to the Diagnostic and
Statistical Manual of Mental Disorders–5 (DSM-5); T1-response
(T1): symptom response, as more than 30% improvement in
the Young Mania Rating Scale (YMRS) score or the 17-item
Hamilton Depression Rating Scale (HDRS) score; and
T2-remission (T2): symptomatic remission, with YMRS and
HDRS score ≤7 [31]). Euthymic patients (group B) and HCs
(group C) were recorded during a single session.

The inclusion criteria were as follows: (1) aged above 18 years;
(2) having a diagnosis according to the DSM-5 [32] criteria
confirmed with the Structured Clinical Interview for DSM-5
Disorders [33]; and (3) willingness and ability to give consent
(reconfirmed upon clinical remission). In addition, euthymic
patients (group B) should also (4) score ≤7 on the YMRS and
HDRS for at least 8 weeks [31]. HC (group C) should present
no current or previous psychiatric disorder according to the
DSM-5 criteria and confirmed using the Structured Clinical
Interview for DSM-5 Disorders, excluding nicotine substance
use disorder. Exclusion criteria for all groups were as follows:
(1) concomitant severe cardiovascular or neurological medical
conditions with a potential autonomic dysfunction, ongoing
cardiovascular arrhythmia, or pacemaker; (2) comorbid current
substance use disorder according to the DSM-5 criteria,
excluding nicotine substance use disorder; (3) comorbid current
psychiatric disorder with great interference of symptoms (eg,
obsessive compulsive disorder with ritualized behaviors); (4)
current pharmacological treatment with β-blockers or other
pharmacological treatments affecting the autonomic nervous
system; and (5) ongoing pregnancy.
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Figure 1. Study design and recordings. BD: bipolar disorder; HC: healthy controls; HDRS: Hamilton Depression Rating Scale; MDD: major depressive
disorder; SCID: Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders; T0: current acute Diagnostic and Statistical
Manual of Mental Disorders–5 affective episodes; T1: symptoms’ response; T2: symptomatic remission; YMRS: Young Mania Rating Scale.

Assessments
The following sociodemographic variables were collected: age,
sex, DSM-5 psychiatric diagnoses [32], medical and psychiatric
comorbidities, years of illness duration, first-degree relative
with mental illness, and drug misuse habits. Psychopathological
assessments were conducted using the YMRS [34,35] for manic
symptoms and the 17-item HDRS [36,37] for depressive
symptoms. Clinical assessments were performed during a single
session for euthymic patients (group B) and HCs (group C) and
at 3 consecutive time points (T0-acute, T1-response, and
T2-remission) for patients on acute affective episodes (group
A), as described in Figure 1.

Research-Grade Wearable Device for Recording
When choosing a wearable device for a research project, there
are several factors that should be considered, including (1) the
signals of interest to be captured (eg, stress-related and
actigraphy); (2) the users who will be studied (eg, inpatients,
outpatients, and HCs); (3) the pragmatic needs of the study (eg,
budget, battery life, placement of the devices, and confidentiality
of participants); (4) establishing assessment procedures (eg,
stress elicitation task, resting, and sleep); and (5) performing
qualitative and quantitative analyses on resulting data (eg,
visually inspecting the data registered, quantifying data loss,
assessing the quality of data, and comparing the data of different
wearable devices) [38]. Considering the previous points, the E4
wristband from Empatica [39] was the preferred wearable device
for the purpose of our study for several reasons. First, the E4
has shown accuracy in measuring HR, HRV [40], and EDA

compared with laboratory conditions [41], as well as for sleep
staging [42]. As previously mentioned, these physiological
parameters have been shown to be altered in mood disorders
and mood episodes [19-23,25-28]. Second, the E4 has been
validated in scientific research for detecting emotional arousal,
stress [43,44], and mental effort [45] using the aforementioned
physiological signals. Furthermore, the E4 has proven to be
useful in predicting depressive symptoms in MDD with low
relative errors [46,47], predicting self-reported depressive states
[48], and identifying and quantifying the severity of anxiety
states [49]. In patients with BD, the E4 has shown to be useful
in distinguishing manic from euthymic mood states [50,51].
Third, the inpatients included in the study were in a highly
restricted setting, which would not allow the use of
user-dependent wearables or devices providing external
communication (eg, an internet connection). This requirement
was fulfilled by the E4 device. Finally, the data recorded by the
E4 are of high precision and quality [40,41], with minimal data
loss when performing the analyses (see the Results section).

Recording Procedure of Physiological Data
For each recording, patients and HCs were provided with an E4
wristband [39] (Multimedia Appendix 1) for approximately 48
hours (limited by battery life). The research team collected the
wearables after each session. Individuals’ behavior was not
externally influenced in any manner, further to the requirement
of wearing the wristband. Patients with acute affective episodes
(group A), during their psychiatric admission in the inpatient
unit, were not allowed to leave the hospital at any point until
discharge, as it is the standard practice with inpatients. T0-acute,
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T1-response, and T2-remission recordings were usually carried
out in this setting. This was not the case with patients at the
hospitalization at home or outpatient units (a minority of all
cases), in which patients were not subject to mobility
restrictions. In all cases, both for patients and HCs, participants
were asked to wear the wristband during their daily life, with
little to no interference in their behavior. They were also asked
to put the wristband themselves at the beginning of the recording
while researchers checked for adequate contact between the
sensors and the skin wrist. Participants received instructions to
remove the device when taking a shower to preserve the integrity
of the device.

The E4 wristband has sensors that collect physiological data at
different sampling rates. The physiological data signals from
each recording session were collected from the following
channels and sampling rates as raw data: 3D acceleration (ACC)
in space over time on an x-, y-, and z-axis (ACC, 32 Hz); EDA
(4 Hz); skin temperature (TEMP, 4 Hz); and blood volume pulse
(BVP, 64 Hz); or in a processed format: interbeat intervals (IBIs,
the time between 2 consecutive heart ventricular contractions)
and HR (1 Hz). The BVP signal is obtained using a
photoplethysmography sensor that measures volume changes
in the blood. Empatica uses 2 algorithms on the BVP signal to
construct an IBI with which HR (and HRV) can be calculated.
The 2 algorithms are optimized to detect heartbeats and discard
beats that contain artifacts [39,40].

Preprocessing of Physiological Data
Owing to the naturalistic setting of the recording sessions, the
data obtained from the E4 wristband are inherently noisy. For
instance, some patients show low levels of compliance during
an affective episode (eg, mania), which can lead to poor skin
contact from the device, hence inaccurate readings for certain
channels, or complete removal of the wearable device, resulting
in unusable data. To that end, we removed invalid physiological
data enforcing the rules-based filter by Kleckner et al [52] and
an additional rule to remove HR values that exceed the
physiologically plausible range (25-250 bpm) to quality control
the raw data and remove physiologically impossible recordings
(Table 1). Quality controlling physiological data from wearable
devices is common practice, as this type of data is particularly

noisy, and failing to quality control the data favors spurious
correlations, and previous works have advised against imputing
data in this scenario [53].

We did not use IBI data because of the disproportionately high
number of missing values (approximately 70%) relative to data
from different channels [54], especially because it is only a
derivation of BVP. Therefore, we did not calculate HRV
features. In sum, a total of 7 channels from the E4 device
(ACC_X, ACC_Y, ACC_Z, BVP, EDA, HR, and TEMP) were
used as physiological data to build the prediction models.
Different time units (µ) and window lengths (w) were explored
during tuning, and the best combination was selected. Because
the sampling rate varied across different channels, the recordings
were time aligned. If a channel’s sampling rate was higher than
1 Hz, that channel was downsampled by taking the average
value across samples within µ. We compared different time
units (µ=1, 2, 4, 32, and 64 Hz), and we used 1 Hz because it
showed the best performance; therefore, a time unit µ=1 second
was set across all channels. Upon time alignment, each recording
was then segmented into a predefined number of segments using
a tunable window length (w), taking values in real-time seconds

(s) (only powers of 2, specifically from 20 [1 s] to 211 [2048 s],
were explored for computational convenience). Of note, by
tuning the hyperparameter w, an interesting pattern appeared

across tasks, whereby a value of 25 (ie, 32 s) emerged as an
optimal point, whereas smaller or higher values were associated
with a deterioration in validation performance (U-shaped

performance); therefore, µ=1 Hz and w=25 (32) seconds were
used for analyses as the best-performing algorithm (Multimedia
Appendix 2).

To obtain an equal number of segments from each class for
model evaluation, we randomly selected 20 segments from each
session and stored them as a held-out test set, which was never
observed by the model during either training or validation. We
then randomly assigned the remaining segments to the train and
validation sets with ratios of 80% and 20%, respectively. Each
segment was normalized (scaled to [0, 1]) using the per-channel
global (across all segments) minimum and maximum values
derived from the train set.

Table 1. Rules-based filter for invalid physiological data.

RangeFilter for invalid dataRules

0.05 to 60 µSbTo prevent “floor” artifacts (eg, electrode loses contact with skin) and “ceiling” artifacts (circuit is overload-

ed)—EDAa not in a valid range

1

−10 to +10 µS/secondEDA changes too quickly—EDA slope not in a valid range2

30 to 40 °CSkin temperature suggests the EDA sensor is not being worn—skin temperature not in a valid range3

25 to 250 bpmeHRd not in a valid range4c

Within 5 secondsTransitional data surrounding segments identified as invalid via the preceding rules—account for transition effects5

aEDA: electrodermal activity.
bµS: microsiemens.
cAddition to the algorithm used by Kleckner et al [52].
dHR: heart rate.
ebpm: beats per minute.
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Data Analyses

Tasks
The recording segments produced with the preprocessing steps
described earlier were used in supervised learning experiments
as input to the supervised models. For aim 1, models were
trained on 3-class classification tasks (T0-acute, T1-response,
and T2-remission) for each individual on an acute affective
episode (manic BD, depressed BD, depressed MDD, and mixed
BD). For aim 2, one model was trained on a 7-class classification
task (manic BD, depressed BD, mixed BD, depressed MDD,
euthymic BD, euthymic MDD, and HCs).

Segments from each class under a given task were extracted in
the same number to obtain perfectly balanced classes. As sets
were designed to be perfectly balanced, we adopted accuracy
as our primary metric but also reported the F1-score, precision,
and recall and computed the area under the receiver operating
characteristic (AUROC) curves. It should be noted that ours is
a multiclass setting, but as we had perfectly balanced sets,
micro-, macro-, and weighted averages coincided. For the
AUROC curves, the one-vs-rest multiclass strategy was adopted,
also known as one-vs-all, which amounts to computing a
receiver operating characteristic (ROC) curve for each class, so
that at a given step, a given class is regarded as positive and the
remaining classes are lumped together as a single negative class.

As part of our exploratory data analysis, to quantify the
association between physiological data and affective symptoms
measured by the YMRS and HDRS scale items, their normalized
mutual information (NMI) was computed.

For each task, with the exception of the one about distinguishing
members of a group of only HCs, as we were interested in
testing the degree to which a model can generalize to different
individuals, unseen during training, and sharing the same
psychiatric label (diagnosis and psychopathological status), we
prepared a test set of segments from recordings collected from
an independent group of individuals. Therefore, the model was
tested on this extra, independent holdout set to obtain an estimate
of the out-of-sample generalization performance.

Model
We elected a Bidirectional Long Short-Term Memory (BiLSTM)
model [55] as our model architecture. BiLSTM is a type of
recurrent neural network (RNN), a class of deep learning model
specifically designed to handle sequence data such as time
series. RNNs process streams of data one time step at a time,
and they store information regarding previous time steps in a
hidden unit, such that the model output at each time step is
informed by the current time step as well as by previous ones.
Long short-term memory (LSTM) units represent an
improvement over vanilla RNNs, as they address gradient
instability by modeling the hidden state with cells that decide
what to keep in memory and what to discard. This feature makes
LSTM more efficient in capturing long-range dependencies. In
contrast to a simple LSTM, BiLSTM reads the input sequence
in 2 directions, from start to end and from end to start, thereby

allowing for a richer representation. Although other deep
learning architectures suitable for time series have been
developed (more recently, the transformer [56]), as the aim of
this work was exploratory rather than benchmarking different
models, we contented ourselves with a single popular
architectural choice for time series. By the same token, we used
a simple shallow BiLSTM with 128 hidden units and tanh
activation, followed by a single dense layer with softmax
activation, to output the possible classes. The BiLSTM model
was trained using the Adam optimizer [57] for 120 epochs with
a learning rate of 0.001 and a batch size of 32 to minimize the
cross-entropy between the ground-truth distribution over classes
and the probability distribution of belonging to such classes
outputted by the last network layer. To reduce overfitting,
dropout [58] and early stopping were used. The choice of
hyperparameters was based on a random search that yielded the
best performance in the validation set.

Permutation Feature Importance
To assess the channels’ individual impact on the test set
performance in the aforementioned tasks, we adopted a
perturbation-based approach. For each channel at a time, we
randomly permuted its values in the test set segments and
computed the difference in performance relative to the baseline
model. We chose this approach because it has a straightforward
interpretation and provides a highly compressed, global insight
into the importance of the channels. Agreement on channels’
relevance across different tasks was measured using the Kendall
W.

Code and Data Availability
The codebase was written in Python (version 3.8; Python
Software Foundation), where the deep learning models were
implemented in TensorFlow and developed on a single NVIDIA
RTX 2080Ti. The repository for this study can be found on the
internet [59].

Ethics Approval and Confidentiality
This study was conducted in accordance with the ethical
principles of the Declaration of Helsinki and Good Clinical
Practice and the Hospital Clinic Ethics and Research Board
(HCB/2021/104). All participants provided written informed
consent before their inclusion in the study. All data were
collected anonymously and stored encrypted in servers
complying with all General Data Protection Regulation and
Health Insurance Portability and Accountability Act regulations.

Results

Overview
A total of 35 sessions from 12 patients (manic, depressed, mixed,
and euthymic) and 7 HCs (mean age 39.7, SD 12.6 years; 6/19,
32% female) were analyzed, totaling 1512 hours recorded. The
median percentage of data per recording session dropped from
further analysis of quality control was 11.05 (range 2.50-34.21).
A clinical demographic overview of the study sample is
presented in Table 2.
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Table 2. Clinical demographic overview of the study sample.

YMRSb scoreHDRSa scoreSexAge (years)Diagnosis

T2T1T0T2eT1dT0c

2824445Male40Manic BDf

11523453Male21Manic BDg

0004623Male33Depressed BDh

24231217Male36Depressed BDg,h

52030448Female30Mixed BD

310291211Male40Mixed BDg

02771333Male57Depressed MDDi

11471127Male45Depressed MDDg

——0——j3Male54Euthymic BD

——3——1Male61Euthymic BDg

——0——4Female60Euthymic MDD

——0——3Male60Euthymic MDDg

——0——0Female32HCk

——0——0Male34HCg

——1——0Female28HC

——2——0Male29HC

——1——2Male31HC

——3——1Female32HC

——1——0Female31HC

aHDRS: Hamilton Depression Rating Scale.
bYMRS: Young Mania Rating Scale.
cT0: current acute Diagnostic and Statistical Manual of Mental Disorders–5 affective episodes or only register for euthymic patients and healthy controls.
dT1: symptoms’ response.
eT2: symptomatic remission.
fBD: bipolar disorder.
gThe recording segments extracted from the marked subjects were used to check the models’ ability to generalize to clinically similar subjects, unseen
during training.
hAll registers performed at the hospitalization at home or outpatient units.
iMDD: major depressive disorder.
jEuthymic patients and healthy controls were recorded during a single session (T0).
kHC: healthy control.

Aim 1: Prediction of the Severity of an Acute Affective
Episode at the Intra-individual Level
The 3-class classification tasks (T0-acute, T1-response,
T2-remission; accuracy expected by chance: 1/3=33%) to predict
the severity of an acute affective episode showed accuracies
ranging from 62% (depressed BD) to 85% (depressed MDD).
The generalization models on unseen patients showed accuracies
ranging from 28% (depressed MDD) to 57% (manic BD; Table
3). The confusion matrix is shown in Multimedia Appendix 3.
This means that the model showed moderate to high accuracies
for classifying the severity of each acute affective episode, with
the best prediction models classifying individuals with depressed

MDD and manic BD. However, generalization of the models
was of very low accuracy for depressed MDD and mixed BD
(by chance; approximately 30%), of low accuracy (slightly
above chance; >40%) for mixed BD, and of moderate accuracy
(>55%) for manic BD.

The permutation importance analysis for the classification tasks
for aims 1 and 2 is shown in Figure 2. Kendall W was 0.383,
indicating fair agreement in feature importance across both
intra- and inter-individual classification tasks. ACC was the
most relevant channel for predicting mania, whereas EDA and
HR, followed by TEMP, were the most relevant channels for
predicting both BD and unipolar depression (aim 1). The BVP
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channel did not change performance for either better or worse (Figure 2).

Table 3. Prediction of the severity of an acute affective episode: model and generalization on unseen patients.

GeneralizationModelIndividuals with affective episodes and performance metric

Manic BDa

56.6770Accuracyb (%)

0.52790.6978F1-score

0.53810.6979Precision

0.56670.7000Recall

0.54320.6980AUROCc

Depressed BD

41.6761.67Accuracyb (%)

0.39680.6171F1-score

0.40850.6273Precision

0.41670.6167Recall

0.40670.6115AUROC

Mixed BD

3063.33Accuracyb (%)

0.25760.6333F1-score

0.30040.6333Precision

0.30680.6333Recall

0.30120.6333AUROC

Depressed MDDd

28.3385Accuracyb (%)

0.24510.8492F1-score

0.25810.8774Precision

0.28330.8500Recall

0.28560.8672AUROC

aBD: bipolar disorder.
bAccuracy expected by chance for a 3-class classification task is 1/3=33%. Thus, accuracies above 33% suggest that the model can predict outcomes
better than random guessing, and higher values for accuracy indicate better predictive capacity of the model. Note that the test set was designed to have
the same number of samples in each class. This is reflected in the values of F1-score, precision, and recall being very close to each other and to that of
accuracy.
cAUROC: area under the receiver operating characteristic.
dMDD: major depressive disorder.
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Figure 2. Permutation importance analysis. The height of the bars shows the change in accuracy at test time upon scrambling a channel through a
random permutation of its values. A positive (negative) permutation importance value means that scrambling that channel results in a drop (increase)
in accuracy relatively to the baseline where original (nonpermuted) values were used across all channels, that is, the channel’s permutation deteriorates
(improves) the performance. A “0” permutation importance value indicates that a random permutation of the channel’s values does not affect accuracy
in either direction. For instance, electrodermal activity (EDA) shows a positive change in accuracy of 40% for the intra-individual depressed BD severity
prediction model; this means that removing this channel from the model would result in a decrease of prediction accuracy of 40%—from 62% to
22%—thus EDA is highly relevant for that model. Different colors correspond to the different tasks being investigated. ACC: acceleration; BD: bipolar
disorder; BVP: blood volume pulse; HC: healthy controls; HR: heart rate; MDD: major depressive disorder; TEMP: temperature; T0: current acute
Diagnostic and Statistical Manual of Mental Disorders–5 affective episodes; T1: symptoms’ response; T2: symptomatic remission.

Aim 2: Prediction of the Polarity of an Acute Affective
Episode and Euthymia Among Different Individuals
The 7-class classification task (accuracy expected by chance:
1/7=14%) to predict the polarity of affective episodes and
euthymia showed an accuracy of 70%. The best classifications
were depressed and euthymic MDD, followed by depressed
BD, and the worst was manic BD, followed by HCs. The
generalization model showed an accuracy of 15.7% (slightly
above chance). The classification task for 7 HCs showed an
accuracy of 50% (Table 4). The confusion matrix is shown in
Multimedia Appendix 4. Thus, both models showed predictions
above chance, but their generalization was poor. Moreover, the
model including patients with acute affective episodes obtained

higher accuracy (70%) than the model including 7 HCs (50%).
This increased prediction capacity suggests that
psychopathological symptoms during acute affective episodes
may translate into physiological alterations that are not present
in HCs.

The most relevant channels for predicting the polarity of
affective episodes, euthymia, and HCs among different
individuals (aim 2) were EDA, followed by ACC, HR, and
TEMP (all channels showed >30% permutation importance).
The BVP channel permutation importance was approximately
0%. These results were highly similar for the classification task
of 7 HCs, but EDA showed only 4.9% permutation importance
(Figure 2).
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Table 4. Prediction of the polarity of an acute affective episode and euthymia among different individuals: model and generalization on unseen patients.

GeneralizationModelIndividuals with affective episodes and performance metric

6 patients (acute affective episodes and euthymia) and 1 HCa

15.770Accuracyb (%)

0.15160.6927F1-score

0.15130.6889Precision

0.15170.6934Recall

0.15100.6900AUROCc

7 HCs

—d50Accuracyb (%)

—0.4923F1-score

—0.4911Precision

—0.4988Recall

—0.4998AUROC

aHC: healthy control.
bAccuracy expected by chance for a 3-class classification task is 1/3=33%. Thus, accuracies above 33% suggest that the model can predict outcomes
better than random guessing, and higher values for accuracy indicate better predictive capacity of the model. Note that the test set was designed to have
the same number of samples in each class. This is reflected in the values of F1-score, precision, and recall being very close to each other and to that of
accuracy.
cAUROC: area under the receiver operating characteristic.
dAs we were interested in predicting affective psychopathology, we tested the degree to which a model can generalize to different individuals for each
task except for the one about distinguishing members of a group of only HCs.

Symptom Association With Physiological Data
The tile plots for the NMI between physiological data and the
YMRS and HDRS scale items for the former intra-individual
(aim 1) and between-individuals (aim 2) classification tasks are

shown in Figures 3 and 4, respectively. TEMP had the highest
association with psychometric scales (NMI approximately 1.0),
and BVP had the lowest consistency (NMI scores oscillating
from 0 to 1).

Figure 3. Tile plots for the normalized mutual information analysis between physiological data and psychometric scales’ items: intra-individual level.
For each scales’ item the mutual information (MI) with respect to each of the channels was measured and scaled to 0 to 1 dividing by the maximum MI
value for that item. Values of zero indicate no associations, values of 1 indicate the maximum recorded MI across all channels for an individual item.
ACC_X: x-axis acceleration; ACC_Y: y-axis acceleration; ACC_Z: z-axis acceleration; BD: bipolar disorder; BVP: blood volume pulse; EDA:
electrodermal activity; HDRS: Hamilton Depression Rating Scale; HR: heart rate; MDD: major depressive disorder; TEMP: temperature; YMRS: Young
Mania Rating Scale.
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Figure 4. Tile plot for the normalized mutual information analysis between physiological data and psychometric scales’ items: between-individual
level. For each scales’ item, the mutual information (MI) with respect to each of the channels was measured and scaled to 0 to 1 dividing by the maximum
MI value for that item. Values of “0” indicate no associations; values of 1 indicate the maximum recorded MI across all channels for an individual item.
ACC_X: x-axis acceleration; ACC_Y: y-axis acceleration; ACC_Z: z-axis acceleration; BVP: blood volume pulse; EDA: electrodermal activity; HC:
healthy controls; HDRS: Hamilton Depression Rating Scale; HR: heart rate; TEMP: temperature; YMRS: Young Mania Rating Scale.

Intra-individual NMI Analysis
Motor activity (ACC) channels were highly associated with
manic symptoms (NMI>0.6), and stress-related channels (EDA
and HR) with depressive symptoms (NMI from 0.4 to 1.0), as
shown in Figure 3.

Between-Individuals NMI Analysis
“Increased motor activity” (YMRS item 2 [YMRS2]) was
associated with ACC (NMI>0.55), “aggressive behavior”
(YMRS9) with EDA (NMI=1.0), “insomnia” (HDRS4-6) with
ACC (NMI∼0.6), “motor inhibition” (HDRS8) with ACC
(NMI∼0.75), and “psychic anxiety” (HDRS10) with EDA
(NMI=0.52), as shown in Figure 4.

Discussion

Principal Findings
Although other studies have used raw physiological data to
predict mental health status, this is the first study to present a
novel fully automated method for the analysis of raw
physiological data from a research-grade wearable device,
including a rules-based filter for invalid physiological data,
whereas all other studies presented methods that required manual
interventions at some point in the pipeline [46,47,51,60], thus
hindering the replicability and scalability of results. Moreover,
our preprocessing pipeline is strictly based on the
best-performing algorithm for analysis (ie, not arbitrarily
decided), whereas other studies decided arbitrary cutoff points
for analyzing raw physiological data (eg, ACC data recorded
at 32 Hz sampling rates analyzed arbitrarily in 1-min epochs
[50]). Our method may allow other research teams to use a
viable supervised learning pipeline for time-series analyses for
a popular research-grade wristband [39]. In addition, our work
integrates physiological digital data from all sensors captured
by a research-grade wearable, and we assessed the relevance of
each channel (ACC, TEMP, BVP, HR, and EDA) in the
prediction models. In contrast, other studies have focused on
specific digital signals, such as actigraphy [50], or used

combinations of digital signals (such as actigraphy and EDA)
and predesigned features (eg, amplitude of skin conductance
response peaks) [51] but arbitrarily disregarded other digital
signals, such as TEMP, or derived features, such as HRV.
Furthermore, we aimed to distinguish the severity of mania and
depression in a progressive and longitudinal manner according
to the usual clinical resolution of mood episodes. We believe
that the potential quantification of affective episodes is harder
but a clinically more relevant task that may allow a more
accurate and precise understanding of the disease rather than a
mere dichotomous (acute vs remission) classification, as done
in previous studies [50,51]. In addition, we included in the same
work analyses at the intra-individual level and between different
individuals, analyses targeting specific mood symptoms and
generalization of the models on unseen patients. We believe
that the use of different analysis methods allows us to examine
the data from complementary perspectives to answer specific
research questions. In addition, these different approaches may
reveal random associations or artifacts that would stay hidden
without replication. On the basis of these exploratory results,
we propose hypotheses for future testing [61] in current and
other similar projects.

Note that both (1) intra- and (2) inter-individual analyses
approach different research questions: the (1) intra-individual
analytical approach looks at the course of an index episode
within a single patient and examines whether different states
(from the acute phase to response and remission) can be
distinguished from each other; on the other hand, the (2)
inter-individual analytical approach takes a cross-sectional view
and studies the degree to which different mood disorder states
(comprising the full spectrum from depression to mixed state,
mania, and euthymia) can be separated. Both analyses try to
identify digital biomarkers of illness activity using physiological
data collected with a wristband. However, intra-individual
analyses look for a fine-grained quantification of illness activity
that may allow the identification of low-severity mood states
(or prodromal phases) in comparison with moderate to severe
ones. Conversely, inter-individual analyses could potentially
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distinguish between mood phases (mania vs depression) or cases
from HCs but may not be suitable for assessing the severity of
mood episodes, as represented in Figure 5. Studies in similar
areas, such as brain computer interfaces for the rehabilitation
of motor impairments [62] or seizure forecasting [63],

emphasized the importance of the subject-wise approach
(modeling each subject separately). In many instances, despite
work on domain adaptation [64] to learn subject-invariant
representations, a model has to be fine-tuned to the level of the
single patient.

Figure 5. Severity versus Mood-Phase Classification Models: visual grounds for both intra- and inter-individual analyses. On the left, a severity
classification model for a patient with depression (acute-response-remission phases). On the right, a mood-phase classification model (depression,
mania, and euthymia). Note that on the left model, the same individual is compared at 3 different states (corresponding to a reduction in depressive
psychopathology). Thus, individual-level characteristics (age, sex, and gait) should go through little to no variation across; should remain the same on
the 3 longitudinal registers; and therefore, the shift in the covariate distribution should be relatively contained and not influence the classification of the
model (capturing mood-relevant signals). In contrast, on the right, 3 different individuals at 3 different mood states are compared. In this case, the model
would potentially distinguish between mood phases (mania vs depression), or cases from healthy controls, but may not be able to distinguish longitudinal
changes in disease severity over the course of an index episode. In addition, in the latter model, subject-specific characteristics may be overlapped with
mood-relevant signals, thus acting as confounders for the model. T0: current acute Diagnostic and Statistical Manual of Mental Disorders–5 affective
episodes; T1: symptoms’ response; T2: symptomatic remission.

Studies comparing intra- and inter-individual models show that
although intra-individual (cross-subject or patient-specific)
models are trained on the data of a single subject, they perform
better than intersubject (within-subject or generalized) models
[65]. However, some studies have shown that hybrid models
trained on multiple subjects and then fine-tuned on
subject-specific data led to the best performance, without
requiring as much data from a specific subject [66]. In
intersubject studies, models generally see more data, as multiple
subjects are included, but must contend with greater data
variability, which introduces different challenges. In fact, there
is both intra- and intersubject variability owing to time-variant
factors related to the experimental setting and underlying
psychological parameters. This impedes direct transferability
or generalization among sessions and subjects [62]. To illustrate
this, in a study aimed at evaluating a seizure detection model
using physiological data and determining its application in a
real-world setting, 2 procedures were applied: intra- and
intersubject evaluation. Intrasubject evaluation focuses on the
performance of the methodology when applied to data from a
single patient, whereas intersubject evaluation assesses the
performance of multiple patients with potentially different types
of epilepsy and seizure manifestations [63].

Notably, the out-of-sample generalizations of both models differ
vastly. Whereas the intra-individual model requires multiple
seizures recorded per subject and will produce individualized
models tailored to a single patient, the inter-individual model
requires seizures recorded from multiple participants and will
provide intersubject models to be used over wider populations.
For this purpose, intersubject variability plays a key role: focal
seizures have a multitude of possible clinical manifestations
that can occur in sequence or in parallel and can be repeated or

not occur at all, in a single seizure. For instance, preictal
tachycardia appears to be a phenomenon that is not generalizable
to patient cohorts. Furthermore, although there may oftentimes
be little change in the semiology of seizures for a single patient,
they can be very heterogeneous across populations.
Intra-individual models optimized for each patient can robustly
detect seizures in some patients with epilepsy, but they may
fail, especially when the seizures have differing semiologies
that are not represented in the training data for the model.
Intersubject models perform worse than if trained in an
individualized manner, at least in terms of either sensitivity or
false-alarm rates [63]. This is equivalent to a study aimed at
evaluating a model for mood episode detection and determining
its application in a real-world setting. During acute affective
episodes, a huge combination of symptoms can be present in 2
different patients [67,68], and recurrent longitudinal affective
episodes in a single patient can present with a similar
combination of symptoms, but this is not always the case
[69-72]. At the intrasubject level, out-of-sample generalization
would require multiple episodes of disease occurrence
longitudinally in a single patient. In fact, similar studies with
intra-individual models have achieved high detection accuracies
with low sample sizes and better performance than intersubject
classification [63,73]. In contrast, at the intersubject level,
out-of-sample generalization does not require longitudinal
episodes but only cross-sectional episodes in different patients.
Therefore, both models serve different but complementary
purposes to build a real-world model for the detection of
prodromal affective symptoms. Future studies combining intra-
and inter-individual analyses should determine which of these
approaches may work best to identify affective episodes, giving
guidance for the design of future studies in the field.
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Clinically, the end goal is to have a model inferring mood states
at the individual level, regardless of whether such a model is
shared across subjects or if each subject has a tailored model.
Although most digital biomarker research has focused on
diagnosis classification, few studies have aimed to detect
longitudinal symptom change. Developing methods to detect
changes in mood symptoms has the potential to prompt
just-in-time interventions to prevent full-blown affective relapses
and clinical deterioration and evaluate the response to
pharmacological treatments with objective measures [21].

In our sample, both intra- and inter-individual models for
respectively assessing differences in severity of acute affective
episodes over time (Table 3) and differences in the polarity of
acute affective episodes, euthymia, and HCs (Table 4) showed
accuracies considerably above chance. Although preliminary,
these results indicate that there may be objective differences in
digital signals (ie, digital biomarkers) according to the
psychopathological severity of patients (intra-individual models)
and that patients with BD or MDD may present particular
patterns of digital signals for mood episodes of mania and
depression (inter-individual models). However, with few patients
and measurements per model, these digital biomarkers may be
challenging to identify and even harder to generalize.

Motor activity (from ACC) was the most relevant digital signal
for predicting the severity of mania and mixed mania (but not
for unipolar or bipolar depression) and also for predicting the
polarity of acute affective episodes between individuals (Figure
2). In line with our results, other research groups have found
that wearable motor activity data can distinguish mania from
remission in patients with BD at the intra-individual level [50].
Moreover, other studies have shown that motor activity data
could identify mood episodes and euthymia among different
individuals, including mania versus euthymia [51], depression
versus HCs [60], and mania versus depression versus HCs [74].
In fact, “activation,” which comprises having objective (motor
activity) and related subjective (energy) levels emerging from
underlying physiological changes, has been widely recognized
as a key feature from mania [75]. Previous literature proposes
that mood and activation represent distinct dimensions of BD
[76] with distinct intervention approaches [77]. In addition,
dysregulation of patterns of activity has been observed in BD
both in acute phases and euthymia and has been proposed as a
potential biomarker for BD [78]. However, it should be noted
that mania may be better characterized by differences in
robustness, variability, predictability, or complexity of activation
rather than mean levels of activity [75], so future analyses should
explore which characteristics of motor activity are key for the
former predictions.

In contrast, “stress-related” digital signals (EDA and HR) were
the most relevant for predicting the severity of both unipolar
and bipolar depression (but not mania or mixed mania) and
were also prominent for predicting the polarity of acute affective
episodes between individuals (Figure 2). In fact, when looking
at psychic anxiety as a symptom (item 10 from HDRS), EDA
and HR showed strong associations (Figure 4). Moreover, EDA
showed relevance for predicting the polarity of affective
episodes between individuals but did not differentiate between
HCs (38% vs 4.9%), as shown in Figure 2. This suggests that

EDA may be a specific marker for psychopathological
alterations that are not present in HCs. Furthermore, skin TEMP
(a proposed marker of stress) was also a relevant physiological
signal for predicting the severity of unipolar and bipolar
depression (Figure 2). These findings are in line with previous
literature [26,79-82] and reinforce the hypothesis that stress
plays a key role in people with depression. Whereas patients
with manic episodes usually lack insight into their symptoms,
patients with depression are usually aware of their altered state
and bear much distress and anxiety [83], which may be
translated into physiological alterations, as suggested in our
findings.

Generalizations of the former models on unseen patients were
of overall low accuracy, which may be due to high
psychopathological and individual heterogeneity, as well as
external factors. Although mood episodes share many
psychopathological aspects, they can present with multiple
combinations of symptoms [68,76,84]. Each digital signal may
provide information on a specific symptom dimension (altered
motor activity, sleep disturbances, and stress-related symptoms)
rather than the entire affective episode (manic, depressive, or
mixed). We hypothesized that training the models with a larger
sample, including patients with different symptom combinations
for each affective episode, will result in more precise
generalizations. Thus, exploring how patients cluster according
to physiological data might help toward a dimensional (rather
than categorical) disease classification. Deep learning is a
promising approach for clustering high-dimensional,
unstructured data [85], and new methods have been proposed
specifically for data from wearable devices (multivariate time
series) [86,87]. Apart from polymorphic psychopathological
presentations in mood episodes, there is high between-subject
heterogeneity in physiological data. For instance, skin TEMP,
HR, and EDA vary within a physiological range in the same
individual according to external (ie, atmospheric humidity or
ambient TEMP) or internal factors (ie, hydration, diet, caffeine
intake, and drugs) [52], and there are also individual-level
patterns (eg, specific gaits, circadian rhythms, basal skin TEMP,
or HR). This calls for ad-hoc techniques to disentangle
between-patient heterogeneity from mood-related signals [88]
and consider the role of potential confounders in the models
(eg, drugs, medical comorbidities, physical activity, atmospheric
conditions, and diet). Notwithstanding, generalizations of the
intra-individual models for manic BD and depressed BD were
above chance, in contrast to the generalization of the
inter-individual model (almost by chance). This may suggest
that individual heterogeneity is partially controlled for when
comparing the same individual at different time points. This
way, physiological changes may be more related to
psychopathology rather than simply to individual characteristics
(eg, gait, sex, and age) However, intra-individual comparisons
do not control for external factors (eg, humidity, atmospheric
TEMP, exercise, or hydration), which should be considered and
controlled for.

When exploring the association between affective symptoms
and physiological data, skin TEMP showed the highest
association with psychometric scales (NMI approximately 1.0;
Figures 3 and 4). Skin TEMP has been proposed as an objective
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physiological marker of stress [89,90], and it has been shown
that people with mood disorders present objective reductions
in peripheral skin TEMP (due to vasoconstriction) after
stress-oriented interventions [91]. Moreover, skin TEMP from
wearable data has been used to study circadian rhythms in
patients with mood disorders, showing alterations in their
chronobiology [92]. Even so, thermoregulatory dysfunction has
been proposed in a subgroup of patients with BD [93]. However,
the skin TEMP continuously recorded with wearables has been
relatively understudied in mood disorders, and further efforts
should be made in this direction.

Regarding the most relevant inputs for the previous models,
physiological data related to specific symptom dimensions (eg,
ACC with motor activity and EDA and HR variation with stress
response or anxiety) seemed to be more relevant signals for
predicting mood episode severity and polarity rather than more
raw data, such as BVP with nearly 0% permutation importance
in all models (Figures 2-4), which do not seem to have a direct
clinical translation to physiological alterations related to mental
health symptoms. We hypothesized that complex features with
potential clinical translation (ie, indicating stress response or
autonomic dysfunction), such as HRV [22,23,94], which is
calculated from BVP, and EDA reactivity, calculated from EDA
[26], may be of greater value than second-to-second changes
in motor activity (ACC), EDA, pulse (BVP), and TEMP. We
hypothesized that adding derived features as input to the models
will probably result in better predictions, as shown by other
research groups when identifying mood states in BD using the
same wristband device [51]. Therefore, we are currently
exploring derived features from raw data (ie, statistical,
time-domain, and frequency-domain features) [53], assessing
EDA reactivity by extracting information on the tonic and phasic
components of skin conductance using novel automated methods
[18,53,95], and performing stress elicitation to assess potential
alterations (hyporeactivity) in the phasic component of EDA
during mood episodes [26]. Finally, considering the sleep and
circadian rhythm disturbances in mood disorders in both
euthymia [19,96] and acute phases [97-99], we are exploring
automated methods to separate sleep from wake times
[87,100,101]. Our goal is to evaluate sleep disturbances and
differences in physiological signals during sleep and wake
periods during mood episodes [77].

Limitations
We acknowledge several limitations in this study. First, the
limited sample size for model development does not allow us
to make strong claims about generalization performance [102].
However, most recordings were longer than 40 hours and each
patient on an acute mood episode was recorded longitudinally
at 3 time points (acute, response, and remission). In fact, our
data set in terms of recording hours is well above other data
sets modeled with deep learning in health care settings: the deep
convolutional approach proposed by Musallam et al [103] was

applied to 60 hours of electroencephalogram recordings [104].
In addition, the wearable device used (E4), allows fine-grained
collection of digital physiological data (from 1 Hz to 64 Hz)
for precision longitudinal time-series analyses. Regarding
sample size in terms of the number of subjects, previous
endeavors used as few as 12 subjects [46]. Unfortunately, this
type of data, that is, recorded with a research-grade wearable
device on a population with a psychiatric condition (arguably
interfering with compliance to instructions), is expensive and
time-consuming to collect. Second, potential confounding
variables such as sex, age, pharmacological treatments, exercise,
or BMI were not controlled for, and some of the study sample
was not matched by age and sex. This may have biased the
results, as those variables have been found to affect motor
activity data, especially in between-group comparisons [60].
The within-subject design allows partial mitigation of both the
weakness of a small sample size and the influence of
confounders, so the models can capture mood-related signals.
Therefore, we performed intra-individual comparisons across
consecutive time points. In fact, the generalization of
intra-individual models obtained substantially better accuracies,
showing glimpses of capturing the severity of manic and
depressive psychopathology.

Future works will further explore the capabilities of advanced
automated machine learning models for identifying affective
illness activity and the role of confounders in this association.
Of particular interest are the application of clustering algorithms
[87], exploring derived features (HRV [94] and EDA reactivity
[26]), the role of wake and sleep periods [77,105], and the
potential of physiological data to predict treatment responses
and detect prodromal signs of mood episodes [106]. Future
projects will include (1) studying the role of psychotic symptoms
in patients with affective disorders, as well as in patients with
schizophrenia; (2) assessing the role of smartphone-based
derived data, including ecologic momentary assessments and
passive data [107-109], in patients with BD using the SIMPLe
smartphone app [110,111]; and (3) investigating the potential
of combining physiological wearable data with peripheral
biomarkers [112,113] and speech features [114-118].

Conclusions
Physiological wearable data may have the potential to identify
and predict the severity of mania and depression in mood
disorders as well as specific symptoms quantitatively. Motor
activity appears to be the most relevant digital biomarker for
predicting mania, whereas stress-related digital biomarkers
(EDA and HR) appear to be the most relevant for predicting
both bipolar and unipolar depression. In the context of
biomarkers in mood disorders, these findings represent a
promising pathway toward personalized psychiatry, in which
clinical decisions and treatments could be supported by passive
continuous and objective digital data.
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Abbreviations
ACC: acceleration
AUROC: area under the receiver operating characteristic
BD: bipolar disorder
BiLSTM: Bidirectional Long Short-Term Memory
BVP: blood volume pulse
DSM-5: Diagnostic and Statistical Manual of Mental Disorders–5
EDA: electrodermal activity
HC: healthy control
HDRS: Hamilton Depression Rating Scale
HR: heart rate
HRV: heart rate variability
IBI: interbeat interval
LSTM: long short-term memory
MDD: major depressive disorder
NMI: normalized mutual information
RNN: recurrent neural network
ROC: receiver operating characteristic
T0: current acute Diagnostic and Statistical Manual of Mental Disorders–5 affective episodes
T1: symptoms' response
T2: symptomatic remission
TEMP: temperature
YMRS: Young Mania Rating Scale
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